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ABSTRACT
We propose a development method for security protocols
based on stepwise refinement. Our refinement strategy guides
the transformation of abstract security goals into protocols
that are secure when operating over an insecure channel con-
trolled by a Dolev-Yao-style intruder. The refinement steps
successively introduce local states, an intruder, communi-
cation channels with security properties, and cryptographic
operations realizing these channels. The abstractions used
provide insights on how the protocols work and foster the de-
velopment of families of protocols sharing a common struc-
ture and properties. In contrast to post-hoc verification
methods, protocols are developed together with their cor-
rectness proofs. We have implemented our method in Is-
abelle/HOL and used it to develop different entity authen-
tication and key transport protocols.

Categories and Subject Descriptors
C 2.2 [Computer-communication networks]: Network
protocols – Protocol verification; D 2.4 [Software engi-
neering]: Software/Program verification - Formal methods,
correctness proofs.

General Terms
Security, Design, Verification.

Keywords
Security protocols, stepwise refinement, formal development,
entity authentication, key establishment.

1. INTRODUCTION
Designing security protocols is a non-trivial task and there-

fore an attractive target for formal methods. The vast ma-
jority of existing approaches, whether automated or interac-
tive, symbolic or computational, are designed for post-hoc
verification of completed protocol designs. This means that
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all decisions regarding the number of roles, the communi-
cation and message structure, and cryptographic primitives
must be made before verification begins.

In this paper, we advocate a development method based
on stepwise refinement, where we start from an abstract
model that we gradually concretize by incorporating addi-
tional design elements (superposition) and by transforming
existing ones (data refinement). Organizing developments
this way has numerous benefits compared to post-hoc veri-
fication approaches. First and foremost, refinement enables
us to reason abstractly about the problem and extract its
essential features. This abstract analysis leads to valuable
insights into the problem. Second, refinement helps us to
master the complexity of both models and proofs by focusing
on individual design aspects at each step. Third, refinement
naturally supports the hierarchical development of protocol
families through branching points in the refinement design
space. For example, we may prove the secrecy of a session
key for key transport protocols in an abstract model that
we later refine into more concrete protocols with different
communication topologies, message structures, and crypto-
graphic primitives, without repeating the secrecy proof.

We specify each model by a transition system together
with a set of invariants. The initial models constitute an
abstract specification of the security properties required of
our protocol. Each subsequent model transforms or extends
its predecessor and may introduce additional security prop-
erties. The correctness of each refinement step is justified by
a simulation proof, in the spirit of refinement in Event-B [4].
The final model is a full-fledged cryptographic protocol that
is secure against a standard Dolev-Yao intruder [17]. We
have formalized and machine-checked all results presented in
this paper, namely, our theory of refinement and all protocol
developments, using the Isabelle/HOL theorem prover [30].

The following four-level refinement strategy guides our de-
velopments, where each level may itself consist of several
refinement steps.

Level 0 Abstract, protocol-independent specifications of se-
crecy and authentication properties. The model’s state
contains just enough structure to formulate these prop-
erties as invariants and realize them abstractly by just a
few events. There are no intruder actions.

Level 1 Abstract protocol without message passing. We in-
troduce protocol roles, local states of agents, and ba-
sic protocol steps. Agents read data directly from other
agents’ local state. There are still no intruder actions.

Level 2 Protocol communicating over abstract channels with
security properties, such as confidential and authentic



channels. The intruder may eavesdrop messages on non-
confidential channels and fake messages on non-authentic
channels. No cryptography is used.

Level 3 Cryptographic protocol using an insecure channel.
The messages on the abstract channels from Level 2 are
now implemented using cryptographic messages sent over
an insecure channel. A standard Dolev-Yao intruder
completely controls the network.

In order to validate the effectiveness of our refinement strat-
egy, we developed different authentication and key establish-
ment protocols from abstract specifications. We derived the
ISO/IEC 9798-3 protocol and the first two steps of the Need-
ham-Schroeder-Lowe protocol, which are unilateral entity
authentication protocols based on signatures and public-key
encryption. Here, our initial model expresses authentication
in terms of a minimal structure, namely, the view of each
role at the end of a protocol run. We also developed various
server-based key transport protocols using symmetric-key
cryptography, including a variant of the Otway-Rees proto-
col, the Needham-Schroeder Shared-Key protocol, the Ya-
halom protocol, and the core of the Kerberos IV and V pro-
tocols. For each of these protocols, we refine two initial
models to establish both secrecy and authentication prop-
erties: the first model is an abstract representation of se-
crecy that we instantiate with session keys and the second
is the entity authentication model mentioned earlier. Inter-
estingly, the final models in each class of protocols refine a
common Level 1 ancestor, even though they use different
cryptographic primitives and communication patterns.

We see four main contributions in our work. The first con-
tribution is methodological. Our initial models specify the
security goals of the abstract protocol models at Level 1.
These in turn determine the basic structure of entire fam-
ilies of protocols. Using the refinement strategy outlined
above, we systematically refine these abstract models in a
series of well-defined steps to protocols using cryptographic
messages sent over an insecure channel. We illustrate this
with known protocols, but we have also used this strategy
to develop new variants of these protocols. Our refinement
strategy aims at proving security properties at the highest
possible abstraction level. General results guarantee that
these properties are preserved by subsequent refinements.

Our refinement strategy naturally gives rise to straightfor-
ward simulation relations for the refinement proofs. More-
over, the process of proving refinements helps us discover
invariants, many of which are canonical. For example, the
simulation relation linking Levels 2 and 3 usually expresses
that the local states of the roles is untouched by the (super-
position) refinement and maps the cryptographic messages
at Level 3 to abstract channels at Level 2 (data refinement).
A canonical invariant that appears in such refinement proofs
states that the honest agents’ long-term keys remain secret.
This is the natural level of abstraction for this invariant.
Typically, the other relevant security properties are already
proved in earlier refinements.

Our second contribution is to show how to systemati-
cally model and use channels with security properties to
construct and reason about security protocols. This fun-
damental abstraction allows us to reason about a protocol’s
security properties at a lower level of complexity than with
the Dolev-Yao intruder. It also enables a range of different
realizations. For example, we may implement an authentic

channel using signatures or MACs. Moreover, the communi-
cation structure may change from Level 2 to 3. For instance,
an abstract key server may independently distribute keys on
secure channels to the initiator and responder, whereas in
the concrete realization the distribution is sequential: one
role receives two encrypted copies of the key and forwards
one copy to the other role (Section 5). The abstract view
represents the essential structure of server-based key distri-
bution. The forwarding is just an implementation decision.

Our third contribution is to show how refinement can be
used to develop protocols that are secure under the standard
Dolev-Yao intruder model (at Level 3). In contrast, in re-
lated work such as [6, 9, 12,23], the authors do not continue
the refinements down to the level of a standard Dolev-Yao
model based on an algebra of cryptographic messages; some
use ad-hoc, protocol-dependent intruder definitions. This
makes it difficult to compare their models with existing work
on protocol modeling and verification and to know for which
adversaries their properties hold.

Our final contribution is a comprehensive definitional ex-
tension of Isabelle/HOL with a theory of refinement that is
based on simulation and borrows elements from [2, 4]. We
define an implementation relation on models including a no-
tion of observation, derive proof rules for invariants and re-
finement, and show that refinement entails implementation.

2. PRELIMINARIES

2.1 Isabelle/HOL
Isabelle is a generic, tactic-based theorem prover. We

have used Isabelle’s implementation of higher-order logic,
Isabelle/HOL [30], for our developments. To enhance read-
ability, we will use standard mathematical notation in our
presentation where possible.

We write t :T for a term t of type T . We use ≡ for defi-
nitional equality. Lowercase Greek letters denote type vari-
ables. The type of natural numbers is denoted by nat. Given
types T and U , T → U is the type of total functions, T ×U
is the product type, T list is the type of lists with elements
in T , and T set is the type of sets over T . The set of all
elements of type T is denoted by UT . We drop the subscript
T when it is clear from the context. The term f [A] denotes
the image of a set A under a function or binary relation f .
The domain of a function or a binary relation f is denoted
by dom(f) and its range by ran(f). The term R;S denotes
the forward composition of the binary relations R and S.

The keyword datatype is used to define an inductive data
type. For example, the polymorphic option type is defined
as datatype α⊥ = ⊥ | Some(α). To improve readability, we
may omit the constructor Some. Functions of type T → U⊥
model partial functions from T to U . The term f(x 7→ y)
denotes the function that behaves like f , except that it maps
x to y. The declaration types T = U defines T as an alias
for U , for example, we define types α ⇀ β = α → β⊥.
We define multisets over α by types α multiset = α →
nat. For m1,m2 : α multiset, the term mi(e) indicates the
multiplicity of e in mi and the term m1]m2 denotes multiset
union and is defined by (m1 ]m2)(e) = m1(e) +m2(e).

Record types may be defined, such as record point = x:
nat y :nat with elements like r = (| x = 1, y = 2 |) and pro-
jections r.x and r.y. The term r(| x := 3 |) denotes r, where x
is updated to 3, i.e., (| x = 3, y = 2 |). To extend point with
a color field, we define record cpoint = point + c : color.



channel type dot notation channel message

insecure A→ B : M Insec(M)

confidential A→• B : M Confid(B,M)

authentic A •→ B : M Auth(A,B,M)

secure A •→• B : M Secure(A,B,M)

Table 1: Channel notation and messages

For record types T and U including fields F , we define
ΠF ≡ {(r, s) ∈ T × U |

∧
x∈F r.x = s.x}. If U has exactly

the fields F , the function πF : T → U projects T to U .

2.2 Channels and messages
At Level 2 of our refinement strategy, we model proto-

cols using communication channels with associated secu-
rity properties. These channels transmit plaintext messages
without cryptographic operations built from agent names,
nonces, and keys. We define a type of agents, agent, con-
taining a distinguished server S and an intruder i. We stip-
ulate the existence of a set of dishonest agents, bad (with
complement good), such that i ∈ bad and S ∈ good. The
types nonce and key are aliases for nat.

For informal use, we adopt the notation of [25] (second
column of Table 1). We write A→ B for an insecure chan-
nel from agent A to agent B. The “: M” indicates that the
message M is sent on the channel. Security properties are
indicated by a dot on one or both sides of the arrow. The
respective agent has exclusive access to the marked end.
A confidential channel A →• B provides a service to A,
namely, A knows that only B can receive messages. An au-
thentic channel A •→ B provides a service to B, whereby
B knows that only A can send messages. A secure channel
A •→• B provides both agents with guarantees.

We formalize the channel messages that can be sent by a
data type chmsg, providing one constructor for each channel
type (third column of Table 1). For example, Confid(B,M)
denotes a confidential message for B. We also say that M
is sent to B on a confidential channel. The last argument
of each constructor takes a non-cryptographic payload mes-
sage. The constructors also contain the agent names that
are relevant for the respective security property.

We formally define the intruder’s capabilities in Sections 4
and 5. Informally, the intruder can eavesdrop messages on
all insecure and authentic channels and on confidential and
secure channels with a dishonest receiver. The set of these
messages defines the intruder knowledge. Using this knowl-
edge, the intruder can fake messages on all insecure and con-
fidential channels as well as on authentic and secure chan-
nels with a dishonest sender or receiver. The asymmetry
between confidential and authentic messages (the latter con-
tain both the sender and receiver’s name) is needed to allow
the intruder to fake messages on a channel A •→ B to a
dishonest B. This enables the realization of authentic mes-
sages Auth(A,B,M) by symmetric cryptography, where the
intruder learns the symmetric key KAB from B and can, for
instance, produce a MAC.

At Level 3, we model concrete protocols and the Dolev-
Yao intruder using a standard theory of cryptographic mes-
sages due to Paulson [31], which we summarize here. The
type of messages, msg, is defined inductively. To improve

readability, we replace the constructors by notational con-
ventions: agentsA, B, C, noncesN , keysK, pairs {|M1,M2|},
and encryptions {|M |}K . Signatures are modeled as encryp-
tions with private keys. The terms pub(A), pri(A), and
shr(A) denote A’s public key, A’s private key, and the sym-
metric key that A shares with S. To formalize protocol prop-
erties and a Dolev-Yao intruder, we use the standard closure
operators parts, analz, and synth on sets of messages. The
term parts(H) closes H under submessages, analz(H) closes
H under submessages accessible using the keys in H, and
synth(H) closes H under message composition operators.

3. REFINEMENT IN ISABELLE/HOL
We summarize here our theory of refinement that we de-

veloped in Isabelle/HOL. It borrows elements from existing
formalisms such as Event-B [4] and that of [2].

3.1 Specifications and implementation
Our models are specifications consisting of transition sys-

tems equipped with an observation function.

Definition 1. A transition system T = (Σ,Σ0,→) is a
triple, where Σ is the state space, Σ0 ⊆ Σ the set of initial
states, and → ⊆ Σ × Σ the transition relation. A specifica-
tion S = (T,O, obs) extends a transition system T with a
function obs : Σ→ O mapping states to observations in O.

We write s → t for (s, t) ∈ →. The set of finite behav-
iors of S, beh(S), consists of the sequences of states starting
in an initial state in Σ0 and linked by transitions in →.
The term reach(S) denotes the set of T ’s reachable states.
Since we only consider safety properties (in fact, invariants),
it suffices to consider just finite behaviors. The observa-
tion function obs specifies which state information is visi-
ble to an outside observer. The set of observable behaviors
and reachable observations of the specification S are defined
by obeh(S) ≡ obs[beh(S)] and oreach(S) ≡ obs[reach(S)],
where obs is applied to behaviors elementwise.

Our notion of one specification implementing another is
defined by the inclusion of their observable behaviors.

Definition 2. We say S2 implements S1 via the mediator
function π : O2 → O1 if π[obeh(S2)] ⊆ obeh(S1).

The binary relation obtained by existentially quantifying the
mediator function in Definition 2 is reflexive and transitive.
The mediator function π allows us to extend observations
during refinement. For example, we may implement a model
by adding a new variable that is observable.

3.2 Invariants and refinement
We consider two types of invariants, internal and exter-

nal. A set I ⊆ Σ is an internal invariant of a specification
S = (T,O, obs), if reach(S) ⊆ I. Internal invariants are
often needed to strengthen the simulation relation in refine-
ment proofs. A set J ⊆ O is an external invariant of S if
oreach(S) ⊆ J . The importance of external invariants is
that they are preserved by implementations.

Proposition 1. Suppose S2 implements S1 via π and let
J ⊆ O1 such that oreach(S1) ⊆ J . Then π[oreach(S2)] ⊆ J .

There is no similar result for internal invariants in general.
We developed several proof rules to establish internal and
external invariants. We usually derive external invariants



from internal ones that are observable in the following sense.
We call a set P ⊆ Σ observable if there is a set Q ⊆ O such
that P = obs−1[Q]. This means that P cannot distinguish
between any two states resulting in the same observation.
Sometimes we also do the inverse: internalize external (for
example, preserved) invariants.

Proposition 2. Let S = (T,O, obs) be a specification
and let P ⊆ Σ and Q ⊆ O such that P = obs−1[Q]. Then
we have reach(S) ⊆ P if and only if oreach(S) ⊆ Q.

Our notion of refinement between specifications is the stan-
dard notion of simulation, which we first define on transition
systems and then extend to specifications.

Definition 3. Let T1 and T2 be transition systems. We
say that T2 refines T1 using the simulation relation R ⊆
Σ1 × Σ2, written T2 vR T1 if (1) Σ0,2 ⊆ R[Σ0,1] and (2)
R;→2 ⊆ →1;R.

Condition (1) states that for each concrete initial state t ∈
Σ0,2 there is an abstract state s ∈ Σ0,1 such that (s, t) ∈
R. Condition (2) requires that each concrete transition can
be simulated by an abstract one. Namely, for each pair of
related states (s, t) ∈ R and each concrete transition t→2 t

′,
there is an abstract state s′ such that s→1 s

′ and (s′, t′) ∈
R. In most of our refinement proofs, we use a proof rule
derived from this definition that supports strengthening the
simulation relation with invariants.

We extend refinement to specifications by adding a medi-
ator function and requiring that the simulation relation is
consistent with observations, as depicted below.

O1 Σ1
obs1oo

R

²²
O2

π

OO

Σ2
obs2oo

Definition 4. S2 refines S1 using the simulation relation
R ⊆ Σ1 × Σ2 and the mediator function π : O2 → O1,
written S2 vR,π S1, if T2 vR T1 and R respects observations
mediated by π, i.e., obs1(s) = π(obs2(t)) for all (s, t) ∈ R.
S2 refines S1 via π, written S2 vπ S1, if there is an R such
that S2 vR,π S1.

Refinement is reflexive (with the identity mediator function)
and transitive (composing mediator functions). Moreover,
refinement is a sound method to establish implementation.

Proposition 3. If S2 vπ S1 then S2 implements S1 via
the mediator function π.

3.3 Refinement method and practice
We will work with structured states and transition rela-

tions, analogous to Event-B. We use state records, which are
tuples of state variables, and specify the transition relation
as a finite union of parametrized relations, which we call
events. Here is a prototypical event with a parameter list x.

event(x) ≡ {(s, s′) | G(x, s) ∧ s′.v := f(x, s) }

Events consist of two conjoined parts: a conjunction of guards
G(x, s) and an action s′.v := f(x, s) with update functions
f . The guards depend on the parameters x and the current
state s and determine when the event is enabled. The ac-
tion denotes the relation s′ = s(| v := f(x, s) |), that is, the

simultaneous assignment of values f(x, s) to the variables
v in state s, yielding state s′. Actions may generally be
arbitrary relations, but assignments suffice here.

Exploiting this structure, we can prove invariant preser-
vation separately for each event. For refinement, we can
similarly show the second condition of Definition 3 event-
wise. For each concrete event evtc(x) (with guards Gc, state
variables v, and update functions fc) we identify an abstract
event evta(z) (with guards Ga, state variables u, and update
functions fa) simulating it. For these two events we prove

R; evtc(x) ⊆ evta(w(x));R ,

where the witnesses w(x) construct parameters for evta from
those of evtc. Unfolding these events yields the following
two proof obligations, called guard strengthening and action
refinement, both under the premises (s, t) ∈ R and Gc(x, t).

1. Ga(w(x), s) (GRD)

2.
(
s(| u := fa(w(x), s) |), t(| v := fc(x, t) |)

)
∈ R (ACT)

We assume that the special event skip, namely, the identity
relation, is present in all specifications. Setting evta to skip
achieves a temporal refinement : the new event evtc has no
corresponding effect on the abstract state.

A development starts from a set of system requirements
and assumptions about the environment. We then incre-
mentally construct a system that fulfills the requirements
provided it runs in an environment satisfying the assump-
tions. The crucial point is that requirements and assump-
tions, once modeled, are preserved by subsequent refinement
steps. Requirements (or assumptions) may be established
by variables, events, or external invariants. A variable is
preserved if it is observable: this enables the reconstruction
of abstract observations from concrete states. For events,
preservation means that some observable effect of an event
is preserved. External invariants are preserved by virtue of
Propositions 1 and 3. The definition of observations plays
a crucial role in formalization and preservation of require-
ments: Increasing the observable abstract state information
strengthens the properties that are provably preserved by
the refinement.

As with other deductive approaches, the inability to prove
a property, namely an invariant or a refinement, can have
three possible causes. First, the property may be provable
and the human verifier is unable to find a proof. This re-
quires a better understanding of the problem, which may
lead to the formulation of simplified properties. Second, the
property may not be inductive and requires strengthening
to become provable. Finally, the property may fail to hold,
in which case the failed proof state gives information about
a possible attack. In contrast to post-hoc verification, such
failures may occur at different levels of abstraction. In par-
ticular, a failed refinement proof may require adding behav-
iors to an abstract model that is too restrictive or removing
behaviors from a concrete model.

4. AUTHENTICATION PROTOCOLS
We have used our methodology to develop two unilat-

eral authentication protocols. Both protocols are based on
a standard challenge-response pattern, where the initiator
sends a nonce as a challenge and the responder returns it
in a cryptographically transformed form that authenticates



him to the initiator. The first protocol is the signature-
based two-pass ISO/IEC 9798-3 standard [18]. The second,
which we call NSL/2, consists of the first two steps of the
Needham-Schroeder-Lowe protocol [21] and uses public-key
encryption. Due to space limitations, we only discuss the
ISO protocol here.

4.1 Requirements and assumptions
We start by specifying the system requirements and by

making our assumptions about the environment explicit.

Requirement 1 (Protocol roles). The protocol has two
roles, which we call initiator and responder.

Our notion of authentication is based on agreement [22].
Informally, we say that a role R non-injectively agrees with
the role R′ on the data d if whenever an honest agent A in
role R terminates a run, apparently with an honest agent B
in role R′, then there is a run of agent B in role R′ with
whom he agrees on the participants, their roles, and the
data d. Such an agreement is injective if there is at most
one run of role R that agrees with a given run in role R′.

Requirement 2 (Entity authentication). The initiator
injectively agrees with the responder on the initiator’s
nonce and possibly on additional data.

We will assume a standard Dolev-Yao intruder that we iden-
tify as usual with the communication network.

Assumption 1 (Dolev-Yao intruder). The intruder con-
trols the network. He receives all messages sent and
he can build (synth) and send messages composed from
message parts obtained by decomposing (analz) received
messages using the cryptographic keys he knows.

The following assumptions concern the corruption of agents
by the intruder and the cryptographic setup.

Assumption 2 (Static corruption). An arbitrary fixed
subset of agents is corrupted, whereby their long-term
keys are exposed to the intruder.

Assumption 3 (Key distribution). The requisite cryp-
tographic keys are distributed prior to protocol execu-
tion.

4.2 Entity authentication (L0)
Our development starts with an abstract, protocol-inde-

pendent initial model, where the state contains just enough
information to specify entity authentication. In particular,
we follow Lowe [22] and formulate agreement in terms of
signals that indicate particular stages of each role’s progress,
such as termination. More precisely, we present two models,
one for non-injective agreement, a0n, and one for injective
agreement, a0i . We show that a0i refines a0n.

The state record has a single field sigs, which is a multiset
of signals. In the initial state, sigs is the empty multiset.
The entire state is observable.

datatype δ signal = Running(agent list× δ)
| Commit(agent list× δ)

record δ a0_state = sigs : (δ signal) multiset

There are two signals: Running(h, d) and Commit(h, d). Here,
h is a list of agents and d is some data of polymorphic type δ,
which is later instantiated depending on the protocol. The

agreement on the data d will hold under the condition that
the agents in h are honest. The position of an agent in the
list h indicates its role. For the role R to agree with the
role R′, we follow the convention that the agents executing
these roles appear in the first two positions of h. For exam-
ple, later in this section, we will use h = [A,B], where A
is the initiator and B the responder. In the simplest case,
h includes all participating agents. However, when it is not
necessary to assume the honesty of some role, we move the
corresponding agent to d (cf. Section 5.3).

Non-injective agreement [22] can be expressed as follows:
if the agents in h are honest and there is a Commit(h, d)
signal, then there is a matching running signal Running(h, d).

a0n_inv1_niagree ≡ {s | ∀h, d. h ⊆ good ∧
s.sigs(Commit(h, d)) > 0→ s.sigs(Running(h, d)) > 0 }

Injective agreement strengthens this by requiring that the
number of Commit(h, d) signals is not greater than the num-
ber of matching Running(h, d) signals.

a0i_inv1_iagree ≡ {s | ∀h, d. h ⊆ good
→ s.sigs(Commit(h, d)) ≤ s.sigs(Running(h, d)) }

The initial model a0n has only two events. The first event
adds a Running(h, d) signal to the multiset s.sigs.

a0n running(h, d) ≡ {(s, s′) |
s′.sigs := s.sigs ] {Running(h, d)} }

The second event adds a Commit(h, d) signal to the mul-
tiset s.sigs. Its guard requires that there exists a match-
ing Running(h, d) signal if the agents in h are honest. This
ensures that invariant a0n inv1 niagree is preserved. The
honesty conditions weaken the guard just enough to accom-
modate the protocol’s interaction with an explicit intruder
in later refinements.

a0n commit(h, d) ≡ {(s, s′) |
(h ⊆ good → s.sigs(Running(h, d)) > 0) ∧
s′.sigs := s.sigs ] {Commit(h, d)} }

The model a0i for injective agreement is the same except
for the guard in a0i commit(h, d), which we strengthen as
follows to preserve the invariant a0i inv1 iagree.

h ⊆ good
→ s.sigs(Commit(h, d)) < s.sigs(Running(h, d)

It is easy to see that a0i refines a0n. The properties of the
models a0n and a0i are summarized as follows.

Proposition 4. We have reach(a0n) ⊆ a0n inv1 niagree,
reach(a0i) ⊆ a0i inv1 niagree, and a0i vId,id a0n.

Since the variable sigs is observable, these invariants will be
preserved by further refinements (Propositions 1 and 3).

4.3 Abstract authentication protocol (L1)
Following our refinement strategy, we now introduce pro-

tocol runs and roles. A run is a thread, which is executed by
some agent in a given role. At this level, runs communicate
by reading each other’s memory. We will later refine this by
introducing communication channels. Moreover, there are
no intruder events.

The state record a1 state contains a single field runs for
protocol runs, which replaces the initial models’ signals.



datatype frame = Init(nonce⊥) | Resp(nonce)

record a1_state =
runs : rid ⇀ agent× agent× frame

The variable runs maps run identifiers to triples consisting
of the initiator agent, the responder agent, and a run frame.
Since run identifiers are freshly generated values, they can
also play the role of nonces or keys. In this model, we use
them as nonces.

The frame is a sum type with one constructor for each
role. The (protocol-dependent) constructor arguments cor-
respond to the different messages (such as nonces and keys)
that are collected during the role’s execution. We use the op-
tion type (·)⊥ for initially unavailable elements. The frame
above models two roles, initiator and responder, establishing
Requirement 1. In the protocols we consider, the initiator
receives a responder nonce along with its own nonce. Thus,
each role records the other’s nonce in its frame. In the initial
state, the runs field is empty. The entire state of this model
is observable.

The three events of this specification abstractly model a
protocol that follows a standard challenge-response pattern.
The first event refines skip and just creates an initiator run.

a1_step1 (A,B,Na) ≡ {(s, s′) | -- by A
Na /∈ dom(s.runs) ∧ -- Na fresh

s′.runs := s.runs(Na 7→ (A,B, Init(⊥))) }

The second event refines a0i running and creates a respon-
der run identified by Nb. The run takes an arbitrary nonce
Na, which need not come from an initiator. This reflects
that the intruder can fake the challenge nonce in later re-
finements.

a1_step2 (A,B,Na,Nb) ≡ {(s, s′) | -- by B
Nb /∈ dom(s.runs) ∧
s′.runs := s.runs(Nb 7→ (A,B,Resp(Na))) }

The third step refines a0i commit and models the initiator
run Na receiving back its nonce from a responder run Nb.
This is described by the second guard, which we call an
authentication guard, since it ensures an agreement, in this
case with the responder on the pair of nonces (Na,Nb).

a1_step3 (A,B,Na,Nb) ≡ {(s, s′) | -- by A
s.runs(Na) = (A,B, Init(⊥)) ∧
(A /∈ bad ∧B /∈ bad→ s.runs(Nb) = (A,B,Resp(Na)))∧
s′.runs := s.runs(Na 7→ (A,B, Init(Nb))) }

More precisely, if A or B is dishonest then Nb is arbitrary.
Otherwise, Nb identifies a responder run that has previously
received Na. This can be seen as reading Nb from the re-
sponder’s store. We will eliminate this abstraction (which is
not realizable in a distributed setting) in the next refinement
when we introduce communication channels.

More generally, for A in role R to agree with B in role
R′ on data d assuming honest agents h = [A,B, . . .], we
add an authentication guard G to an appropriate event of
agent A (for example, the final event of its role). This guard
requires that the agent B in role R′ knows (at least) the
data d, whenever the agents in h are honest. It has the form

G = h ⊆ good→ ∃x. s.runs(rid) = (a,R′(t)) ,

where R′ is the frame constructor for (B’s) role R′, t is a
tuple of terms, a is a tuple of agents including A and B.

The free variables of G are exactly the variables appearing
in h and d. All other variables are bound by the existential
quantifier. For example, in a1 step3 , we have h = [A,B]
and d = (Na,Nb).

Let a1 be the above model. The simulation relation de-
scribes a data refinement of the initial model’s signals to
the runs of this model. We map completed initiator and
responder runs to Commit and Running signals to express
agreement between these two roles on the nonces Na and
Nb. This abstraction is described by the function r2s, which
translates a run map r (such as runs in a1 state) to a mul-
tiset of signals (such as sigs in a0 state).

r2s(r)(S) =



1 if S = Commit([A,B], (Na,Nb))

and r(Na) = (A,B, Init(Nb))

1 if S = Running([A,B], (Na,Nb))

and r(Nb) = (A,B,Resp(Na))

0 otherwise

In general, this abstraction function maps each signal to
the number of runs of the appropriate form associated with
that signal. Since r is a partial function, there is at most
one such run, whenever the run identifier appears in the sig-
nal’s data, as above. As another example, suppose we would
require agreement on Na only. The function r2s(r) would
then map the signal Running([A,B],Na) to the cardinality
of the set {N | r(N) = (A,B,Resp(Na))}. For each agree-
ment property of the protocol, we prove a refinement of a0i
or a0n by defining an appropriate abstraction function along
these lines (see also Section 5.3).

The simulation relation is defined in terms of the mediator
function, which maps runs to signals.

π01(t) ≡ (| sigs = r2s(t.runs) |)
R01 ≡ {(s, t) | s = π01(t)}

At this point, we can state and prove the refinement result,
which establishes Requirement 2.

Proposition 5. a1 vR01,π01 a0 .

We have now satisfied all system requirements: injective
agreement between an initiator and a responder. By us-
ing abstraction we have captured the essential features of
entity authentication protocols and established their main
property, once and for all. Our proofs avoid the intricacies
of an active attacker controlling all communication. How-
ever, the resulting model is too abstract and requires further
refinement to become executable in the intended hostile dis-
tributed environment. The high level of abstraction allows
different realizations, including the ISO/IEC 9798-3 (dis-
cussed below) and NSL/2 protocols.

4.4 Protocol using authentic channels (L2)
We now model the following abstract protocol using au-

thentic channels.

M1. A → B : A,B,Na
M2. B •→ A : Nb,Na

The initiator A sends the nonce Na to B, who returns it
together with his own nonce Nb on an authentic channel. We
also introduce an explicit intruder who may fake messages
as far as allowed by the channel’s security properties. In the
next section, we will refine this protocol into the ISO/IEC
9798-3 two-pass unilateral authentication protocol [18].



First, we define the type of channel messages for this pro-
tocol (cf. Section 2.2).

datatype imsg = M1(agent× agent× nonce)
datatype amsg = M2(nonce× nonce)
datatype chmsg = Insec(imsg)

| Auth(agent× agent× amsg)

The types imsg and amsg define the payload message for-
mat for the insecure and authentic channels. For example,
Auth(B,A,M2(Nb,Na)) denotes M2 containing the nonces
Nb and Na, sent authentically from B to A.

We now extend the previous model’s state with a new
variable, chan, modeling a set of channel messages.

record a2_state = a1_state + chan : chmsg set

In the initial state, both fields are empty. The observation
function projects this state to the field runs.

The protocol events send and receive messages to and from
the insecure and authentic channels. In the second step, the
responder B creates a new run identified by Nb, receives the
message M1 from the insecure channel, and authentically
sends the message M2 to A. This event refines the event
a1 step2 by adding the receiving and sending of messages.
In particular, instead of accepting any nonce Na, the nonce
is now extracted from M1.

a2_step2 (A,B,Na,Nb) ≡ {(s, s′) | -- by B
Nb /∈ dom(s.runs) ∧ -- fresh Nb
Insec(M1(A,B,Na)) ∈ s.chan ∧ -- recv M1

s′.runs := s.runs(Nb 7→ (A,B,Resp(Na))) ∧
s′.chan := s.chan ∪ {Auth(B,A,M2(Nb,Na))} }
In the third step, the initiator run Na receives the message

M2 and updates its local state with the nonce Nb.

a2_step3 (A,B,Na,Nb) ≡ {(s, s′) | -- by A
s.runs(Na) = (A,B, Init(⊥)) ∧
Auth(B,A,M2(Nb,Na)) ∈ s.chan ∧ -- recv M2

s′.runs := s.runs(Na 7→ (A,B, Init(Nb))) }
The reception of message M2 replaces the authentication
guard with its direct access to the responder run’s mem-
ory from the refined event a1 step3 . The corresponding
guard refinement (GRD) of the refinement proof requires
the following invariant, which states that authentic messages
between honest agents indeed originate from the associated
responder run identified by Nb.

a2_inv1_auth ≡ {s | ∀A,B,Na,Nb.
Auth(B,A,M2(Nb,Na)) ∈ s.chan ∧B /∈ bad ∧A /∈ bad
→ s.runs(Nb) = (A,B,Resp(Na))}

This invariant is all that is needed to prove the refinement.
We now define an intruder event for faking protocol mes-

sages, which refines skip. For the protocols we consider, this
event is based on the intruder’s key knowledge, denoted by
ikk(s.chan), and his nonce knowledge, ink(s.chan). Since
no keys are generated here, only the latter set is relevant:
ink(H) contains all nonces appearing in channel messages
in H. We represent the set of messages that the intruder
can fake by the term fakeable(s.chan), where fakeable(H) is
inductively defined by the following rules.1

M ∈ H
M ∈ fakeable(H)

Na ∈ ink(H)

Insec(M1(A,B,Na))) ∈ fakeable(H)

B ∈ bad ∨A ∈ bad Na ∈ ink(H) Nb ∈ ink(H)

Auth(B,A,M2(Nb,Na))) ∈ fakeable(H)
1For readability, we sometimes define sets by inductive rules.
An equivalent definition using set comprehension is possible.

The first rule covers the replay of an existing message. The
other two rules state that the intruder can fake payloads
with any agent names and nonces he knows. We assume
that the intruder knows all agents’ names. The first premise
of the third rule restricts the faking of authentic messages
to those with a dishonest sender or receiver (cf. Section 2.2).

The definition of the intruder event is now canonical: the
intruder can send any fakeable message. We model this by
closing the set of channel messages under fakeable messages.

a2_fake ≡ {(s, s′) | s′.chan := fakeable(s.chan)}

Since this event only modifies the new variable chan, it re-
fines skip.

Let a2 be the above specification. The simulation relation
for this refinement is defined by R12 ≡ Πruns (Section 2.1).

Proposition 6. Let R′12 = R12 ∩ (U × a2 inv1 auth).
Then reach(a2 ) ⊆ a2 inv1 auth and a2 vR′

12,id
a1 .

Our model now includes an intruder acting in a distributed
environment. By using abstract channels, we retain the pos-
sibility of different cryptographic realizations; e.g., we may
realize the authentic channels using signatures or MACs.

4.5 ISO/IEC 9798-3 protocol (L3)
We now refine the abstract protocol model a2 into the

ISO/IEC 9798-3 two-pass unilateral authentication proto-
col [18] by translating the authentic channels into signed
messages communicated over an insecure channel.

M1. A→ B : A,B,Na
M2. B → A : {|Nb,Na, A |}pri(B)

We also refine the intruder to a standard Dolev-Yao intruder.
The state iso3 state extends the first refinement’s state

with a set of messages IK modeling the intruder knowledge.
Alternatively, IK can be seen as the network or a communi-
cation channel. This channel is insecure since the intruder
can eavesdrop and inject messages.

record iso3_state = a1_state + IK : msg set

Initially, the field runs is empty and IK reflects a standard
key distribution: the intruder knows all agents’ public keys
and the private keys of dishonest agents. This models As-
sumptions 2 and 3. Only the runs field is observable.

We restrict our presentation to the second protocol step.
It refines the abstract event a2 step2 by replacing the inse-
cure message M1 by a corresponding message in IK and the
authentic message M2 by a signed message in IK .

iso3_step2 (A,B,Na,Nb) ≡ {(s, s′) |
Nb /∈ dom(s.runs) ∧
{|A,B,Na |} ∈ s.IK ∧ -- rcv M1

s′.runs := s.runs(Nb 7→ (A,B,Resp(Na))) ∧
s′.IK := s.IK ∪ { {|Nb,Na, A |}pri(B) } } -- send M2

We now define the intruder with full Dolev-Yao capabil-
ities: he can send any message in synth(analz(s.IK )). We
model this by closing the intruder knowledge s.IK under
synth and analz.

iso3_DY _fake ≡ {(s, s′) | s′.IK := synth(analz(s.IK))}

This event refines the abstract event a2 fake.
Let iso3 be the above specification. This specification ac-

counts for Assumption 1. Namely, the intruder knowledge



IK acts as the network for the protocol messages, and the
intruder can fake messages in synth(analz(s.IK )).

The simulation relation in this refinement states that the
intruder knowledge data-refines the channel messages of a2 .
We define the function abs msg mapping a set of concrete
messages to set of channel messages as follows.

{|A,B,Na |} ∈ H
Insec(M1(A,B,Na)) ∈ abs msg(H)

{|Nb,Na, A |}pri(B)∈ H
Auth(B,A,M2(Nb,Na)) ∈ abs msg(H)

The simulation relation R23 for the refinement proof is the
intersection of the following two relations with Πruns.

Rmsgs
23 ≡ {(s, t) | abs msg(parts(t.IK )) ⊆ s.chan}

Rnon23 ≡ {(s, t) | nonces(t.IK ) ⊆ ink(s.chan)}

Rmsgs
23 states that the abstraction of the parts of the con-

crete messages is included in the abstract channel messages.
Rnon23 states that the nonces known to the concrete intruder,
namely nonces(t.IK ) ≡ analz(t.IK ) ∩ ran(Nonce), are also
known to the abstract intruder. If we prohibited the intruder
from sending messages on an authentic channel for which he
is the receiver (by removing the disjunct A ∈ bad in the third
rule defining fakeable), we could establish equalities instead
of set inclusions in Rmsg23 and Rnon23 . However, the current
definition makes the abstract intruder more powerful and en-
ables alternative implementations of a2 based on symmetric
cryptography, for instance, using MACs (cf. Section 2.2).

The refinement proof only requires a single internal invari-
ant expressing the secrecy of the signing keys, namely, that
pri(A) ∈ analz(s.IK ) implies A ∈ bad.

Proposition 7. Let R′23 = R23 ∩ (U × iso3 inv1 keys).
Then reach(iso3 ) ⊆ iso3 inv1 keys and iso3 vR′

23,id
a2 .

In the refinement proof for the intruder events of this propo-
sition, the following action refinement (ACT) proof obliga-
tion arises.

(s(| chan := fakeable(s.chan) |),
t(| IK := synth(analz(t.IK )) |)) ∈ R′23

This states that the successor states resulting from the re-
spective intruder actions are still in the simulation relation.
The part concerning Rmsgs

23 is proved using the following
lemma.

Lemma 1. Suppose (s, t) ∈ R′23. Then

abs msg(parts(synth(analz(t.IK )))) ⊆ fakeable(s.chan)

This lemma follows from the definitions of abs msg and
fakeable and general properties of parts, synth, and analz.

Discussion. The above example illustrates our modeling
principles and refinement strategy on a concrete example of
an authentication protocol. We satisfied all system require-
ments by proving properties of the abstract models at Lev-
els 0 and 1. As these models are not directly implementable,
we continued our refinements, obtaining a final model that
is suitable for implementation in the intended hostile dis-
tributed environment and, crucially, inherits the properties
we proved for the abstract models. The simulation relation
and invariants used here at Levels 2 and 3 are canonical for
our refinement strategy (cf. Section 5).

5. KEY TRANSPORT PROTOCOLS
In this section, we first present an abstract, protocol-

independent model of secrecy, called s0 . We then instantiate
the generic secret data in this model to keys and refine the
resulting model into a concrete, server-based protocol: the
Otway-Rees protocol as modified by Abadi and Needham [3]
(called OR/AN). At Level 1 of our refinement strategy, we
prove session key secrecy by refining the model s0 and we
establish authentication properties by refining a0i (from Sec-
tion 4.2). At Level 2, the server directly sends the key on a
secure channel to each role, reflecting the essential security
and communication structure underlying server-based key
transport protocols. The final refinement at Level 3 changes
the communication topology. Here, the initiator forwards to
the responder a ticket with the encrypted session key.

We have also derived the Needham-Schroeder Shared-Key
(NSSK) protocol [29], the Yahalom protocol, and the core
of Kerberos IV and V. These protocols also involve ticket
forwarding. In the NSSK protocol, the responder’s key is
doubly encrypted in the server’s message to the initiator.
Moreover, these protocols employ the session key in their
final message(s) to provide key confirmation guarantees.

5.1 Requirements and assumptions
Our requirements and assumptions are as follows.

Requirement 1 (Key distribution). The protocol gen-
erates and distributes a fresh session key.

Requirement 2 (Key secrecy). Only authorized agents
may learn a session key, unless one of them is dishonest
(whereby other dishonest agents may also learn it).

Requirement 3 (Authentication). Each recipient of the
session key injectively agrees with the key generator on
the key and possibly on additional data.

The environment assumptions, concerning the intruder and
the cryptographic setup, are identical to those in Section 4.1.

5.2 Secrecy (L0)
We start our development with an abstract model of se-

crecy. We introduce two state variables, both relations be-
tween data (of polymorphic type δ) and agents: (i) kn, where
(d,A) ∈ s.kn means that agent A knows data d in state s,
and (ii) az, where (d,A) ∈ s.az means that A is authorized
to know d in state s.

record δ s0_state = kn, az : (δ × agent) set

Secrecy can now be expressed as the following invariant.

secrecy ≡ {s | s.kn ⊆ s.az}

Namely, all knowledge is authorized. We define the set of
initial states to be those satisfying this invariant. The entire
state is observable.

This initial model has one event for generating secrets
and one for learning secrets. The secret generation event
is parametrized by the secret data d, an agent A, and the
intended group G of agents sharing d.

s0_gen(d,A,G) ≡ {(s, s′) |
d /∈ dom(s.kn)∧ -- d fresh

A ∈ G∧ -- A in group

s′.kn := s.kn ∪ {(d,A)} ∧
s′.az := s.az ∪ {(d,B) | B ∈ G ∨ G ∩ bad 6= ∅} }



The first guard requires that d is fresh, that is, not known to
anybody. The second guard ensures that A is a member of
G. There are two actions. The first adds the pair (d,A) to
kn. The second updates the relation az with {d} ×G if all
members of G are honest and with {d}×Uagent otherwise. In
the latter case, there is no point in trying to achieve secrecy
and therefore everyone is allowed to know d.

In the secret-learning event, an agent B learns the secret
d. We require that someone knows d (first guard) and that
B is authorized to learn d (second guard).

s0_learn(d,B) ≡ {(s, s′) |
d ∈ dom(s.kn) ∧ -- d known to somebody

(d,B) ∈ s.az ∧ -- B allowed to learn d

s′.kn := s.kn ∪ {(d,B)} }
From a secrecy perspective, it is irrelevant from whom B
learns d. Such aspects will be covered by authentication
properties. The initial model s0 clearly satisfies the secrecy
invariant.

Proposition 8. Let s0 be the above specification. Then
reach(s0 ) ⊆ secrecy .

5.3 Abstract server-based key transport (L1)
We now define abstract server-based key transport proto-

cols. We construct two models within Level 1, kt1 and kt1 ′,
and prove four refinements to establish secrecy (by refining
s0 ) and authentication (by refining a0i from Section 4.2).
These refinements are given in Propositions 9, 10, and 11
below and are summarized as follows.

kt1 ′ vπ11 kt1 vπ01 s0
kt1 ′ vπia

01
a0i

kt1 ′ vπra
01

a0i

Note that we obtain a refinement graph rather than a linear
sequence of refinements.

The first model, kt1 , refines the secrecy model s0 to server-
based secret key distribution, thus establishing Require-
ments 1 & 2. This model introduces a local run state
for each role. Neither communication channels nor intruder
events exist in this model. Instead, the initiator and the
responder read the session key generated by the server from
the server’s memory and the intruder is implicit in the events’
guards. The model kt1 is a common ancestor in the refine-
ment graph of all server-based key transport protocols that
we have derived.

The second model, kt1 ′, realizes the authentication prop-
erties of Requirement 3, both for the initiator and for
the responder, by using nonces. This model trivially refines
kt1 by adding an authentication guard to each client role’s
key-reading event in kt1 . We prove a separate refinement of
the authentication model a0i for each of the two authentica-
tion properties, each with a different mediator function and
simulation relation. The key transport protocols we have
derived differ with respect to their authentication guaran-
tees. Hence, their models at this level require the addition
of different authentication guards to kt1 .

We assume an initial key setup, described by an uninter-
preted relation knC0 between keys and agents. This relation
will be defined later on Level 3. We call the keys in this rela-
tion’s domain static or long-term keys. Corrupted keys are
static keys known by some bad agent.

staticKey ≡ dom(knC0) -- long-term keys

corrKey ≡ knC−1
0 [bad] -- corrupted keys

5.3.1 Secret key distribution
At Level 1, we use the following definition of state for all

server-based key distribution protocols.

datatype frame = Init(key⊥ × nonce list)
| Resp(key⊥ × nonce list)
| Serv(nonce list)

record kt1_state = runs : rid ⇀ agent× agent× frame

The frame records the role-specific information. The initia-
tor and the responder record the session key and all three
roles store a list of nonces. Nonces will only be recorded (if
at all) in the second model kt1 ′. The definition of a com-
mon state for both kt1 and kt1 ′ is a modeling decision that
slightly simplifies specifications and proofs rather than a ne-
cessity. We use client run identifiers as nonces and server run
identifiers as session keys. Initially the runs map is empty.
The entire state is observable.

For the refinement, we define the functions knC and azC,
which reconstruct the knowledge and authorization relations,
kn and az, of the initial model s0 from the runs. The func-
tion knC is defined by the following rules, where r is a vari-
able of the same type as s.runs.

r(N) ∈ {(A,B, Init(K,ns)), (B,A,Resp(K,ns))}
(K,A) ∈ knC(r)

r(K) = (A,B, Serv(ns))

(K, S) ∈ knC(r)

(K,C) ∈ knC0

(K,C) ∈ knC(r)

The first two rules describe session key knowledge for each
role. The third rule includes initially known keys. The sec-
ond function, azC, is defined as follows.

r(K) = (A,B, Serv(ns)) C ∈ {A,B, S}
(K,C) ∈ azC(r)

r(K) = (A,B, Serv(ns)) {A,B} ∩ bad 6= ∅
(K,C) ∈ azC(r)

(K,C) ∈ knC0

(K,C) ∈ azC(r)

K ∈ corrKey

(K,C) ∈ azC(r)

By the first rule A, B, and the server S are authorized to
know the key K that the server generated for A and B. The
second rule expresses that everyone may learn session keys
that the server generated for some dishonest agent A or B.
The last two rules state that azC(r) includes the initial key
setup and that everyone is authorized to learn corrupted
keys.

The specification kt1 consists of five events. The first
event is new and thus refines skip. It creates a new run (and
nonce) Na of initiator A with responder B by updating runs
with (Na 7→ (A,B, Init(⊥)). The second event creates a
responder run analogously. In the third event, which refines
s0 gen, the server generates a fresh session key Kab and
records it together with the agent names A and B in runs.

kt1_step3 (A,B,Kab) ≡ {(s, s′) | -- by S
Kab /∈ dom(s.runs) ∪ staticKey ∧
s′.runs := (s.runs)(Kab 7→ (A,B, Serv([]))) }

Guard strengthening for this event requires an auxiliary in-
variant, kt1 inv1 key , stating that each key in knC(s.runs)
is either a long-term key or identifies a run.

The final two events both refine the event s0 learn. In
the following event, the responder B acquires the session
key Kab from S by directly reading the server’s memory.



kt1_step4 (A,B,Nb,Kab) ≡ {(s, s′) | -- by B
s.runs(Nb) = (A,B,Resp(⊥, [])) ∧
Kab ∈ sessionKeys(s) ∪ corrKey ∧ -- Kab known

(Kab, B) ∈ azC(s) ∧ -- check authorization

s′.runs := (s.runs)(Nb 7→ (A,B,Resp(Kab, []))) }

The first guard requires that Nb identifies a run by respon-
der B with initiator A that has not yet received a key. The
second guard states that Kab is an existing session key (that
is, identifies a server run) or a corrupted key. This guard
strengthens the first guard in s0 learn expressing that Kab
is known by someone. The inclusion of corrupted keys re-
flects that the Dolev-Yao intruder at Level 3 may send such
keys to dishonest agents. This does not violate session key
secrecy. The authentication properties realized by kt1 ′ will
prevent that honest agents accept corrupted keys. The third
guard ensures that B is authorized to learn Kab, expressed
using the relation azC defined above. The action updates
the responder run with the session key Kab taken from S’s
memory. The event kt1_step5 performs an analogous step
for the initiator.

We establish that the model kt1 defined above is a data
refinement of the model s0 from Section 5.2. The mediator
function π01 and the simulation relation R01 abstract kt1 ’s
states to s0 ’s using the functions knC and azC.

π01(t) ≡ (| kn = knC(t.runs), az = azC(t.runs) |)
R01 ≡ {(s, t) | s = π01(t)}

We can now prove the following refinement result.

Proposition 9. Let S01 = U × kt1 inv1 key. Then we
have reach(kt1 ) ⊆ kt1 inv1 key and kt1 vR01∩S01,π01 s0 .

Since the abstract variables kn and az are observable and
can be reconstructed from the concrete state, the secrecy in-
variant for s0 (Proposition 8) is also fulfilled by the specifi-
cation kt1 (by Propositions 1 and 3), which therefore realizes
Requirements 1 & 2.

5.3.2 Authenticated key distribution
Although the model kt1 provides secret key distribution,

there is no guarantee of key freshness: the same session key
may be distributed many times and, worse, initiator and re-
sponder may even obtain corrupted keys. We address these
issues by using nonces to prevent replays and guarantee key
freshness as is standard. We use the initiator and respon-
der’s run identifiers, Na and Nb, as nonces, add authentica-
tion guards to the events of kt1 , and refine the model a0i
once for each client role to establish an injective agreement
with the server on the client’s nonce, the other client’s name,
and the session key.

Concretely, we transform the model kt1 into kt1 ′. First,
we add two nonce parameters, Na and Nb, to kt1 step3 and
modify its action to record the list [Na,Nb] in the server
state. The nonces are arbitrary since their origin is unclear.
Indeed, the clients will later send these nonces in the clear
and the intruder may thus replace them by others.

Second, for the responder B to agree with the server S
on d = (Kab, A,Nb), we add an authentication guard to
B’s event kt1 step4 . This guard states that the server has
generated Kab for A and B and knows Nb, provided B is
honest.

B /∈ bad→ ∃Na. s.runs(Kab) = (A,B, Serv([Na,Nb]))

The initiator’s nonce Na in the server’s frame is bound by
the existential quantifier, since it is not part of the data d.

Finally, we add a similar authentication guard to the event
kt1 step5 for the initiator A to agree with the server S on
d = (Kab, B,Na). This guard assumes that A is honest and
quantifies over the nonce Nb in the server’s frame.

It is easy to see that kt1 ′ refines kt1 . The mediator func-
tion π11 and the simulation relation R11 between kt1 and
kt1 ′ map the lists of nonces in the run frames to the empty
list, but do not otherwise affect the runs.

Proposition 10. kt1 ′ vR11,π11 kt1 .

We now examine the two refinements of a0i , each of which
establishes an injective agreement between one client role
(the initiator or responder) and the server. Since these two
refinements are similar, we restrict our discussion to the re-
sponder case, where we want the responder B to injectively
agree with the server S on d = (Kab, A,Nb). The simulation
relation maps completed server runs to Running signals and
completed responder runs to Commit signals as follows.

r2s(r)(S) =



1 if S = Commit([B,S], (Kab, A,Nb))

and r(Nb) = (A,B,Resp(Kab))

1 if S = Running([B,S], (Kab, A,Nb))

and r(Kab) = (A,B, Serv([Na,Nb]))

0 otherwise

For this agreement, we need not assume that A is honest.
Therefore, A appears as part of the data d = (Kab, A,Nb)
rather than in the list of agents h = [B,S]. We include S in
h for uniformity, but we could remove it, since S is a fixed
honest agent by a global assumption.

The mediator function πra01 and simulation relation Rra01 are
defined such that (s, t) ∈ Rra01 and s = πra01 (t) are equivalent
to s.sigs = r2s(t.runs) (cf. Section 4.3). Given these def-
initions, the server event kt1 step3 (A,B,Na,Nb,Kab) re-
fines the abstract event a0i running([B], (Kab, A,Nb)) and
the responder event kt1 step4 (A,B,Nb,Kab) refines the ab-
stract event a0i commit([B], (Kab, A,Nb)). The remaining
events refine skip.

Let πia01 and Ria01 be the analogous mediator function and
simulation relation defined for the initiator.

Proposition 11. The following refinements hold:

kt1 ′ vRia
01,π

ia
01

a0 and kt1 ′ vRra
01 ,π

ra
01

a0 .

This proposition establishes Requirement 3. The proofs
do not require auxiliary invariants. We have now satisfied
all system requirements. However, further refinements are
needed to realize the environment assumptions and thus ob-
tain a protocol that is executable in the intended hostile
network environment.

5.4 Protocol using secure channels (L2)
We now introduce an abstract key transport protocol us-

ing secure channels and an explicit intruder event. The pro-
tocol reads as follows.

M1. A → B : A,B,Na
M2. B → S : A,B,Na,Nb
M3. S •→• B : Nb, A,Kab
M4. S •→• A : Na, B,Kab

The initiator A begins by sending a nonce Na to the respon-
der B (M1). Then B adds his nonce Nb and sends it to S



(M2). The server generates a session key Kab and sends it
on secure channels to B (M3) and A (M4) together with
their respective nonces.

The state of the model kt2 extends the previous model’s
state with a set of channel messages. There are insecure
and secure channel messages, where for the secure ones, the
sender S is fixed and thus dropped from the constructor
(cf. Section 2.2). The type of insecure payload, imsg (not
shown below), covers the first two protocol messages. The
type of secure payload, smsg, covers messages M3 and M4.
In the initial state, chmsg and the run maps are empty.

datatype smsg = M3(nonce× agent× key)
| M4(nonce× agent× key)

datatype chmsg = Insec(imsg) | Secure(agent× smsg)

record kt2_state = kt1_state + chan : chmsg set

The function kt2 obs allows the observation of the run fields
and the intruder key knowledge ikk(s.chan). The set ikk(H)
contains the keys in secure channels with a dishonest receiver
and the long-term keys of dishonest agents. The rule for M4
is similar to the one for M3 and is not shown.

Secure(C,M3(N,A,K)) ∈ H C ∈ bad
K ∈ ikk(H)

K ∈ corrKey

K ∈ ikk(H)

Observing the keys suffices to state session-key secrecy in
terms of ikk as an observable (and thus preserved) invariant.

The model kt2 has five protocol events and a new intruder
event. Each protocol event refines the corresponding event
of the previous model. The event kt2_step1 achieves this by
sending M1 on the insecure channel. The event kt2_step2
models the responder receiving M1 and sending M2 on the
insecure channel. The server event kt2_step3 receives mes-
sage M2 on the insecure channel and simultaneously sends
the secure messages M3 and M4 to B and A.

kt2_step3 (A,B,Na,Nb,Kab) ≡ {(s, s′) | -- by S
Kab /∈ dom(s.runs) ∪ staticKey ∧
Insec(M2(A,B,Na,Nb)) ∈ s.chan ∧ -- recv M2

s′.runs := (s.runs)(Kab 7→ (A,B, Serv([Na,Nb]))) ∧
s′.chan := s.chan ∪ -- send M3, M4

{Secure(B,M3(Nb, A,Kab)),
Secure(A,M4(Na, B,Kab))} }

The event kt2 step4 refines its abstract counterpart by re-
placing the authentication guard, involving direct access to
the server’s memory, with a guard modeling the responder
B receiving message M3. The event kt2 step5 analogously
models the initiator A receiving M4.

kt2_step4 (A,B,Nb,Kab) ≡ {(s, s′) | -- by B
s.runs(Nb) = (A,B,Resp(⊥, [])) ∧
Secure(B,M3(Nb, A,Kab)) ∈ s.chan ∧
s′.runs := (s.runs)(Nb 7→ (A,B,Resp(Kab, []))) }

The intruder event is canonical: it closes the set of chan-
nel messages under fakeable messages (Section 4.4). The in-
truder’s knowledge in state s consists of the keys ikk(s.chan),
defined above, and the nonces ink(s.chan). The set of nonces
ink(H) is defined using the function non, which extracts the
set of nonces from a channel message, as follows.

Insec(M) ∈ H
N ∈ non(Insec(M))

N ∈ ink(H)

Secure(C,M) ∈ H C ∈ bad
N ∈ non(Secure(C,M)))

N ∈ ink(H)

We define the set fakeable(H) analogously to Section 4.4.
The rules for the secure messages allow the intruder to only
fake messages with a dishonest receiver (cf. Section 2.2).

Let kt2 be the above specification. The simulation rela-
tion R12 ≡ Πruns asserts that the runs in kt1 ′ and kt2 are
identical. The mediator function π12 ≡ πruns removes the
keys from kt2 ’s observations.

The guard strengthening (GRD) proof in the refinement
of steps 4 and 5 is derived from two invariants relating the
secure messages M3 and M4 with the server state. Both
invariants contain two almost identical conjuncts of which
we only discuss the one concerning M3. The first invariant
states that the key K in message M3(N,A,K) sent to a
dishonest agent B is a session key that the server generated
for some dishonest agent or a corrupted key.

kt2_inv1_M34_bad ≡ {s | ∀A,B,Nb,K. . . . ∧
Secure(B,M3(Nb, A,K)) ∈ s.chan ∧ B ∈ bad
→ (∃A′, B′, z. s.runs(K) = (A′, B′, Serv(z)))

∧ (A′ ∈ bad∨B′ ∈ bad)) ∨ K /∈ corrKey }
The second invariant states that if a key Kab, agent A, and
a nonce Nb appear in a secure message to an honest B then
the server has generated the session key Kab for A and B
and he knows the nonce Nb.

kt2_inv2_M34_good ≡ {s | ∀A,B,Nb,Kab. . . . ∧
Secure(B,M3(Nb, A,Kab)) ∈ s.chan ∧ B /∈ bad
→ (∃N. s.runs(Kab) = (A,B, Serv(N,Nb))) }

This invariant directly implies the refinement of the authen-
tication guards of kt1 step4 and kt1 step5 by the guards
modeling the clients receiving messages M3 and M4. The re-
finements of the other two guards of these two events require
both invariants. We can now prove the following result.

Proposition 12. Let kt2 invs be the intersection of the
two invariants of kt2 and let R′12 ≡ R12 ∩ (U × kt2 invs).
Then reach(kt2 ) ⊆ kt2 invs and kt2 vR′

12 ,π12
kt1 ′.

We proved three additional invariants stating key secrecy
guarantees in terms of ikk for each of the roles. Here is the
one concerning the server:

kt2_inv4_ikk_sv ≡ {s | ∀A,B,K, x.
s.runs(K) = (A,B, Serv(x)) ∧ A /∈ bad ∧ B /∈ bad
→ K /∈ ikk(s.chan) }

Since ikk is observable, these guarantees will be preserved
by the next refinement.

5.5 Otway-Rees/AN protocol (L3)
In this section, we refine our abstract key transport proto-

col to the Otway-Rees/AN protocol [3]. The first two mes-
sages remain the same, while M3 and M4 are refined in two
ways. First, they are implemented using symmetric encryp-
tion.2 We assume that each agent A shares a symmetric key
shr(A) with the server S.

M3’. S→ B : {|Na, A,B,Kab |}shr(A),

{|Nb, A,B,Kab |}shr(B)

M4’. B → A : {|Na, A,B,Kab |}shr(A)

Hence, we concretize the initial key setup by defining the
previously uninterpreted constant knC0 as follows.

knC0 ≡ {(shr(A), B) | B = A ∨B = S}
2In contrast to cryptographic models, symmetric encryption
in the Dolev-Yao model also guarantees authenticity.



From this definition we prove that staticKey = ran(shr) and
corrKey = shr[bad]. Second, this refinement modifies the
communication topology: The server encrypts the session
key Kab for A and B, and sends the resulting message (M3’)
to B, who forwards A’s ticket (M4’). Moreover, we refine
the intruder fake event into a standard Dolev-Yao intruder.

The state of or3 extends the record kt1 state with a field
IK : msg set for the intruder knowledge, thus refining the
abstract channels chan of kt2 to the intruder knowledge IK
(cf. Section 4.5). Initially, the runs are empty and the in-
truder knows the dishonest agents’ long-term keys. This for-
malizes Assumptions 2 and 3. The observations consist of
the runs and the set keys(s.IK ) ≡ analz(s.IK ) ∩ ran(Key).

The first, second, and fifth protocol steps are straightfor-
ward refinements of their previous versions. In the third
step, the server sends B a message consisting of a pair of
ciphertexts containing a copy of the session key for A and B
(M3’) in response to B’s request message (M2). This differs
from the previous refinement, where the server sends the
keys to A and B on two separate secure channels.

or3_step3 (A,B,Na,Nb,Kab) ≡ {(s, s′) | -- by S
Kab /∈ dom(s.runs) ∪ ran(shr) ∧
{|A,B,Na,Nb |}∈ s.IK ∧ -- recv M2

A 6= B ∧
s′.runs := s.runs(Kab 7→ (A,B, Serv(Na,Nb))) ∧
s′.IK := s.IK ∪ -- send M3’

{ {| {|Na, A,B,Kab |}shr(A), {|Nb, A,B,Kab |}shr(B) |} } }
The guard A 6= B ensures that we can distinguish the com-
ponents of M3’ and abstract them to M3 and M4. We could
avoid this (mild) restriction by tagging these components.

In the fourth step, B receives his encrypted copy of the
session key paired with an uninterpreted message X (called
a ticket) that he forwards to A.

or3_step4 (A,B,Nb,Kab, X) ≡ {(s, s′) | -- by B
s.runs(Nb) = (A,B,Resp(⊥, [])) ∧
{|X, {|Nb, A,B,Kab |}shr(B) |} ∈ s.IK ∧ -- recv M3’

s′.runs := s.runs(Nb 7→ (A,B,Resp(Kab, []))) ∧
s′.IK := s.IK ∪ {X} } -- forward X

Let or3 be the specification described above, including
a Dolev-Yao intruder event as in Section 4.5. This event,
together with the fact that the intruder knowledge contains
all sent and received messages, accounts for Assumption 1.

The simulation relation R23 refines the channel messages
chan to the intruder knowledge IK . It is the intersection
of four relations: Rmsgs

23 , Rkeys23 , Rnon23 , and Πruns. The first
two of these are defined as follows.

Rmsgs
23 ≡ {(s, t) | s.chan = abs msg(parts(t.IK))}

Rnon23 ≡ {(s, t) | ink(s.chan) = nonces(t.IK )}

These two relations strengthen the (right-to-left) set inclu-
sions appearing in their analogues from Section 4.5 to an
equality. Of course, we must adapt the definition of the mes-
sage abstraction function abs msg to the Otway-Rees/AN
protocol. This function abstracts the component messages
of M3’ separately. Here is the rule concerning M3; the one
for M4 is symmetrical.

{|Nb, A,B,Kab |}shr(B)∈ H
Secure(B,M3(Kab, A,Nb)) ∈ abs msg(H)

The relation Rkeys23 states that the intruder key knowledge is
identical in the abstract and concrete models. This equality

is needed to prove that R23 respects observations mediated
by the identity function.

Rkeys23 ≡ {(s, t) | ikk(s.chan) = keys(t.IK)}

The main invariant concerns the secrecy of the long-term
keys: it expresses that shr(A) ∈ analz(s.IK) if and only if
A ∈ bad. Its proof requires two additional auxiliary invari-
ants concerning the definedness of the keys used for encryp-
tion and the keys carried by messages.

Proposition 13. Let or3 invs be the intersection of all
invariants of or3 and let R′23 = R23 ∩ (U ×or3 invs). Then
reach(or3 ) ⊆ or3 invs and or3 vR′

23 ,id
kt2 .

Discussion. We have also developed direct cryptographic
implementations of the Level 2 key transport protocols, that
is, without forwarding. Remarkably, the proof scripts of the
direct and the forwarding refinement of OR/AN differ only
by a few lines. The same remark applies to the Yahalom
protocol. The difference for NSSK is more significant. Due
to nested encryption, four more invariants are required that
describe the shape of the doubly encrypted messages. This
reflects the clear separation of concerns in our refinement
strategy: Level 2 deals with the security concerns stemming
from a distributed environment and an active intruder, while
Level 3 handles details concerning cryptography (double en-
cryption) and communication topology (forwarding).

6. RELATED WORK
There have been other proposals for developing security

protocols by refinement using different formalisms such as
the B method [9], its combination with CSP [12], I/O au-
tomata [23], and ASMs [6]. None of these continue their
refinements to the level of a full Dolev-Yao intruder. Either
they only consider an intruder that is passive [23], defined
ad-hoc [6, 12], or corresponds to our Level 2 intruder [9].
This makes a comparison of their results with standard pro-
tocol models difficult. Moreover, none of them proposes a
uniform and systematic development method as we do with
our four-level refinement strategy and most of them develop
individual protocols rather than entire families.

Datta et al. [16] use protocol templates with messages con-
taining function variables to specify and prove properties of
protocol classes. Refinement here means instantiating func-
tion variables and discharging the associated assumptions.
Pavlovic et al. [13,32] similarly refine protocols by transform-
ing messages and propose specialized formalisms for estab-
lishing secrecy and authentication properties. These refine-
ments do not involve a fundamental change of the abstrac-
tion level since one abstracts and instantiates operations on
messages. In contrast, our refinements bridge four distinct
abstraction levels. Initially, we consider neither protocol
runs or messages nor an active intruder. As a consequence,
the main security properties are easy to prove and are pre-
served by further refinements that introduce the intended
hostile distributed environment.

Classical notions of refinement (such as simulation) do
not preserve information-flow properties, since they involve
a reduction of non-determinism, which can destroy secrecy.
Several works address this problem, known as the refinement
paradox, for example, [5, 19, 24, 26]. Morgan and McIver
[26, 28] solve the paradox by explicitly recording the set of
possible values of secret variables. These sets represent the



intruder’s ignorance and refinements may extend, but never
reduce them.

For classical security protocols, Cortier et al. [14] show
that strong secrecy is equivalent to reachability-based se-
crecy (used here), if the secrets are not tested. This condi-
tion holds for the session keys in the OR/AN protocol, but
fails for protocols that involve key confirmation.

Abstract channels and their transformations were studied
by Maurer and Schmid [25]. Boyd has formalized analogous
results using Z [11]. Bieber et al. model abstract channels
using the B method [10] and refine them to cryptographic
implementations. Abadi et al. [1] formalize secure channels
in a variant of the join calculus and establish full abstraction
results for translations to cryptographic implementations.

Mödersheim and Viganò [27] have developed a security
protocol model based on abstract channels (L2) and related
it to a more standard Dolev-Yao model (L3). They show
the equivalence of the two models under the restriction that
all protocol messages are completely decryptable. They use
a fixed translation of channel messages to (public-key) cryp-
tographic messages. Since our models include tickets and
allow different realizations of abstract channels, their result
does not cover our refinements from L2 to L3.

Several authors address the problem of synthesizing secure
protocols from high-level specifications. Bhargavan et al. [8]
compile multi-party sessions into ML modules equipped with
dependent types. Successful type checking provides strong
integrity guarantees (matching conversations) for the hon-
est agents in a session even in the presence of corrupted
agents and an active intruder. Cortier et al. [15] translate
a single-session protocol into a multi-session protocol secure
against a Dolev-Yao intruder. As in our L1 models, the
abstract models in both works do not include an intruder,
which simplifies reasoning about them. Their translations
assume a fixed (public-key) cryptographic setup, whereas
our approach provides flexibility in adapting to different (for
example, wireless) settings. Protocol synthesis in a cryp-
tographic setting is studied, for instance, in [7, 20], which
present security-preserving translations from protocols de-
signed for authentic channels (that is, a passive intruder)
to protocols operating on insecure channels controlled by an
active intruder.

Paulson [31] uses induction to define the protocols’ event
traces and verify their (protocol-dependent) security prop-
erties post-hoc. Using refinement, we can express security
properties in a protocol-independent way at L0 and estab-
lish them in the first refinement (L1) in the absence of an
active attacker. Our L3 models use Paulson’s Isabelle/HOL
theory of cryptographic messages and the operators parts,
analz, and synth. Usually, only a few properties remain to
be proved at this level (for example, the secrecy of long-term
keys).

7. CONCLUSIONS
We propose a refinement strategy for the systematic de-

velopment of security protocols. The abstract models help
the developer to focus on the essentials: In our case studies,
we have established all requirements on abstract models con-
taining neither communication channels nor intruder events.
Our refinement strategy guides the developer towards the
concrete levels that account for the environment assump-
tions, namely, the distributed environment controlled by a
Dolev-Yao intruder.

Compared to many post-hoc verification methods, includ-
ing Paulson’s, our development process scales better to more
complex protocols. First, starting from abstract models and
adding details in an incremental manner frequently leads
to simpler solutions than one-shot designs. For example,
the unnecessary double-encryption in Kerberos IV would
be avoided using our approach. Second, secrecy and au-
thentication properties are formulated independently of the
protocol (at Level 0) and proved at much higher levels of ab-
straction (Level 1), although subsequent refinement proofs
are required for the preservation of these properties. Third,
the levels of our refinement strategy are reflected in well-
structured proofs of correctness, where each level comes with
its own particular invariants and simulation relations, many
of which are canonical. In contrast, in post-hoc verifica-
tion one is immediately confronted with much more complex
state spaces, which makes discovering and proving suitable
invariants more difficult.

The abstract channel model is very simple and proto-
col messages with nested cryptographic operations or unde-
cryptable message parts have no direct representation. This
excludes representing, for example, the forwarding of un-
decryptable messages (OR/AN, Yahalom, and NSSK), mes-
sages containing certificates, and nested encryption (NSSK).
Our experience has convinced us that this simplicity is a
virtue rather than a limitation. This model naturally re-
flects the actual (star-shaped) security architecture of server-
based key transport protocols and to view forwarding and
double encryption as implementation techniques, to be dealt
with at the final level. Our developments show that this is
possible. Such abstractions are even more beneficial for de-
veloping new protocols. From this perspective, certificates
provide an abstract authentic channel from the certification
authority to the agent verifying it and encrypted and signed
messages are just one way of implementing a secure chan-
nel. These features, and many others, are within the scope of
our method. For example, we have also derived the NSSK,
Yahalom, and core Kerberos protocols, in which key con-
firmation is achieved by exchanging nonces or timestamps
encrypted with the session key. These protocols require a
straightforward extension of the channel model presented
here with dynamic channels indexed by keys.

There are many possibilities for future work. We plan to
improve the automation of both model and proof construc-
tion. The models could be synthesized in part from high-
level specifications of security properties. Proof automation
could be improved by automatically generating invariants
and refinements, taking full advantage of the structure of our
refinement process, and by proving them using the various
automatic theorem provers working with Isabelle. Moreover,
we plan to further enhance the scalability of our approach
by developing additional infrastructure to support abstract
channels and by supporting compositional reasoning about
protocols. Finally, we want to apply our method to other
classes of protocols, such as key agreement and multi-party
protocols, and prove more complex properties such as secu-
rity under various forms of key compromise.
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