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Abstract—The sumcheck protocol, introduced in 1992, is an
interactive proof which is a key component of many probabilistic
proof systems in computational complexity theory and cryptogra-
phy, some of which have been deployed. However, none of these
proof systems based on the sumcheck protocol enjoy a formally-
verified security analysis. In this paper, we make progress in
this direction by providing a formally verified security analysis
of the sumcheck protocol using the interactive theorem prover
Isabelle/HOL. We follow a general and modular approach.

First, we give a general formalization of public-coin interactive
proofs. We then define a generalized sumcheck protocol for which
we axiomatize the underlying mathematical structure and we
establish its soundness and completeness. Finally, we prove that
these axioms hold for multivariate polynomials, the original
setting of the sumcheck protocol. Our modular analysis facilitates
formal verification of sumcheck instances based on different
mathematical structures with little effort, by simply proving that
these structures satisfy the axioms. Moreover, the analysis supports
the development and formal verification of future cryptographic
protocols using the sumcheck protocol as a building block.

Index Terms—sumcheck protocol, formal verification, interac-
tive proofs, Isabelle

I. INTRODUCTION

Probabilistic proof systems are protocols in which a powerful
but untrusted prover can convince a verifier that a given state-
ment is true. They differ from traditional mathematical proofs
by incorporating interaction, randomness and cryptographic
assumptions. As a result, they offer benefits such as fast
verification and zero-knowledge properties.

Early research into interactive proofs [1], [2] produced
complexity theoretic results such as IP = PSPACE. Today,
probabilistic proof systems enjoy a high degree of adoption
and are increasingly deployed in applications such as verifiable
computation, electronic voting, and cryptocurrencies.

Errors in analysis. Unfortunately, the designs and deploy-
ments of probabilistic proof systems often contain errors:

« The analysis of the proof system [3] for integer commitments
contained errors, later addressed in [4];

o The public setup information of the proof system [5]
contained extra information which made the proof system
insecure. This affected the ZCash cryptocurrency [6];

« A significant gap in the security proof of [7] was found and
fixed using three different methods in [8], [9], [10].

o The proof system described in [11] states a cheating prob-
ability lower than its actual value. A proper analysis was
given in [12], [13].
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 The description of the Fiat-Shamir transformation in [14] ne-
glects to hash certain values, which leads to the vulnerability
described in [15]. This affected multiple implementations of
proof systems [16], [17], [18], [19], [20].

Other researchers have raised concerns about errors in
cryptographic analyses in general [21], [22]. As probabilistic
proofs have become increasingly popular, their security analyses
demand greater care and scrutiny.

Formal verification of probabilistic proof systems. In order
to remedy these issues, researchers are starting to turn to
machine-checkable security analyses using formal verification
techniques. Existing formal verification work falls into two
categories: formal verification of non-interactive proof systems,
such as that of [23] by [24], [25], and constant-round interactive
proof systems, including Sigma protocols [26], protocols using
the “MPC-in-the-head” paradigm of [27] in [28], [29], and
particular signature schemes [30], [31].

However, despite this growing body of work, interactive
proof systems with a non-constant number of rounds have not
yet been addressed. This category contains a large number of
protocols, including proof systems based on the GKR protocol
[32] for uniform circuits, proof systems for NP [33], “split-and-
fold” proof systems such as [34], [14], as well as protocols with
optimal prover complexity [35], [36], [37], [38] and interesting
streaming properties [39], [40], [8], [41]. Note that while e.g.
[26] does consider sequential composition of Sigma protocols,
leading to a multi-round protocol, many of the protocols cited
above have a significantly more complicated recursive structure.

In fact, the multi-round protocols cited above are all based on
a single protocol: the sumcheck protocol. Each protocol makes
direct use of the sumcheck protocol, or its algebraic [42] or
combinatorial [43] generalizations, as a subroutine. Moreover,
the streaming properties of [40], [8], [41] are directly linked
to those of the sumcheck protocol.

The sumcheck protocol. As the name suggests, the goal of
the sumcheck protocol is to check that the evaluation of a sum
corresponds to a certain value. More specifically, the verifier
V’s objective is to use the prover P to confirm that

)y

()C|,...,X,,)Ef]n

y= plxi,.. X)) 1
where H is a subset of some field F, p is a polynomial of arity
n over IF, and v € F. The protocol has n rounds of interaction
between the prover and the verifier, and a recursive structure

whereby statements about polynomials with arity n are reduced



to statements about polynomials with smaller arity, repeatedly,
until arity O is reached.

As well as being used in many practical probabilistic proof
systems, the sumcheck protocol and its generalizations are also
a core component of many complexity-theoretic results, like
coNP C IP, PSPACE = IP [44], [45], and results on PPAD-
hardness [46], [47], [48]. It is also one of few interactive proof
systems that can be made non-interactive via the Fiat-Shamir
transformation without relying on heuristics like the random
oracle model [49].

Given the versatility of the sumcheck protocol, it is clear
that its formal analysis is highly desirable and constitutes the
first step towards analysing a great many probabilistic proofs
with unique and interesting properties.

A. Our Work

We provide a formally verified security analysis of the
sumcheck protocol [50]. We start with generic definitions of
(recursive, multi-round) public-coin interactive proofs and the
associated soundness and completeness properties, which we
refer to as security properties. Our definition is parameterized
by prover and verifier functions and reduces the size of the
problem instance in each recursive call. We then formalize a
generalized sumcheck protocol that abstracts from the concrete
mathematical structure of polynomials and we provide machine-
checkable mathematical proofs of its security properties in
Isabelle/HOL. Our proofs thus cover an entire protocol family
of which the concrete sumcheck protocol is a special case. We
also show that the protocol and its properties are an instance
of our generic definitions for public-coin interactive proofs.
More precisely, our analysis proceeds in two steps.

In the first step, we axiomatize the key properties of
polynomials required by the protocol, formalize the generalized
sumcheck protocol based on these axioms, and prove its
security. We have made an effort to make the the axioms as
weak as possible to ensure their wide applicability. For example,
we make only minimal assumptions about the polynomials’
algebraic structure, namely, that they form a commutative
monoid over a finite support set. For the inductive proofs to
succeed, the soundness and completeness theorems required
several generalizations of the statements usually found in less
formal accounts. For example, in the generalized soundness
statement, the assumptions about the polynomial’s arity and
degree must be generalized to ensure that the induction
hypothesis is applicable.

In a second step, we show that concrete multivariate
polynomials satisfy our axioms. We do this based on an
existing (concrete) formalization of multivariate polynomials in
Isabelle [51], which we extend with additional definitions and
results, e.g., about polynomial instantiation and the number of
a polynomial’s roots. This establishes the axioms’ consistency
and specializes the security proofs to the concrete protocol
instance.

B. Our Contributions

Our main contributions are as follows.

o We define and formalize a generalized version of the sum-
check protocol and prove its soundness and completeness. We
then instantiate this protocol with multivariate polynomials.
To the best of our knowledge, this is the first machine-
checkable security analysis for probabilistic proof systems
with an input-size-dependent number of rounds.

e Our general and modular analysis has several benefits.
First, it simplifies proofs by decoupling the reasoning about
the protocol from reasoning about concrete polynomial
representations. Second, our general results can be used
to obtain security proofs of sumcheck protocol variants [52],
[42] relying on different but similar mathematical structures,
such as, for example, rings or modules instead of finite
fields. This can be achieved with minimal effort by proving
that these structures satisfy the required axioms, with some
minor changes. Finally, our work paves the way for the future
analysis of the many aforementioned protocols which use
the sumcheck protocol as a subroutine.

C. Related Work

Bailey and Miller [24], [25] formalized the security anal-
yses of various non-interactive proof systems in the Lean 3
interactive theorem prover. They analyze [53], [54], [55], [56],
[57], and the construction of [23] which has extremely low
communication complexity and is widely deployed. All of
these proof systems are built from cryptographic pairings and
have very similar properties. Their security analysis takes place
in a strong idealized model called the “algebraic group model”,
which simplifies both pen-and-paper and machine security
analysis. The analysis focuses on verifying equality between
the coefficients of various multivariate polynomial expressions.

Work on constant-round proof systems includes analyses
of Sigma protocols and their composition properties in [26]
and protocols using the “MPC-in-the-head” paradigm of
[27] in [28], [29]. Many signature schemes are also based
on constant-round proof systems, and machine-formalized
signature schemes and implementations of this type include
Schnorr [30] and Dilithium [31] signatures. All of these
formalizations use EasyCrypt. The analysis of Sigma protocols
is made more challenging through the use of computational
assumptions and security definitions involving computationally
bounded adversaries, and rewinding algorithms, which we do
not consider here. Note that [26] does consider the sequential
composition of Sigma protocols, leading to the formal analysis
of a multi-round protocol. However, a composed Sigma protocol
treats the same instance in each repetition of the Sigma protocol,
whereas the sumcheck protocol reduces to a new instance
in each round of the protocol, in a way that depends on
the previous messages in the protocol. Both Sigma protocols
and commitment schemes were formalized in [58] using the
CryptHOL framework based on Isabelle/HOL.

A recent Isabelle formalization of the Schwartz-Zippel
lemma [59] also involves formalizing various probabilistic and
inductive statements about multivariate polynomials similar to
some lemmas we prove as part of our soundness proof.



D. Paper Outline and Supplementary Material

In Section II, we introduce interactive proofs, the sumcheck
protocol, Isabelle/HOL, and notation. We then formalize public-
coin interactive proofs in Isabelle (Section III). In Section IV,
we present our formalization of a generalized sumcheck
protocol and in Section V proofs of its security properties. In
Section VI, we instantiate the generalized sumcheck protocol
to the original one using polynomials.

The full version of this paper [60] contains informal proofs of
the correctness of the sumcheck protocol and additional material
and results about univariate and multivariate polynomials. The
complete Isabelle/HOL sources for the development in this
paper are available online [61].

II. PRELIMINARIES
A. Interactive Proofs

Interactive proofs between a prover algorithm P and a verifier
algorithm V were first introduced by Goldwasser, Micali and
Rackoff in [1]. In this section, we give formal definitions of
interactive proofs in terms of a sequence of function executions
between P and V. We start by defining interactions.

Definition II.1 (Interactions). Let P,V :{0,1}* — {0,1}*
and k: {0,1}* — N be functions. We define a k(x)-round
interaction between P and V on input x € {0, 1}* with verifier
randomness r as the following sequence of function outputs:

al,s}o :P(s?;) ,
a27s%/ = V(s(‘)/'val) s

03,5%7 :P(S}l;,az) )

k(x) k(x)—1

ax)s Sy = Visy L an-1) -

Here, ay;_1 are messages from prover to verifier, while ay;
are messages from verifier to prover. Further, s}, and sﬁ, are
the states of the prover and verifier respectively at step i.
The inputs and outputs are concatenated into single bitstrings
using commas, and we assume suitable encodings of input
values that allow tuples to be parsed unambiguously. The
initial prover state s?, is set to x and the initial verifier state

5%, is set to (x,r). The outcome of the interaction is denoted

by (P,V(r))(x) = Aok (x)-

A round in an interaction consists of a message from the
prover to the verifier and the verifier’s corresponding response.
These are two moves. Note that only the verifier has access to
the randomness r of the interaction, ensuring that the prover
cannot predict the verifier’s messages.

Now, we define languages, and interactive proofs with respect
to particular languages.

Definition IL.2 (Languages). A language is a set £ C {0,1}*
of binary strings. An element x € £ is referred to as an
instance.

Definition I1.3 (Interactive Proof Systems). Let 0 <s<1—c <
1. Let k: {0,1}* — N. An interactive proof system for a

language £ with completeness error ¢ and soundness error
s is a k(x)-round interaction between P and V satisfying the
following conditions:

o Completeness: For all x € &,
PLIP. V(M) (x) = 1] > 1—c .
o Soundness: For all x ¢ £ and for all P,
Pr(P,V(r)(x) =1] <s .

e The total running time of the verifier V is polynomially
bounded in the length of x € {0,1}*.

Here, probabilities are taken over the random value r which

denotes the randomness used by the verifier in the protocol.

If (P,V(r))(x) = | then we say that the verifier accepts, and

otherwise, we say that the verifier rejects.

Intuitively, completeness ensures the honest prover can
usually convince the verifier of a true statement, and soundness
guarantees a dishonest prover cannot usually convince the
verifier of a false statement. The completeness and soundness
errors bound the probability that the verifier errs.

Definition II.1 is closely related to the definition of interactive
Turing machines in [1], with the prover and verifier states taking
on the role of the work and input tapes in the Turing machine
definition. Definition II.1 only considers deterministic provers,
but this does not alter the class of languages .Z for which an
interactive proof exists.

Note that the completeness and soundness errors in Def-
inition 1.3 can be generalized to functions ¢,s: N — [0,1]
such that ¢(|x]) < 1 —2PY(*D g(|x|) > 2P () and ¢(|x|) >
s(jx|) + m. The completeness and soundness bounds are
then replaced by c(|x|) and s(|x|). This does not change the
class of languages . for which an interactive proof exists.

Finally, we define public-coin interactive proofs.

Definition I1.4 (Public-Coin Proofs). We say that an interactive
proof system is public coin if each of the verifier’s messages
is chosen uniformly at random from some set.

B. The Sumcheck Protocol

In this section, we introduce the sumcheck protocol [50], a
public-coin interactive proof for the sumcheck problem, which
is defined by the following language. We assume suitable
methods of encoding tuples and their elements into binary
strings.

Definition IL5. Let %p be the set of tuples (F,H,p,v) such
that T is a finite field, HCTF, p: F* — F is a polynomial of
arity n, and v € F, satisfying
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This is the classic definition of the sumcheck problem with
polynomials over finite fields. Both the language %p and
Protocol I1.6 below generalize to other structures satisfying
suitable properties, such as polynomials over rings and modules.
This will be discussed further in Section IV.



We give a recursive description of the sumcheck protocol in
Protocol 11.6.

Protocol I1.6 (Sumcheck Protocol). The prover P takes as
input a state sp containing the instance x = (F,H,p,v). The
verifier V takes as input a state sy, containing the instance x
and randomness (ry,...,r,) € F", where n is the arity of p.

e If p has arity O, then p is a constant polynomial. The prover
P does not send a message to the verifier. The verifier V
checks whether p =v and accepts the proof if so, rejecting
otherwise.

e Otherwise, the prover P sends V the polynomial

q(X) = Y

(X, x2,. . %,).

o The verifier V checks that q is a univariate polynomial of
degree at most deg(p), and that v 2 Yenq(x). If any of
the checks fail, V rejects the proof.! Otherwise V sends
randomness ry to P.

o The verifier V computes a reduced instance X' = (F,H,p’,V')
where p'(X,....X,) :=p(r1,X2,...,X,) and V' :=q(ry), and
updates its state to sy, := (X',(r2,...,rs)). The prover P
updates its state to sp:=x'. The prover P and verifier V
continue the protocol on the reduced instance.

Note that the arity of the polynomial is reduced in each
round and therefore the protocol terminates after at most n
reductions.

The main goal of this paper is to produce a machine-checked
formalisation of the following theorem and its proof.

Theorem I1.7. The sumcheck protocol defines a public-coin
interactive proof for the language Zsp with null completeness
error and soundness error n-deg(p)/|F|, where p is the instance
polynomial and n its arity.

The proof of this theorem is given in [60, Appendix A].

Here, and throughout the paper, deg refers to the total degree
of a multivariate polynomial. The verifier check that g has
degree at most deg(p) is required for the soundness proof of
the sumcheck protocol, which relies on the fact that the number
a polynomial’s roots is bounded by its degree. In fact, deg(p)
could be defined as maxcy . ) deg;(p), where deg;(p) is the
degree of p in variable x;, which gives a tighter bound on the
soundness error.

C. Isabelle/HOL and Notation

Isabelle is a generic interactive proof assistant that can be
instantiated to different object logics. We use its higher-order
logic instance, Isabelle/HOL [62], which uses the simply typed
A-calculus as its underlying specification language. On top
of that it offers various convenient high-level specification
mechanisms, e.g., for datatypes, inductive definitions, and
recursive function definitions. Isabelle/HOL comes with an
extensive library of concepts and theorems (e.g., about algebra,

'Early rejection by the verifier before the end of the protocol is easily
modelled by having the verifier include a special symbol in their state to
ensure that they do reject at the end.

analysis, probability theory). Isabelle is a foundational prover,
i.e., all logical inferences are checked by a small and well-tested
logical kernel, and therefore it provides very strong soundness
guarantees. Isabelle offers a wide range of automated proof
tools. The main ones are a simplifier for rewriting (equational
reasoning), a classical reasoner, and sledgehammer, a binding to
various back-end automated theorem provers and SMT solvers.

An Isabelle/HOL development is organized into a collection
of theories, each defining new types and constants and proving
theorems about them. We write variables and types in italics
(e.g., nat) and constants in sans serif font (e.g., zip). Type
variables are marked with a leading quote (e.g., 'a). We write ¢ ::
T to indicate that term ¢ has type T. Isabelle also supports type
classes, which are used to axiomatize types with a certain (e.g.,
algebraic) structure. The (overloaded) notation ’a :: T indicates
that the type ’a belongs to type class 7. For example, xs :: ("a ::
comm_monoid) list indicates that xs is a list of elements of a
type ’a with a commutative monoid structure.

We extensively use library functions for lists and maps (i.e.,
partial functions): x # xs prepends the element x to the list xs,
map f xs applies the function f to all elements of xs, zip xs ys
turns the given lists into a list of pairs (truncating the longer
list, if any), set xs turns xs into a set, distinct xs asserts the
uniqueness of all list elements, dom m denotes the map m’s
domain, and m; ++ my overrides the map m; with the entries
of my. We also use some own auxiliary functions: tuples n
denotes the set of lists of length n and substs V H refers to
the set of maps from elements of V to elements of H, which
we use to model substitutions.

We sometimes take some notational liberties for the sake of
readability. For example, we write Pr,cg[E 7] for the Isabelle
term (measure_pmf.prob (pmf_of_set S) {r. E r}) denoting
the probability of the event E under a uniformly random r
sampled from the set S.

III. FORMALIZING PUBLIC-COIN PROOFS

We formalize public-coin proofs in two locales in Is-
abelle/HOL (Figures 1 and 2). A locale introduces a context
with some variables (fixes section) and assumptions about them
(assumes section), which can be freely used by definitions and
lemmas within that context. Locales can later be instantiated
with concrete constants, whereby the assumptions must be
proven. In Section IV, we will instantiate these locales with
the generalized sumcheck protocol and its security proofs.

A. Generic Protocol Definition

The first locale, public_coin_proof (Figure 1), formalizes
the recursive function prove, which models a public-coin proof.
The parameters of this function are as follows:

 very and very, which are locale parameters, are the verifier
functions for the base case and the recursive case,

o vs is the verifier’s current state,

o prv and ps are the prover and its current state,

o I is the problem instance,

o ris the verifier’s randomness for the current round.



type_synonym (’i, 'r,’a, 'resp, 'ps) prv =
= "a="alist="r= "ps = 'resp X 'ps

locale public_coin_proof =
fixes verg :: i = 'vs = bool
and ver; :: i = ‘resp = r =
‘a=>"a list = vs = bool X ’i X 'vs
begin
fun prove :: 'vs = (’i, r,’a, 'resp, 'ps) prv = "ps =
i = r= ("ax’r) list = bool where
prove vs prv ps I r [| <— verg I vs
prove vs prv ps I r ((x,7') #rm) +—
(let (resp,ps’) =prv I x (map fst rm) r ps in
let (ok,I',vs') =ver; I resp ¥ x (map fst rm) vs in
ok A prove vs' prv ps' I' ¥ rm)

end

Fig. 1. Public-coin proofs: protocol definition

o rm is a list of pairs of per-round public information and
randomness, which is used for the remaining rounds.

The verifier is a locale parameter, as it is part of a protocol
definition and remains fixed, while the soundness theorem is a
statement about arbitrary provers.

The base case, where the list rm is empty, determines the
verifier’s final verdict by calling the verifier function very. In
the recursive case, we first call the prover prv and then pass on
its response resp to the verifier. Here, (map fst rm) projects all
pairs in rm to their first component (i.e., the public information),
ps’ and vs’ are the prover’s and the verifier’s successor states, I’
is the reduced problem instance, and ok is the prover’s verdict
for the current round. The latter is conjoined to the result of the
recursive call to prove on the prover’s and verifier’s successor
states ps’ and vs', the instance I’, the randomness ¥ for the
next round, and the tail rm of the pair list.

There are some differences with Definitions II.1, 11.3
and IL.4. First, our prover and verifier functions have additional
arguments: the current instance /, the remaining randomness
(r and second components of rm), and some additional round-
wise public information (first components of rm). We assume
that the initial round-wise public information is derivable from
the initial instance /. These elements can be easily encoded into
the prover and verifier states of Definition II.1. Second, our
prover always gets a random value, even in the first round. This
uniformity helps with the inductive security proofs. All these
differences are superficial and only introduced for convenience.

B. Generic Security Properties

The second locale, public_coin_proof _security (Figure 2),
formalizes the desired security properties of public-coin
protocols as assumptions, which must be proven when the

locale public_coin_proof_security =
public_coin_proof very ver| +

fixes S :: i set
and honest_pr:: (’i,’r,’a, resp, ’ps) prv
and sound_assm :: 'vs = 'ps = i = ’a list = bool
and sound_err :: ’i = real
and compl_assm :: 'vs = 'ps = ’i = ’a list = bool
and compl_err :: ’i = real
assumes soundness :

[1¢S; sound_assm vs ps I xs] =

Pr

prove vs prv ps I r (zip xs rs)

rs € tuples (length xs) [

| < sound_err I
and completeness :

[1€S; compl_assm vs ps I xs] =

Prrsetuples(lengthxs)[
prove vs honest_pr ps I r (zip xs rs)

| > 1—compl_err I
Fig. 2. Public-coin proofs: security properties

locale is instantiated with a concrete protocol. It extends the
first locale (indicated by +) with additional parameters and
with assumptions. The parameters are as follows: S is the
problem specification (i.e., a set of instances), honest_pr is
the honest prover following the protocol, sound_assm and
compl_assm are the conditions under which soundness and
completeness hold, and sound_err and compl_err are the
soundness and completeness errors. Finally, the assumptions
soundness and completeness formalize the protocol’s security
properties as probabilistic statements over the randomness
tuples rs (cf. Definition 11.3). Note that, while the initial value r
passed to prove need not be random, the successive ones are.
One can think of r as either as an initialization message for
the prover or as a dummy value.

We have also defined a variant of this locale, where the
completeness is deterministic. We then proved, by instantiating
the locale above with the variant, that this corresponds to the
special case of the above completeness property where the
error is 0.

IV. THE GENERALIZED SUMCHECK PROTOCOL

In this section, we present our formalization of the sumcheck
protocol in Isabelle/HOL. We proceed in two stages. First, we
axiomatize the required mathematical properties of multivariate
polynomials as locale in Isabelle/HOL (Section IV-A). Then
we formalize a generalized sumcheck protocol in the context
of that locale (Section I'V-B). Later, we will generically prove
its completeness and soundness (Section V) and instantiate



locale multi_variate_polynomial =
fixes
vars :: (’p :: comm_monoid_add) = v set
deg :: 'p = nat
eval :: ’p = ('v,’a:: finite) subst =
(’b :: comm_monoid_add)
inst::'p= ("v,’a) subst="p
assumes
vars_finite : finite (vars p)
vars_zero :vars 0 =0
vars_add :vars (p+q) C vars pUvars g

vars_inst : vars (inst p o) Cvars p\dom o

deg_zero:deg 0=0
deg_add : deg (p+q) < max (deg p) (deg q)
deg_inst : deg (inst p o) < deg p
eval_zero:eval 0 0 =0
eval_add : vars pUvars ¢ C dom ¢
= eval (p+q) co=eval p o+eval q
eval_inst : vars p C dom ocUdom p
= eval (inst p ) p=-eval p (p ++ o)
roots : | {r | vars p C {x} A vars q C {x}
Ndeg g<dNdegp<dANp#qN
Neval p [x—r|=eval g x—r]}| <d

Fig. 3. The locale abstracting multivariate polynomials

our locale with a concrete representation of multivariate
polynomials (Section VI). This approach has the advantage of
making the proofs more modular and of facilitating future
proofs about sumcheck variants over other mathematical
structures with properties similar to multivariate polynomials
over finite fields such as polynomials over rings and modules,
tensor codes, or structures in which the required properties
only hold under a cryptographic assumption.

A. Axiomatizing Polynomials

We formalize our assumptions about multivariate poly-
nomials in an Isabelle/HOL locale (Figure 3). This locale
declares four function variables along with their types: given a
polynomial p of abstract type ’p and a substitution (i.e., partial
function) o from variables of type 'v to values of type ’a,

1) vars p denotes the set of p’s variables,

2) deg p is p’s degree,

3) eval p o evaluates p to a value of type ’b using o, and
4) inst p o instantiates p to another polynomial using o.

In contrast to the common formulation of the sumcheck
protocol over a finite field IF, we (only) impose an (additive)

commutative monoid structure on the types of polynomials 'p
and their values ’b, and we assume that the type ’a of
their arguments is finite. In Isabelle, we can achieve this
by adding type class constraints to these type variables (e.g.,
'p :: comm_monoid_add). Note that eval has different argument
and result types ’a and ’b. While these types coincide for
polynomials over a field IF as used in Protocol 11.6, they may
differ for other instantiations. For example, one could define a
sumcheck protocol for polynomials over modules over a ring,
in which case the arguments would be ring elements and the
results would be module elements.

Each of the four function variables comes with a set of
assumptions about it. Most of these concern the interaction of
these functions with the additive structure and with instantiation.
Here, we only discuss the final three in more detail. The
assumption eval_add states that the result of evaluating the
sum p + g of two polynomials under a substitution ¢ whose
domain contains all their variables is the same as adding the
results of their individual evaluation under o. The assumption
eval_inst relates evaluation and instantiation and expresses that,
given two substitutions ¢ and p whose domains jointly cover
p’s variables, first instantiating a polynomial p with o, followed
by an evaluation under p is the same as evaluating p under the
substitution p ++ o, which updates the substitution p with o.
The final assumption, roots, states that any pair of different
univariate polynomials p and g of degrees bounded by d are
equal on at most d points. We could equivalently assume that
the number of roots of a univariate polynomial is bounded by
its degree. This constitutes the main assumption required for
the soundness proof.

Apart from the standard instance of multivariate polyno-
mials over finite fields, discussed in Section VI, multivariate
polynomials over certain rings satisfy small variants of these
assumptions, where the roots assumption is modified so that
polynomials are only required to have a bounded number of
roots in a special sampling set [52], which is a subset of
the ring. The verifier’s random messages in the sumcheck
protocol must then be drawn from the sampling set. Similar
considerations hold for modules [42]. Therefore, we expect
that it would take little effort to extend our formalization to
work with sumcheck variants using polynomials over rings and
modules with sampling sets.

We proved a collection of lemmas derived from the locale’s
assumptions. These include finite sum variants of the assump-
tions involving binary addition and three lemmas about the
interaction of evaluation, instantiation, and finite sums, which
we present below.

The first lemma, eval_sum_inst, simplifies the evaluation of
a finite sum of instantiations to a finite sum of evaluations.

lemma eval_sum_inst :

assumes vars p C VU dom p and finite V

Z inst p 6) p
o €substs VH

Y evalp (p++0))

o €substsVH

shows eval (

=



The second lemma, eval_sum_inst_commute, simultaneously
commutes evaluation with sum and swaps the substitutions
used in the evaluation and the instantiation, respectively.

lemma eval_sum_inst_commute :
assumes vars p C {x}UV and x ¢ V and finite V
shows eval ( Z
o €substs VH
= Z eval (instp [x—r]) o
o €substs VH

inst p o) [x— 7]

The third lemma, sum_merge, combines two sums into one,
merging a singleton substitution into one with an extended
domain.

lemma sum_merge :

assumes x ¢ V
shows Y ()
heH ocsubstsVH
= Z eval p o
o € substs ({x}UV)H

eval p ([x— h] ++ 0))

The proofs of the above three lemmas use basic facts about
sums and maps together with our assumptions on vars, eval,
and inst and their aforementioned extensions to finite sums.
B. Protocol Formalization

Since we have fixed the types of arguments 'a and results 'b
of our abstract polynomials ’p in our locale, we will henceforth
describe sumcheck instances by triples (H,p,v) € % (omitting
the finite field F). In Isabelle/HOL, we define Zp as follows.

type_synonym (’p,’a,’v) sc_inst ="a set X 'p X v

definition % :: ('p, ’a,’v) sc_inst set where
D%P:{<Hapav)| Z

G Esubsts (vars p) H

eval p o =v}

For better readability and easier reference, we formalize the
generalized sumcheck protocol in Isabelle/HOL as a separate
recursively defined predicate sumcheck, which invokes the
prover and integrates the verifier. However, we do also define
the sumcheck protocol as an instance of our generic definition
of public-coin proofs (cf. Figure 1) and establish its equality
with the definition given here.

The predicate sumcheck is parameterized by the prover,
which is a function of type

type_synonym (’p,’a,’b,’v,’s) prover =
(’p,’a,’b) sc_inst="v="v list="a="s="pX’s

Note that this type specializes the prover type prv from Figure 1.
For a prover pr of this type, the application (pr I x xs r s)
returns a pair (g,s’) consisting of a univariate polynomial g,
which is sent as the next challenge to the verifier, and the
prover’s successor state s'. The parameters are as follows: [
is the sumcheck instance, x is the returned polynomial §’s
expected variable, xs is a list of variables not containing x such
that vars p C set xs U{x}, r is the verifier’s next random value,
and s is the prover’s current state.

fun sumcheck :: (v, ’a, ’p,’s) prover = ’s = ’a set = p =
b= 'a= (v x’a) list = bool where
sumcheck pr s (H,p,v) r[| «— v=eval p 0

| sumcheck pr s (H,p,v) r ((x,7) # rm) +—
let (§,s') =pr (H,p,v) x (map fst rm) r s in
vars § C{x} Ndeg g <deg p N\
v=Y eval g [x+h] A
heH
sumcheck pr s

(H, inst p [x— 1], eval g [x+—/]) ¥ rm

Fig. 4. Formal definition of the sumcheck protocol

We then define the predicate sumcheck as in Figure 4. An
application (sumcheck pr s (H, p, v) r rm) returns the verifier’s
verdict (accept or reject). The parameters are as follows: pr
is the prover as described above, s is the prover’s current
state, (H,p,v) describe the current sumcheck instance, r is the
randomness sent by the verifier as an input to the prover, and
rm is an ordered substitution consisting of a list of pairs of
variables and random values.

The predicate sumcheck is defined using two equations (i.e.,
logical equivalences). The first equation describes the base
case where the list rm is empty and the polynomial p is a
constant, which is evaluated under the empty substitution 0
and compared to the value v. The second equation describes
the recursive case, which reduces the instance by executing
one round of the protocol. We first call the prover pr to obtain
the prover’s message to the verifier, i.e., the polynomial g, and
its successor state s'. We call the projection (map fst rm) of
rm to the public information the domain of rm. The verifier
then performs the following checks:

(1) variable check: the received polynomial ¢ has (at most)
the expected variable,
(ii) degree check: g’s degree is bounded by p’s degree, and
(iii) evaluation check: the sum of ¢ over all 1 € H matches
the value v.

These checks are conjoined with a recursive call of the
function sumcheck with the new state s’ of the prover and the
reduced sumcheck instance (H,p',V'), where the polynomial
p/ =inst p [x+— 7] instantiates p’s variable x to ¥ and the
value v/ = eval § [x > /| evaluates g at /. We call this the
recursive check. Note that the recursion terminates, since the
length of the list rm decreases in each call.

Finally, we define the honest prover to match the protocol
description (cf. Protocol 11.6):

definition honest_prover :: (v, a, 'p,unit) prover where

honest_prover (H, p, v) x xs r _=

( Z inst p 0,())

O Esubsts (setxs) H



This function returns the univariate polynomial ¢ =
(Yo e substs (setxs) #inst p ©) with variable x ¢ set xs, obtained
by summing up all instances of p over all substitutions o
assigning values in H to the variables in set xs. This prover
does not use a state (hence the state’s type is unif) and ignores
the sumcheck instance’s value v, the current variable x, and
the randomness » sent by the verifier.

C. Discussion of our Formalization

Comparing with common informal accounts of the sumcheck
protocol (see, e.g., [63], [64]), we find the following additional
points noteworthy. First, we formalize the entire interaction
between the prover and the verifier as a single recursive
predicate sumcheck, which is actually an instance of a general
definition (cf. Figure 1), thus replacing an informal sequence
of protocol steps with a compact and rigorous mathematical
description. Second, we model randomness as externally
provided rather than generated on-the-fly, which allows for
a simpler formalization and proofs based on deterministic
functions rather than probabilistic monads. Third, we model
a generalized sumcheck protocol, where we abstract the
underlying structure of polynomials by a set of functions and
assumptions over them (Figure 3).

We expect that our formalization would extend easily to
various generalizations of the language %5 and the sum-
check protocol. This includes instances where the polynomial
p(Xi,...,X,) is evaluated and summed over possibly different
sets Hy,...,H, for each variable Xi,...,X,, to check whether

>

x1€H,....xn€Hy,

p(x1,X,. .. xn) -

One could also consider weighted sums

- X

(X15es%n ) EH"

wi(xr) e wn (%) - p(xr,x2, .., Xn)

for weight functions wy,...,w,: H—F as in [35], by including
wa,...,w, in the sum defining ¢ and changing the verifier
checks to v = Y cewi(x1)g(x). Setting the weight functions
appropriately allows the sumcheck protocol to work with
multisets.

V. SECURITY PROPERTIES

We now turn to the two main results that we proved about
the sumcheck protocol: its completeness and soundness. We
have also instantiated the locale public_coin_proof_security
from Figure 2 with our security results, thus showing that they
match the general definitions. We start our presentation with
the (simpler) completeness property.

A. Completeness

The sumcheck protocol’s completeness theorem (cf. Theo-
rem I1.7) states that the verifier will (deterministically) accept
any run with the honest prover on an instance (H,p,v) € Zp of
the sumcheck problem. We formalize this theorem as follows.

theorem completeness :

assumes

(H,p,v) € L
vars p = set (map fst rm)
distinct (map fst rm)
H#0
shows sumcheck honest_prover s (H,p,v) r rm

The additional assumptions state that (i) the set of p’s variables
corresponds to the domain of rm, (ii) the variables in the domain
of rm are all distinct, and (iii) that the set H is non-empty.

For the inductive proof to succeed, we slightly generalize
this statement as follows.

lemma completeness_inductive :
assumes

v = eval p o
O Esubsts (set (map fstrm)) H

vars p C set (map fst rm)
distinct (map fst rm)
H#0
shows
sumcheck honest_prover s (H,p,v) r rm

Here, the equality in the second assumption has turned into a
set inclusion. The reason is that the arity of p may decrease
by more than one in each recursive call, while the length of
rm decreases by exactly one. For example, p = xy has arity 2,
while (inst p [x — 0]) =0 has arity 0. As a result, we have
also unfolded the definition of %, and replaced the domain
vars p of the substitutions in the sum by the overapproximation
set (map fst rm). We now prove this lemma.

Proof. Our proof proceeds by computation induction on the
definition of sumcheck (Section IV-B).? This form of induction
exactly follows the structure of the function definition, for
which, crucially, termination is proven as part of its definition.
Isabelle automatically generates a computation induction rule
for each recursively defined function.

Base case. For this case, we must show that
sumcheck honest_prover s (H,p,v) r ||

holds, which Isabelle’s simplifier proves automatically. Since
rm =[], the goal simplifies to v = eval p 0, as does the theorem’s
first assumption, since substs @ H = {0}.

Inductive step. In the inductive step, we have to show that

sumcheck honest_prover s (H,p,v) r ((x,”) #rm') (2)
holds under the assumptions
V= eval p o 3)
O €substs (set (mapfst ((x,r)#rm’))) H
vars p C set (map fst ((x,7) #rm')) “4)
distinct (map fst ((x,7') #rm')) 5)

2An induction on rm would also work, but would be more tedious.



H+0 ©)

and the induction hypothesis (see below). Let V =
set (map fst rm’). By definition of the sumcheck function, our
goal (2) reduces to proving that the variable, degree, evaluation
and recursive checks succeed given

(g,s") = honest_prover Hp x V r s

=( Z inst p o,()).
o csubstsVH

The variable and degree checks, vars § C {x} and deg § <
deg p, are straightforward using the definition of the honest
prover, locale assumptions on vars, deg, and inst and the
assumptions (4) and (6) above.

The evaluation check, namely, that v=Y,cyeval § [x+— h],
follows the chain of equations

V= Z eval p o @)

o €substs (VU {x})H

=Y Y, eval p([x— h] ++0) (®)
heH \ O EsubstsV H

= Z eval Z instp o | [x— h] )
heH o €substsV H

=Y eval § [x+~ hl, (10)
heH

where Equation (7) comes from assumption (3), Equation (8)
uses sum_merge (Section IV-A) and x ¢ V, which follows from
assumption (5), Equation (9) uses the lemma eval_sum_inst
(Section IV-A) and assumption (4) and Equation (10) holds by
definition of 4.

Finally, the recursive check is

sumcheck honest_prover s’ I' ¥ rmt/,

where I' = (H,inst p [x— r],eval § [x+> ¥]). This is exactly
the conclusion of the induction hypothesis, which holds under
the assumptions

eval § [x— 1] = eval (inst p [x—7]) o (11)
O EsubstsVH

vars (inst p [x+— r']) C dom (map_of rm’) (12)

distinct (map fst rm’) (13)

HA0. (14)

Using the lemma eval_sum_inst_commute (Section IV-A), we
prove the first assumption and the remaining ones follow
straightforwardly from the locale assumptions and assumptions
(3)-(6) of the induction step, and therefore so does the recursive
check. O

B. Soundness

We formalize the soundness theorem of the sumcheck
protocol (cf. Theorem 1I1.7) as follows.

theorem soundness :
assumes (H,p,v) ¢ Zep

and vars p = set vs and distinct vs and H # 0

shows Prrs € tuples (arity p) [

sumcheck pr s (H,p,v) r (zip vs rs)
1< deg p-arity p
A

Some explanatory remarks are in order here. First, the
randomness is taken over a tuple rs of length the arity of
p, where arity p is defined as the size of vars p. Recall that, in
our protocol formalization, the prover always gets an input, so r
corresponds to an initial value sent by the verifier. Although the
initial value r need not be random, those passed in subsequent
recursive calls will be. This structure makes all rounds look
the same, which helps when setting up the induction proof.
Second, note that the first two assumptions imply that vs has
the same length as rs. Hence, all list elements are combined
into pairs in (zip vs rs). Third, we use A to denote the (finite)
set of all elements of the type ’a and |A| is its cardinality.

Unlike the completeness statement above we cannot prove
this theorem by computation induction on the definition of
sumcheck, since rs in its last argument (zip vs rs) is bound
by the probability statement. Instead, we use induction on the
variable list vs and, since the variables p, v, s, and r change in
recursive calls to sumcheck, we generalize the induction over
these variables, meaning that they appear universally quantified
in the induction hypothesis and can thus be instantiated with
different values in the proof.

Moreover, similar to the completeness theorem, this theo-
rem’s second assumption, vars p = set vs, is too strong, and
must be weakened to vars p C set vs. We also replace vars p by
set vs and arity p by length vs in the conclusion. Similarly, the
degree of the reduced instance’s p’ might be (possibly much)
smaller than p’s degree. Hence, we introduce an additional
assumption deg p < d with an upper bound d for the degree,
which replaces deg p in the theorem’s soundness error.

This discussion leads to the following inductive generaliza-
tion of the soundness theorem for which the sketched induction
proof setup succeeds.

lemma soundness_inductive :
assumes
deg p < d and vars p C set vs and
distinct vs and H # 0
shows
Prrs € tuples (length vs) [
sumcheck pr s (H,p,v) r (zip vs rs) A

v#£ Z

O €substs (setvs) H
] d-length vs
A

Proof. By list induction on vs, generalizing over s, p, v, and r.

eval p o

Base case. For vs = [|, we have to establish that

Prrsetuples 0[



sumcheck pr s (H,p,v) r [| A
v#£eval p 0

]<0

which is proven automatically by Isabelle’s simplifier, since
(sumcheck pr s (H, p, v) r []) reduces to v=eval p @ by the
definition of sumcheck.

Inductive step. For vs = x #vs’, we have to show that

Prrl#rsetuples (Suc (lengthvs’)) [
sumcheck pr s (H,p,v) r (zip (x#vs') (ry #rs)) A
v # eval p o
o €substs ({x} Usetvs’) H
< d-Suc (length vs’)
Y

under the assumptions vars p C {x} Uset vs', distinct (x # vs’)
and the remaining two (unchanged) assumptions of the lemma.

To make the proof more readable, we introduce some
abbreviations. We abbreviate the (unfolded) language non-
membership condition to

F+—v# Z

o €substs ({x}Usetvs') H

eval p o

and we also introduce abbreviations the verifier’s degree,
variable, and evaluation checks and for the recursive check:

Cyer < deg §<deg p Nvars g C {x}
Av= Zeval q [x— h,
heH

Crec 11 1s +— sumcheck pr s’ (H,p'ri,V'ri) ri (zip vs rs),

where the prover pr’s polynomial g, the prover pr’s updated
state s, and the reduced sumcheck instance’s polynomial p’
and target value V' are defined as follows:
q="st (pr (H,p,v) x vs rs),
s'=snd (pr (H,p,v) x vs r s),
p i =inst p [x—r],
Virp = eval g [x+ ry].
Here, fst and snd denote a pair’s first and second projection
respectively.
We start the proof with the following series of (in)equations,
which we explain below.
Prrl#rs[
sumcheck pr s (H,p,v) r
A F]

(zip (x#vs) (r) #71s))

= Prysirs[Crer A Crec 11 15 A F] (15)
= Pryyrs[Coer A Croc 11 1S NF A # q] (16)
S Prr|#r.y[cver/\crec r rS/\é\]#q] (17)

In (15), we simplify the zip expression to (x,r;) # zip vs rs’
and unfold the sumcheck definition. To obtain (16), we split
the resulting probability into a sum of two cases, depending

on whether or not § = g holds, where

9= Y

O Esubsts (setvs) H

instp o

is the honest prover’s polynomial. When § = g, the probability
is 0 and hence disappears due to a contradiction between F and
the evaluation check in C,,,, which we derive using the lemmas
eval_sum_inst and sum_merge from Section IV-A. In (17), we
over-approximate the remaining case by removing F.

Next, we split the probability once more into a sum of two
cases, this time depending on whether or not eval ¢ [x+— ri] =
eval g [x — ri] holds.

Prrysrs[Cuer A Cree 11 15 NG # q]
= Prosrs[Coer A Cree 11 1 NG # g N

eval § [x— ri] =eval q [x— r]]
+ Prrsrs[Crer A Cree 11 15 NG # g N

eval § [x— ri] #eval q [x— r]]

= Prleﬁ + Prrighl (18)

The final equation (18) above just introduces the abbre-
viations Pr,s and Pry,, for the two probabilities on its
left-hand side. We now bound each of these probabilities
separately. By the degree and variable checks in Cy,,, the
lemma’s first assumption, and the roots locale assumption, the
distinct polynomials g and ¢ coincide on at most d values.
Hence, we have

Pl’zqﬁ < (19)

d
AT
We derive a bound for the probability Pr,ep, as follows using
the induction hypothesis.

Prright
< Prrl#rs[crec ryrs A

eval § [x— ri| #eval q [x— ri]] (20)
= Prrl#rs[crec ryrs A
Vi # Z eval (p' ry) o] (21)
G Esubst (setvs’) H
< — Y Pry[Crc o rs A
|A| ach
Voo # Z eval (p' a) o] (22)
O Esubst (setvs’) H
d-length vs'
< (23)
[A] a& Al
d-length vs'
< — (24
Al

The inequality (20) holds by monotonicity of Pr. The
equality (21) holds by definition of (' r1) and since

eval q [x—r| = Z eval (p' r) o

O Esubst (setvs’) H

by the lemma eval_sum_inst_commute from Section IV-A. To
derive (22), we use a lemma about probabilities that allows us to



remove 7| from the probability space and to sum over uniformly
chosen instantiations with concrete values instead. This step is
required for the application of the induction hypothesis.

In (23), we apply the induction hypothesis which reads as
follows: for all s, p, v, and r, we have

Pr

rs € tuples (length vs')) [
sumcheck pr s (H, p, v) r (zip vs' rs) A

v # Z

O €substs (setvs’) H

eval p o

< d-length vs'
T A

provided that vars p C set vs', deg p < d, distinct vs' and
H # 0. We respectively instantiate s, p, v, and r in the induction
hypothesis with s', (p’ ), (V' «), and « as introduced above.
The resulting instantiated assumptions follow from those of
the induction step. The final simplification step in (24) yields
the desired bound for Prgp,.

We can now continue from (18) to finish the proof of the
inductive step as follows.

)

Prr]#rs[Cver A Crec ry rs A @ 7é q}

_d  d-(length vs')
A A
< d-Suc (length vs')

A

This completes the soundness proof.

C. Differences with Pen-and-Paper Proofs

Common pen-and-paper proofs of completeness and sound-
ness generally gloss over several details that we had to make
precise in our formal proof.

These proofs usually proceed by induction over the arity
of the polynomial (cf. [60, Appendix A]), ignoring the
aforementioned fact that the arity of the polynomial may
decrease by more than one in each round. Instead, our proof
proceeds by induction on an explicit list of variables which
contains all of the variables of the sumcheck polynomial,
even if a particular variable never actually appears. Hence,
the informal notation p(Xj,...,X,) gives an upper bound on
the set of variables that actually occur in p. In an early stage of
our development, we attempted an induction over the arity of p.
However, this required stronger assumptions about polynomials
that fail to hold for polynomials represented in a unique normal
form, as is the case for our instantiation in Section VI. For
example, we had initially formulated the locale assumptions
vars_add and vars_inst from Figure 3 with equalities, which
we subsequently had to weaken to set inclusions.

Differently from some informal presentations [65], our
inductive security analysis uses (constant) polynomials of arity
zero as the base case, rather than (univariate) polynomials
of arity one. This makes the base case trivial and avoids the
repetition of similar reasoning in the base case and inductive
steps of the analysis.
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Moreover, we had to fully specify all probability spaces
involved, another important detail that is often omitted in less
formal proofs. This required proving some additional lemmas to
reduce the dimension of the probability space in the inductive
step and enable the use of the induction hypothesis.

VI. INSTANTIATION WITH MULTIVARIATE POLYNOMIALS

Our formalization of the sumcheck protocol in the previous
section relies on the abstract functions vars, deg, eval and inst
and a set of assumptions about them. So far, we have not
shown that the assumptions are realizable by any particular
mathematical structure. Instantiating the abstract type 'p with
a concrete type of multivariate polynomials (Section VI-A),
defining concrete instances of the four functions (Section VI-B),
and proving the associated assumptions (Section VI-C) com-
pletes the formalization of the completeness and soundness
proofs of the sumcheck protocol for the concrete case of
polynomials. Furthermore, this step proves the consistency of
our axiomatization and provides confidence in the applicability
of our abstract formalization. To achieve this, we use existing
Isabelle/HOL libraries for univariate polynomials [66] and
for multivariate polynomials [51]. The latter also connects
univariate with multivariate polynomials with at most one
variable.

A. The Type of Multivariate Polynomials

The multivariate polynomials of [51] rely on the type of
polynomial mappings from the Isabelle/HOL library, which
is defined to be isomorphic to the set of functions that are
zero “almost everywhere”, i.e., on all but a finite number of
arguments. In Isabelle, this type is defined as follows:

typedef 'a = 'b = {f:: 'a= "b::zero | finite {x|fx#0}}

This construction defines a new type from the indicated set of
functions and comes with the morphism lookup :: ('a = ’b) =
(’a = ’b), which opens the polynomial mapping abstraction
and its inverse Abs_poly_mapping, which creates such an
abstraction. The function keys :: ("a = ’b) = ’a set returns the
set of arguments on which the polynomial mapping results in
a non-zero value. Polynomial mappings have a rich algebraic
structure, and are defined in the theory [67].

We now recap how the authors of [51] construct the
types of monomials and then multivariate polynomials using
polynomial mappings. We will use the following running
example throughout this subsection to clarify the concepts
introduced. The multivariate polynomial

2 2
p(x1,x2,x3) = 3x7x2x3 + 2x1x3 + X5

has three variables and three monomials with non-zero coeffi-
cients, namely, m; :x%x2x3 with coeffcient 3, my = x;x3 with
coefficient 2, and m3 = x% with coefficient 1.

First, we can use polynomial mappings of type nat =
nat to represent monomials by mapping variables to their
exponent. For example, the monomial m; would be represented
as Abs_poly_mapping ((Ax.0)(1 — 2,2 +— 1,3 — 1)), which
we abbreviate to [1 — 2,2+ 1,3 — 1]. The type of multivariate



polynomials then maps monomials of type nat = nat to their
coefficients of type ’a and is defined by

typedef 'a mpoly = UNIV :: ((nat = nat) = ’a) set.

Here, UNIV is the set of all elements of the indicated type.
This type definition comes with the morphisms mapping_of,
which opens the type ’‘a mpoly, returning the underlying
polynomial mapping of type (nat = nat) = ’a. Accordingly,
the polynomial p(xj,x2,x3) can be represented by [m; —
3,my — 2,m3 > 1], i.e., mapping all other monomials to 0.
Note that p in this example is of type nat mpoly.

B. Functions on Multivariate Polynomials

We now define the functions vars, deg, eval and inst to in-
stantiate our locale. While we defined polynomial instantiation
ourselves, the former three are already defined in [S1].

1) Variables: The variable function for a multivariate
polynomial is defined by

definition vars :: ’a mpoly = nat set where

vars p = U

m € keys (mapping_of p)

(keys m).

Here, keys (mapping_of p) is the set of the polynomial p’s

monomials and the union of these monomials’ sets of keys

constitutes p’s variables. We use this function to instantiate

our variables function in the locale. With our running example,

we have vars p = {1,2,3}, representing the variables x;,x7,x3.
2) Degree: As our degree function, deg, we use

lift_definition total_degree :: 'a mpoly = nat is
Ap.Max ({0} U{ Z lookup m v | m € keys p}).

vEkeysm

This function returns the maximum of any monomial’s sum of
exponents in the polynomial. More precisely, the expression
(keys p) denotes the set of p’s monomials and the sum adds up
the exponents of each of the monomial m’s variables x. This
definition makes use of Isabelle’s lifting definition mechanism,
which allows one to write definitions in terms of the concrete
representations of a newly defined type (such as ’a mpoly)
and automatically inserts the required morphisms. Here, the
A-abstracted p is of type ((nat = nat) = ’a) = nat, which
is automatically lifted to the argument type ’a mpoly of the
defined function using the morphism mapping_of. For our
running example, we thus get total_degree p =4 . We note
that we apply this function only to multivariate polynomials
in at most one variable, where the definition collapses to the
expected one.

3) Evaluation: We use the existing function insertion, which
is defined as follows.

definition insertion_fun :: (nat = ’a) =
((nat =¢ nat) = ’a) = ’a
where insertion_fun o p =

(X pme( JT (ovesem)

me keysp vEkeysm

This definition, through lifting, yields the insertion function of
type (nat = ’a) = ’a mpoly = ’a. We then define our equiva-
lent evaluation function eval :: ’a mpoly = (nat,’a) subst = ’a
by swapping its arguments and converting our partial sub-
stitution into a total one (with some irrelevant undefined
values). Taking the substitution o = [1 — 3,2 +— 1,3 +— 2]
in our running example p(xj,x2,x3) = 3x%x2x3 + 2x1x3 +x§
replaces x; by 3, xp» by 1 and x3 by 2 in p. Therefore,
eval p 6 =3-32-1-2+4+2-3-24+2%=170.

4) Instantiation: Polynomial instantiation substitutes certain
variables with values to obtain a polynomial of smaller arity.
It can be understood as a partial evaluation. In contrast to
evaluation, not all variables need to be instantiated. However,
instantiating all variables is equivalent to evaluation. For our
example polynomial p(xy,x2,x3) = 3x7x2x3 + 2x1x3 +x3 and
the substitution o = [1 — 3,2+ 1], which instantiates x; and
X but not x3, the resulting polynomial is 33x3 —|—x§. We will
discuss this example in more detail, while introducing the
definitions.

We first define instantiation on monomials and then extend
it to polynomials. Recall that the monomials of p are x%x2x3,
x1x3 and x%. Applying the substitution to each monomial
independently yields 27x3, 6x3 and x%. We note that each of
these terms has a coefficient and a residual monomial, which
we respectively define in the functions inst_mon_coeff and
inst_mon_resid as follows.

lift_definition inst_mon_coeff ::
(nat =q nat) = (nat,’a) subst = a

is Amo. (lrIvEdomG(Cy v)
lift_definition inst_mon_resid ::

mv)

(nat = nat) = (nat,’a) subst = (nat = nat)
is Amov.if v ¢ dom o then m v else 0
Once we have applied the substitution to each monomial,
it remains to multiply these by their original coefficients in
p and group them by the residual monomials. This is what
the function inst_fun will do, which in our example simplifies
3-9x3+2-3x3 —|—x§ to the desired 33x3 +x§. The function is
defined as follows:
definition inst_fun :: ((nat = nat) = ’a) =
(nat,’a) subst = (nat = nat) = 'a
where

inst_fun p o =

(Am. Z

m' |inst_mon_residm’ c=m

p m' -inst_mon_coeff m’ c).

Finally, we obtain the function inst of the correct type
’a mpoly = (nat,’a) subst = 'a mpoly through lifting.

C. Proving the Assumptions

We now prove that the locale assumptions from Section IV-A
hold for the functions vars, total_degree, eval, and inst on
polynomials. Note that we discuss the assumptions relating
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to inst separately, although in Figure 3 they are grouped with
those for vars, deg and eval.

1) Variables Assumptions: There are existing library lemmas
for the function vars that exactly correspond to our assumptions
vars_finite and vars_add, and the proof of vars_zero follows
directly from the definitions of the variable function and the
zero polynomial.

2) Degree Assumptions: We must prove the assump-
tions deg_zero and deg_add for the total degree function
total_degree. The first one is covered by a library lemma.
We establish deg_add separately. Its proof uses the definition
of total degree and requires simple properties about the Max
function and the addition of multivariate polynomials.

3) Evaluation Assumptions: We prove the assumptions
eval_zero and eval_add directly using existing library lemmas
about the insertion function and the definition of eval.

4) Instantiation Assumptions: The proofs of the instantiation
assumptions vars_inst, deg_inst and eval_inst required more
work since the concept of polynomial instantiation did not
exist in the existing theories. Although the proofs were
more elaborate than for the other assumptions, they did
not require more than basic theorems about sums, maps,
and finiteness, along with the definitions of monomial and
polynomial instantiation.

5) Roots Assumption: We prove the roots assumption using
a lemma stating that the number of roots of a univariate polyno-
mial (of type ’a mpoly) is bounded by its total degree (which
coincides with the expected degree for such polynomials).
We first establish this result for a specialized type, ’a poly,
of univariate polynomials, which exists in the Isabelle/HOL
library, and then transfer it to univariate polynomials of type
‘a mpoly. We explain the type ’a poly in [60, Appendix B] and
present the proof of the roots bound in [60, Appendix C].

VII. CONCLUSION AND FUTURE WORK

In this paper, we formally verified the completeness and
soundness properties of the sumcheck protocol. Our work took
place in three stages:

« Producing a new pen-and-paper security analysis of the sum-
check protocol with enough detail for a machine-checkable
analysis;

Distilling the necessary properties of multivariate polynomi-
als used in the sumcheck protocol, and proving the security
of a generalized sumcheck protocol based on these properties
in Isabelle; and

Showing that existing Isabelle formalizations of multivariate
polynomials satisfy the necessary properties, leading to a
full security analysis of the classic sumcheck protocol.

The sumcheck protocol is widely used, with applications
ranging from computational complexity theory to cryptography.
We hope that the contrast between the apparent straightforward-
ness of the well-known pen-and-paper proofs for the sumcheck
protocol and the thoroughness of our formalization motivates
the use of formal verification. Formalizing proofs will be crucial
to prevent errors and ensure security as cryptographic systems
become increasingly complex.
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We also hope that our formalization helps to produce
machine-checkable security analyses of other recursive proto-
cols in the future, whether they are based on the sumcheck
protocol, or other probabilistic proof systems. Future extensions
of our work would be to create machine-checkable proofs
of statements in complexity theory relying on the sumcheck
protocol [50], [44], [45], [46], [47], [48], analyses of pro-
tocols such as the GKR protocol [32], which rely directly
on sumcheck, generalisations of the sumcheck protocol to
cryptographic groups [42] and tensor codes [43], and producing
verified implementations of these protocols using the Isabelle
code generator. Setting up the code generator to extract an
implementation of our verified sumcheck protocol should be
feasible with limited additional effort given the extensive
support for executable polynomials in [51].
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