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Abstract

We describe a faithful embedding of the Dolev-Yao model
of Backes, Pfitzmann, and Waidner (CCS 2003) in the the-
orem prover Isabelle/HOL. This model is cryptographically
sound in the strong sense of blackbox reactive simulatabil-
ity/UC, which essentially entails the preservation of arbi-
trary security properties under active attacks and in arbi-
trary protocol environments. The main challenge in design-
ing a practical formalization of this model is to cope with
the complexity of providing such strong soundness guaran-
tees. We reduce this complexity by abstracting the model
into a sound, light-weight formalization that enables both
concise property specifications and efficient application of
our proof strategies and their supporting proof tools. This
yields the first tool-supported framework for symbolically
verifying security protocols that enjoys the strong crypto-
graphic soundness guarantees provided by reactive simu-
latability/UC. As a proof of concept, we have proved the se-
curity of the Needham-Schroeder-Lowe protocol using our
framework.

1. Introduction

Security proofs of cryptographic protocols are known to
be difficult and work towards the automation of such proofs
has started soon after the first protocols were developed.
From the beginning, the actual cryptographic operations
used in the protocols were idealized into so-called Dolev-
Yao models, following [16]; see [36] for an overview. This
idealization simplifies protocol analysis by freeing proofs
from cryptographic details such as computational restric-
tions, probabilistic behavior, and error probabilities.
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The first Dolev-Yao model with a cryptographic justi-
fication under arbitrary active attacks was introduced by
Backes, Pfitzmann, and Waidner in [6]. This model, hence-
forth called theBPW model, can be implemented in the
sense of blackbox reactive simulatability (BRSIM) by real
cryptographic systems that are secure according to standard
cryptographic definitions. The security notion of BRSIM
means that one system (here, the cryptographic realization)
can be plugged into arbitrary protocols instead of another
system (here, the BPW model) [33, 11]; it is also called UC
for its universal composition properties. The BPW model
currently constitutes the only Dolev-Yao model that fulfills
this strong security notion, as other soundness results are
restricted to specific security properties or protocol classes.

The BPW model constitutes a deterministic, symbolic
abstraction of a comprehensive set of cryptographic opera-
tions and allows one to prove the security of arbitrary proto-
cols built from these operations with respect to the crypto-
graphic definitions by means of symbolic reasoning tech-
niques. In order to relate the BPW model to a crypto-
graphic realization in the sense of BRSIM/UC, the BPW
model maintains certainnon-standard aspectscompared to
other Dolev-Yao models. For example, abstract ciphertexts
in the BPW model do not hide the length of their respective
plaintexts, a signature over a message can be transformed
by the adversary into another signature over the same mes-
sage, and the protocols built on top of the BPW model do
not directly manipulate messages, but use pointers (called
handles) to refer to the messages being manipulated. While
these aspects prevent the direct use of existing tools for
symbolic protocol analysis, they are necessary to achieve
the cryptographic soundness of the BPW model with re-
spect to the strong soundness notion of BRSIM/UC.

The complexity of the BPW model raises the follow-
ing question, whose answer was initially unclear to us: Is
it possible to reason efficiently about protocols based on
this model using a theorem prover, without sacrificing the



strong soundness guarantees? The main obstacle for an ef-
ficient mechanization is the complex state space, which in-
cludes message buffers, references to messages via handles,
and the representation of messages themselves by a pointer-
like data structure. Standard techniques for reasoning about
state-based systems, such as Hoare logics and weakest pre-
condition calculi, scale poorly to complex state spaces and
pointer structures. It is helpful to distinguish two types of
complexity in the BPW model: the inherent complexity
required for BRSIM/UC cryptographic soundness, which
cannot be eliminated, and the complexity due to particu-
lar modeling choices. Fortunately, we are able to reduce the
latter kind of complexity, by employing a series of carefully
chosen abstractions, to the point where we can positively
answer the question raised above.

Our Contributions Our main contribution is a simplified
and more abstract version of the BPW model and its for-
malization in the theorem prover Isabelle/HOL [31], the
higher-order logic (HOL) [13] instance of the generic logi-
cal framework Isabelle. Our Isabelle/HOL theories are con-
servative extensions of HOL (i.e., the proofs rely only on
the axioms of HOL) and constitute the first framework that
combines machine-assisted symbolic reasoning about secu-
rity protocols with the strong cryptographic soundness pro-
vided by the notion of BRSIM/UC.

This contribution has two parts. First, to support rea-
soning about state-based programs, we have embedded sev-
eral program logics in Isabelle/HOL, including a weak-
est precondition calculus (WPC) and a Hoare logic for
pre-/postcondition properties, and a linear-time temporal
logic (LTL) for temporal properties. Using standard tech-
niques, proofs of temporal properties are reduced to pre-
/postcondition assertions in Hoare logic, which can in
turn be reduced to the WPC. These embeddings constitute
general-purpose reasoning tools, which can be reused in
other contexts. Our generalproof strategyis to employ the
WPC, which uses rewriting to efficiently compute weak-
est preconditions, to automatically prove lemmas about the
lower layers of our model (e.g., the functions of the BPW
model). These lemmas are then combined in Hoare logic
proofs at the higher layers (e.g., the protocol). Second,
we have produced two formalizations of the BPW model,
which gradually abstract features of the original model,
while both faithfully represent its non-standard aspects.

In the first formalization, called theindexed BPW model,
the component and communication model are abstracted
into a light-weight, shallow embedding in Isabelle/HOL:
machines and message buffers are simplified into state-
manipulating components providing a set of interface func-
tions and communicating by function invocation. However,
the data representation closely follows the original BPW
version: messages are represented by pointer-like struc-

tures with sharing of submessages between different pro-
tocol participants. Unfortunately, this abstraction step is in-
sufficient in itself; our first attempt to prove the security
of the Needham-Schroeder-Lowe protocol based on the in-
dexed BPW model in Isabelle/HOL failed, essentially due
to a lack of abstraction in both the model (complex pointer
structures) and the specifications (complicated invariants).
As a consequence, the WPC was either too slow to be use-
ful or produced very large expressions that were difficult to
understand. Moreover, they could not be adequately simpli-
fied, since an appropriate equational theory was not avail-
able. Thus, we had to resort to Hoare logic reasoning at low
layers of the model, which required substantial user inter-
action and complicated intermediate preconditions.

In our second formalization, called theterm-based BPW
model, we address these problems by replacing the pointer-
like messages with a simple inductive data type of mes-
sages. Since the new representation eliminates message
sharing between users and, moreover, handles asymmetric
key pairs and message lengths differently, its equivalence
with the indexed model is non-trivial. To ensure the cor-
rectness of this step, we have proved in Isabelle/HOL that
our two formalizations are strongly bisimilar. Since bisim-
ilarity preserves BRSIM/UC, it is safe to replace the in-
dexed model with the term-based model in protocol security
proofs. The term-based model makes efficient automatic
reasoning possible in two ways. First, it provides mes-
sages with a simple inductive structure that enables stan-
dard structural induction. This was not possible in the in-
dexed model. Second, it enables concise property speci-
fications using functional DY-like closure operators, such
as Paulson’sanalyzeand parts [32], which close a set of
messages under cryptographically accessible submessages
and all submessages, respectively. In fact, we were able to
transfer Paulson’s corresponding Isabelle/HOL theories to
this term-based setting. The equational theories associated
with these operators enable the efficient use of Isabelle’s
term rewriter for simplification. Overall, the combination of
these two enhancements dramatically improves the usabil-
ity and performance of the WPC on the term-based BPW
model when compared to the indexed version.

Our second contribution is the specification and veri-
fication of the security of the Needham-Schroeder-Lowe
(NSL) protocol in the term-based BPW model (and thus,
by BRSIM/UC, also for the actual cryptographic imple-
mentation of the protocol). We consider this a proof of
concept for our formalization and proof techniques. Note
in this regard that [3, 37] have presented sound paper-and-
pencil proofs of the NSL protocol. Moreover, sound, tool-
supported proofs have been given by [28] and [12] (exploit-
ing a soundness result without/with compositionality guar-
antees for specific protocol classes, respectively). How-
ever, our proof demonstrates that relatively efficient cryp-



tographically sound proofs in the sense of BRSIM/UC are
indeed possible and thereby provides evidence that our for-
mal framework can be successfully applied to reason about
many commonly studied protocols.

Other Related Work Early work on linking Dolev-Yao-
style symbolic models and cryptography [1, 17, 22] only
considered passive attacks, and therefore cannot make gen-
eral statements about protocols. The same holds for [18].

The security notion of BRSIM was first defined generally
in [33], based on simulatability definitions for secure (one-
step) function evaluation. It was extended in [34, 11], the
latter with somewhat different details and called UC (uni-
versal composability), and has been widely applied to prove
individual cryptographic systems secure and to derive gen-
eral theoretical results. In particular, BRSIM/UC allows
for plugging one system into arbitrary protocols instead of
another system while retaining essentially arbitrary security
properties [33, 11, 5].

A cryptographic justification of a Dolev-Yao model in
the sense of BRSIM/UC was first given in [6] with ex-
tensions in [7, 4]. Later papers [28, 23, 12] considered
to what extent restrictions to weaker security properties
or less general protocol classes allow simplifications com-
pared with [6]: Laud [23] has presented cryptographic foun-
dations for a Dolev-Yao model of symmetric encryption but
specific to certain confidentiality properties where the sur-
rounding protocols are restricted to straight-line programs.
Warinschi et al. [28, 14] have presented cryptographic un-
derpinnings for a Dolev-Yao model of public-key encryp-
tion, yet for a restricted class of protocols and protocol prop-
erties that can be analyzed using this primitive. Baudet,
Cortier, and Kremer [8] have established the soundness of
specific classes of equational theories in a Dolev-Yao model
under passive attacks.We stress that the imposed restrictions
on protocol classes or protocol properties in the aforemen-
tioned works eliminated at least some of the complications
that are necessary if soundness in the stronger sense of BR-
SIM/UC is desired, and that these Dolev-Yao models are
thus accessible to existing verification tools without major
adaptations.

Canetti and Herzog [12] have recently shown that a
Dolev-Yao-style symbolic analysis can be conducted using
the framework of universal composability for a restricted
class of protocols, namely mutual authentication and key
exchange protocols with the additional constraint that the
protocols must be expressible as loop-free programs using
public-key encryption as their only cryptographic operation.
Concentrating on this specific protocol class permitted the
direct use of the automatic verification tool ProVerif [9]
to symbolically analyze secrecy aspects of the Needham-
Schroeder-Lowe protocol by considering the exchanged
nonces as secret keys. This work is the closest to ours

since it achieves universal composition guarantees (for the
case where this protocol class is composed into larger proto-
cols), in contrast to all of the aforementioned results. How-
ever, the results are restricted to the functionalities noted
above and hence do not provide soundness guarantees of a
Dolev-Yao model in the sense of BRSIM/UC (which guar-
antees soundness for composing arbitrary protocols). Ex-
tending their work to achieve this stronger notion would
require augmenting their model with at least some of the
non-standard aspects of the BPW model, thus raising the
need for a tailored verification framework as well.

Laud [24] has designed a type system for proving secrecy
aspects of security protocols based on the BPW model. He
shows that if a protocol is typable in his system, then the
protocols keeps its payload inputs cryptographically secret.
The proof of this fact exploits the BRSIM/UC soundness
result of [6, 4] for carrying over symbolic proofs of secrecy
in the BPW model to the actual cryptographic realization.
Laud’s type system has not yet been implemented.

Efforts are also under way to formulate syntactic calculi
with a probabilistic, polynomial-time semantics, including
approaches based on process algebra [29, 25], security log-
ics [20, 15] and cryptographic games [10]. In particular,
Datta et al. [15] have proposed a promising logical deduc-
tion system to prove computational security properties. We
are not aware of any implementations of these frameworks,
except for Blanchet’s [10], who has recently presented an
automated tool for proving secrecy properties of security
protocols based on transforming cryptographic games.

Organization In Sect. 2, we briefly review the BPW
model and describe the component and communication
model underlying its Isabelle/HOL implementation. We in-
troduce our formalization of the indexed and the term-based
BPW models in Sect. 3 and sketch the proof of their strong
bisimilarity. In Sect. 4, we define generic protocols and
their composition with the BPW model in Isabelle. This
yields a flexible template that can be instantiated with con-
crete protocol specifications. We specify the NSL protocol
and sketch its proof of security in Sect. 5. Finally, in Sect. 6,
we draw conclusions and discuss future work.

2. BPW Model and Formalization Overview

In this section, we review the BPW model and discuss
the principal abstractions and design choices that we made
in its formalization. The cryptographic realization of the
BPW model and details from the proof of cryptographic
soundness are not necessary for understanding the contribu-
tions of this paper and can be found in the original papers.



2.1. BPW Model

The BPW model constitutes a library of cryptographic
operations, which keeps track of, and controls access to, the
terms known by each party. The BPW model provideslo-
cal functionsfor operating on terms andsend functionsfor
exchanging terms between an arbitrary, but fixed, number
N of users and the adversary. Some of these functions re-
flect distinguished attack capabilities and are only offered
to the adversary. At the interface, terms are referred to indi-
rectly byhandles(also calledpointersor local nameselse-
where). This indirection is necessary for the cryptographic
soundness proof of the BPW model in the strong sense of
BRSIM/UC, since the BPW model and its cryptographic re-
alization work with vastly different objects: abstract terms
and bitstrings, respectively. Handles present these syntac-
tically different objects in a uniform manner to the users
and hence avoid that the BPW model can be trivially distin-
guished from its realization due to different interfaces.
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Figure 1. Components and control flow

To analyze a security protocol based on the BPW model,
one reasons about a system where each userui runs its own
protocol componentPi, which is implemented by invoking
the respective functions of the BPW model (Fig. 1). Each
protocol component maintains its own local state (e.g., to
store the nonces it has generated) and provides interfaces
for communicating with its user and with the BPW model.
Fig. 1 depicts some typical control flows through the sys-
tem. These flows can be classified according to whether
they are initiated by a user or the adversary. First, a user
may give input to initiate the protocol, which then con-
structs a term corresponding to the first protocol message
through a series of local interactions with the BPW model.
Local means that term construction does not involve any
interaction with the adversary; hence terms can be arbi-
trarily nested without revealing their structure or the con-
tents of subterms to the adversary during construction. The
term constructed may then be sent to the network (i.e., the
adversary). Second, the adversary may decompose terms
and construct new ones by local interactions with the BPW
model, and send terms to users. The BPW model delivers

terms sent by the adversary to the protocol component of the
respective user, where they are then processed according to
the protocol description.

The compositionality and property preservation theo-
rems of BRSIM/UC imply that a large variety of protocol
security properties carry over from the symbolic abstraction
to the cryptographic implementation.

2.2. Isabelle/HOL Preliminaries

Isabelle is a generic theorem prover, in which a variety
of logics have been implemented. We use an implemen-
tation of higher-order logic (HOL), which can roughly be
seen as logic on top of functional programming. We will
assume that the reader has basic familiarity with both logic
and typed functional programming. Proof automation in Is-
abelle is supported by a powerful simplifier, which performs
term rewriting, and a tableau reasoner. These are invoked in
isolation or in combination using different proof tactics.

In Isabelle notation,t :: T denotes a termt of type T.
The expressionc ≡ t defines the constantc as the termt .
A functional constantf can be defined byf x ≡ t instead
of f ≡ λ x. t . Definitions constitute the principal mech-
anism for producing conservative extensions of HOL. Type
variables are identified by a leading apostrophe, as in ’a.
Given types ’a and ’b, ’ a ⇒ ’ b is the type of (total) func-
tions from ’a to ’b, ’ a × ’b is the product type, and ’a set
is the type of sets of elements of type ’a. The typeunit
contains a single element. There are several mechanisms to
define new types. Adatatype definition introduces an in-
ductive data type. For example, the option type is defined by
datatype ’a option = None| Some’a, which is polymor-
phic in the type variable ’a. This definition also introduces
the constructorsNone :: ’ a option andSome:: ’ a ⇒ ’ a
option. Pattern matching is used to decompose elements

of inductive types. For example, the expressioncase o of
None⇒ t | Some x⇒ f x evaluates tot if o evaluates to
Noneand tof x if o evaluates toSome x. Functions of type
’ a ⇒ ’ b option are used to model partial functions from
’ a to ’b. The declarationtypes T1 = T2merely introduces
a new name for the typeT2, possibly with parameters, as in
types ’a ⇀ ’ b = ’ a ⇒ ’ b option.

Isabelle/HOL includes a package supporting record
types. For example,record point = x :: nat y:: natdefines
a record type for points, of which the record(|x=1, y=2|)
is an element. Records are extensible:record cpoint =
point + c :: color extends points with a color field. Be-

hind the scenes, the definition of a record typer creates
a record scheme ’a r scheme, which extends the declared
type r with a polymorphic fieldmoreof type ’a. The typer
is derived asunit r scheme. Record extensibility is based
on the instantiation of the record scheme parameter ’a with
one or more additional fields. Important for our formal-



ization is that all extensions ofr are compatible with the
schemer scheme. For example,cpoint is compatible with
’ a point scheme(but not withpoint).

2.3. Overview of the Formalization

We now summarize the abstraction steps and design
choices that we have employed to simplify the component
and communication model as well as the operational seman-
tics underlying the BPW model. These simplifications en-
able a sound, light-weight formalization of the BPW model,
the protocols, and their properties.

Component and Communication Model From a typed
perspective, the BPW model and the protocol components
can be represented by deterministic machines with transi-
tion functions of typeΣ× I ⇒ (O option) × Σ, whereΣ
is the machine’s state space andI andO are inputs and out-
puts, respectively. The typesI and O as can be seen as
(non-recursive) inductive data types, where each construc-
tor corresponds to a port name and its arguments correspond
to the values communicated over that port. A state transition
either terminates normally and produces an output value of
typeO or results in an exception (error condition) in which
case there is no output. The general communication frame-
work underlying the BPW model stores messages in transit
in so-called buffers, until the messages are scheduled by
the designated scheduler for the respective connection. The
most important special case is that machines are in charge
of their outgoing connections themselves and schedule out-
going messages immediately, i.e., messages are passed on
directly from sender to recipient. Since this is the case for
the communication between the BPW model and the proto-
col components, these buffers can be safely omitted in the
formalization leading to a substantial simplification.

Essentially, each machine transition can be seen as a
function call (with parameters passed at some input port)
and producing either a return value (at some output port)
or an exception. Therefore, our formalization replaces the
machine description of the BPW model by components con-
sisting of a set of interface functions manipulating a com-
mon state, where communication over ports is replaced by
function calls. Since state and exceptions play a central
role in the BPW model, they are handled by appropriate ab-
stractions in our formalization. In a purely functional con-
text, such as Isabelle/HOL, such abstractions are provided
by monads [30]. Generally speaking, a monadM is a type
constructor equipped with unit and composition operations,
enjoying unit and associativity properties, respectively. A
monadic interpretation of an operation with input typeAand
output typeB has the function typeA⇒ B M. Different
monads can represent a wide range of computational phe-
nomena including state, exceptions, and non-determinism.

Here, we use the deterministic state-exception monadS:

−− monad type definitions
datatype ’a result = Exception | Value ’ a
types (’ a,’ s) S = ’ s ⇒ ’ a result × ’s

−− monad unit
return :: ’ a ⇒ (’ a, ’ s) S
return a ≡ λs. (Value a, s)

−− monad composition
bind :: (’ a,’ s) S⇒ (’ a ⇒ (’ b,’ s) S) ⇒ (’ b,’ s) S
bind m k≡ λs.

case m sof (a, t ) ⇒
case a of

Exception⇒ (Exception, t )
| Value x⇒ k x t

Note that the monadS is polymorphic in both the type of
values and the type of states. The type of results is iso-
morphic to the option type. The monad unit (calledreturn
here) embeds a value in the monad without transforming the
state. The monad compositionbind is a sequential compo-
sition, which passes results (values or exceptions) between
function calls. More precisely,bind m kfirst evaluatesm
on the initial states, producing a resulta and a successor
statet . If m produces an exception then so doesbind m k.
Otherwise, ifmreturns a valuex thenk is evaluated in statet
with input x. We writedo x← m; k x instead ofbind m k.
There are also monad-specific operations for state assign-
ment and for throwing and catching exceptions. The set of
all these monad operations forms a simple imperative lan-
guage that we use to formulate our models.

Runs and observations In the general modeling frame-
work underlying the BPW model, a system run is defined as
a sequence of local transitions of the form (M, s, i , o, t ),
whereM names the machine making the transition from the
local states and the inputi to the local statet , and produc-
ing the outputo (if any). This corresponds to asmall step
semantics, where the transitions of all individual machines
are considered. Theuser viewis derived by projecting runs
on the transitions performed by the honest users. Our for-
malization uses abig step semantics, where internal transi-
tions and communication are hidden. A transition consists
of a pair of states (s, t ), where t is reached froms by
calling an interface function. Formally, the transition rela-
tion for a monadic functionf :: A⇒ (B, S) M is defined
by tr f ≡ {(s, t ) | ∃ r a. f a s = (r , t )}. The transi-
tion relation of a component is the union of the relations
derived from the components’ interface functions. A run
is a sequence of states arising from component transitions,
triggered by external input. The big step semantics arises
naturally given our procedural view of communication, and
it clearly preserves BRSIM/UC since system-internal tran-
sitions do not affect the user view. Most importantly, a



big step semantics facilitates proofs, since it supports the
top-down case analysis of the system interface functions in
invariant proofs, without the need to show that the invari-
ant is preserved by each internal transition. Another design
choice leading to simpler proofs is that we do not model
user I/O events as part of each transition; instead we record
I/O traces in a global history variable, which is extended
with every I/O event. This can be seen as an observer com-
ponent that logs all communication with the users. The ad-
vantage of having the entire trace available in each state is
that precedence properties with reference to the past can be
expressed as simple invariants (sets of states).

Polynomial Bounds In the definition of reactive sim-
ulatability, users and the adversary constitute probabilis-
tic, polynomially-bounded machines. In our formalization,
we model them by universal quantification over all possi-
ble inputs, i.e., a single unbounded machine which non-
deterministically produces arbitrary input to the system in
each transition. This safely over-approximates the original
setting, since the unbounded machine can (weakly) simulate
any set of probabilistic, polynomially-bounded users and
the adversary. Moreover, the BPW model includes polyno-
mial bounds on the length of handled messages and on the
number of steps that each machine can perform. We have
formalized the enforcement of the message-length bound
using an uninterpreted function of the security parameter
as the bound. This comprises, in particular, all polynomial
functions and thus constitutes a safe over-approximation.
Step bounds are dealt with similarly.

Program Logics and Verification Tools We conclude
this section with a brief overview of the specification and
proof machinery that we have constructed for verifying pro-
tocol properties. While the present paper concentrates on
the modelingof the BPW model in Isabelle/HOL, a com-
panion paper will be devoted to proof tools and techniques.
We use several program logics and proof systems to spec-
ify and verify security properties: first, a weakest precondi-
tion calculus (WPC) based on Pitts’ evaluation logic [35]
and a Hoare logic [19] on top of it, both tailored to our
state-exception monad and, second, a linear-time temporal
logic (LTL) to specify temporal behavior such as invariants
or precedence properties [26]. We have derived a set of
proof rules, similar to those of [27], to reduce LTL prop-
erties to pre-/postcondition statements in Hoare logic, i.e.,
Hoare triples. We prove these Hoare triples by using the
rules of Hoare logic or by unfolding them to statements of
the WPC. The WPC allows us to automate proofs to a large
extent, whereas the Hoare logic gives us manual control,
when automation fails. These logics and tools are problem-
independent and can be reused in different contexts.

3. Formalization of the BPW Model

Building on the simplified modeling framework outlined
in Sect. 2.3, we present two formalizations of the BPW
model in Isabelle/HOL. The first one, called theindexed
BPW model, closely adheres to the original data represen-
tation of the BPW model. The second one, called theterm-
based BPW model, abstracts the representation of messages
to inductively defined terms. Finally, we describe the bisim-
ulation relation used in the proof of their equivalence. Both
versions share the types ofpartiesandknowledge maps:

datatype party = User user | Adv
types ’a kmap= party ⇒ hnd⇀ ’ a

Here, user denotes the type of honest users, which is iso-
morphic to the set{1..N}, andhnd is the type of handles,
which is isomorphic to the set of natural numbers. Knowl-
edge maps keep track of who knows what. They also serve
as an access control mechanism by mediating between the
handles at the interface and the internal representation of
messages (of generic type ’a).

3.1. The Indexed BPW Model

Our first formalization of the BPW model remains close
to the original BPW model by using a pointer-like structure
to represent messages. The state consists of a database stor-
ing messages, which are referred to by indices (of typeind,
isomorphic to the natural numbers), together with a knowl-
edge map instantiated to indices.

record ’d iLibState =
db :: ind ⇒ ’ d entry −− the database
knowsI :: ind kmap −− knowledge map

The database can be seen as a heap where entries are allo-
cated. The knowledge map records which entries are known
by which parties. We say that a database index isdefined,
if it is known by some party. Database entries have a con-
tent and a length field. Our presentation covers public-key
encryption, but omits signatures for brevity.

datatype ’d content=
iNonce −− nonce
| iGarbage −− garbage
| iPke ind −− public encryption key
| iSke −− private encryption key
| iData ’ d −− payload data
| iPair ind ind −− pair
| iEncv ind ind −− valid ciphertext
| iEnci ind −− invalid ciphertext

record ’d entry =
cont :: ’ d content −− content
len :: nat −− length of entry



Elements of the data type ’d contentcorrespond to mes-
sage constructors, polymorphic in the type ’d of payload
messages, which depends on the application. Constructor
arguments of typeind point to other entries in the database
corresponding to submessages. For example, in the term
iEncv pki mi, which represents a valid encryption, the first
argument points to the public key used and the second to
the message being encrypted. Also, each public key points
to the matching secret key of the key pair. In contrast to
commonly used Dolev-Yao models, our adversary may cre-
ate garbage entries (constructoriGarbage) or invalid cipher-
texts (constructoriEnci). In a well-formed database, each
defined index determines a directed acyclic graph, the in-
dexed BPW model representation of amessage. We call
payload data and pairsnon-cryptographicmessages and all
otherscryptographicmessages. The length field in each en-
try enables the length leakage to the adversary and is used
to enforce a bound on the message length.

The BPW model interface functions manipulate the
knowledge map and the database. As examples of local
interface functions, the main operations for public key en-
cryption have the following types:

genenckeypairI ::
party ⇒ (hnd× hnd, (’ d, ’ s) iLibStatescheme) S

encryptI, decryptI ::
party ⇒ hnd⇒ hnd⇒ (hnd, (’ d, ’ s) iLibStatescheme) S

The function genenckeypairI returns a public/secret key
pair, encryptI takes a public key and a cleartext and returns
the ciphertext, anddecryptI takes a secret key and a cipher-
text and returns a cleartext. Message arguments and results
are referred to by handles. If some argument is invalid, an
exception is raised. Note that these functions operate on the
record scheme (’d, ’ s) iLibStateschemeinstead of the
plain state record ’d iLibState. Here, ’s stands for future
extensions of the state, for example, with the protocol state
(Sect. 4). By using extensible records, all invariants proved
about the BPW model automatically carry over to all future
extensions of the state without any explicit lifting. We apply
the same technique to the term-based BPW model.

One of the main differences between this model and
other Dolev-Yao models is that each encryption of a given
message with the same public key (both referred to by han-
dles) results in a different ciphertext, that is, a fresh database
entry. This reflects the fact that secure encryption is neces-
sarily probabilistic and shows the role of indices in model-
ing idealized randomness. In fact, all functions constructing
cryptographic messages, including explicit key generation,
produce fresh database entries with each invocation. The
situation is different for non-cryptographic messages, which
are allocated only once and are shared between users. An-
other important difference with other Dolev-Yao models is
that the adversary (but not honest users) can learn the length

of the cleartext underlying a ciphertext (via a separate func-
tion adv parse, not shown here), thus modeling a length-
revealing crypto system.

We have proved three basic invariants of the indexed
BPW model, which are needed in the bisimulation proof
(Sect. 3.3) and express well-definedness conditions: the
knowledge map has a finite domain for each user and it is
injective on that domain, and the arguments of entries at
defined indices are themselves defined.

With respect to the original BPW model, we have made
a number of simple abstractions in our formalization. First,
we have factored out the access control lists in the entries
of the original version into our isomorphic representation
using knowledge maps, thus isolating a common element
of our two formalizations. Second, we have replaced lists
by pairs, without loss of generality. Pairs are sufficient for
modeling concrete protocols and, because they are not re-
cursively defined, simplify reasoning by obviating the need
for certain inductive arguments. Third, we have abstracted
the allocation of new objects, such as indices and handles,
from a counting scheme to an arbitrary (but still determinis-
tic) allocation scheme1. As a consequence, public key pairs
are linked via an explicit pointer from the public to the se-
cret key, instead of allocating them at successive indices.
Again, this abstraction pays off by simplifying reasoning:
an extra invariant making the link between key pairs explicit
becomes obsolete.

As explained in the introduction, these abstractions
turned out to be insufficient for a practically useful auto-
mated verification framework. The main problems arose
from the lack of an inductive message structure supported
by standard structural induction and from complicated ad
hoc property specifications expressed without subterm and
knowledge derivation operators (such as Paulson’sparts
and analyze[32]). Even though such operators could be
defined in the indexed model, the fact that messages in this
model do not exist independently of the state would com-
plicate their definition and the derivation and application
of the associated equational theories. These problems are
addressed by our second, term-based formalization of the
BPW model.

3.2. The Term-Based BPW Model

Fortunately, the sharing of messages between different
users in the indexed BPW model is inessential and can be
eliminated. A more abstract representation of messages can
be obtained using an inductive data type of messages. Is-
abelle automatically generates an induction scheme for each
inductive data type. Again, we omit signatures for the sake
of brevity.

1We use Hilbert’sε-operator, whereεx. x 6∈ A denotes some freshx
not inA, if there is one, and an arbitrary element otherwise.



datatype ’d msg=
mNonce tag −− nonce
| mGarbage tag len −− adversary garbage
| mPke key −− public key
| mSke key −− private key
| mData’d −− data item
| mPair (’ d msg) (’ d msg) −− pair of messages
| mEncv tag key(’ d msg) −− valid ciphertext
| mEnci tag key len −− invalid ciphertext

This data-type definition replaces the previous index argu-
ments in the content fields of database entries by recursive
message arguments. There are two other notable changes in
moving to this representation. First, the role played by in-
dices in allocating fresh database entries for cryptographic
messages is taken by the elements of a new, but isomor-
phic, type tag, which can be thought of as an (abstrac-
tion of) random coins. The typekey is just another name
for tag. Matching key pairs are then simply those of the
form (mPke k, mSke k). Instead of replacing the first argu-
ment of the encryption constructors by a recursive message
argument, we directly record the corresponding key, thus
avoiding unnecessary well-formedness conditions on mes-
sages. Second, we now determine the length of messages
by a partially interpreted recursive functionlen ofM :: ’ d
msg⇒ len, which allows us to remove redundant length in-
formation from the state. Length fields are still required for
garbage and invalid ciphertexts, as the adversary can choose
an arbitrary length for these two atomic message types.

This abstraction step substantially simplifies the struc-
ture of states by eliminating the database and (largely) the
length fields: a state of the term-based BPW model simply
consists of a knowledge map storing messages:

record ’d mLibState= knowsM:: ’ d msg kmap

This economy of state variables, together with our ability
to reason inductively about messages, leads to a dramatic
improvement in proof automation.

The second substantial improvement, which leads to
more concise specifications and improved proof automa-
tion, stems from adapting to our setting the closure oper-
ators parts and analyzeand their equational theories de-
veloped by Paulson [32]. The termparts H denotes the
closure of the set of messagesH under all submessages,
whereasanalyze HclosesH under all cryptographically ac-
cessible submessages. Hence, the expressionanalyze (ran
(knowsM s u)) denotes the set of messages that the partyu

can derive from his knowledge in states (ran f denotes the
range of the partial functionf). Using analyzeand parts,
we define secrecy of a messagem as follows:

secret :: (’ a, ’ b) mLibStatescheme⇒
’ a msg⇒ party set⇒ bool

secret s m U≡ ∀ u. parts {m} = {m} ∧
m∈ analyze(ran (knowsM s u) ∪ ran (knowsM s Adv))
−→ u ∈ U

Without the termran (knowsM s Adv) denoting the adver-
sary knowledge the proposition (secret s m U) means that
in states messagem is a secret shared by (at most) the par-
ties in the setU . The inclusion of the adversary knowledge
strengthens the definition, which is exploited in invariant
proofs, as we will see in Sect. 5.3. Note that we require
secrets to be atomic. For the definition of non-atomic se-
crets we would need asynthesizeoperation correspond-
ing to message construction on top ofanalyze, since secrets
could possibly be built from already known messages.

3.3. Bisimulation with Indexed Model

We now establish the bisimilarity of our two formaliza-
tions of the BPW model. By this result, both versions yield
identical views to the honest users, which trivially preserves
BRSIM/UC. Due to the close correspondence described by
the bisimulation, even state-based properties can be easily
translated from the term-based to the indexed version.

The bisimulation proof shows that all pairs of inter-
face functions transform bisimilar states into bisimilar states
with identical output on all possible inputs. Since the inter-
face functions are deterministic, this is sufficient to estab-
lish a bisimulation between the two versions2. We are thus
using a shallow embedding of bisimulation: the notion of
bisimulation itself is not formalized explicitly. The message
abstraction relation

message s i2t:: ( ind × ’d msg) set

is the central element of our bisimulation relation: it as-
sociates database indices to messages and is parametrized
by a states of the indexed BPW model and a functioni2t
mapping indices to tags. The latter witnesses the fact that
tags assume the role of indices for message freshness. Note
that this relation is defined independently of the states of
the term-based BPW model. The inductive definition of
messagecontains a rule for each constructor of the type ’d
content. For example, the rule for valid ciphertexts reads:

[[ s ∈ contains i (iEncv pki mi); tg = i2t i ;
(pki , mPke k) ∈ message s i2t; (mi, m) ∈ message s i2t]]

=⇒ ( i , mEncv tg k m) ∈ message s i2t

This rule states that, at some fixed states, an indexi ab-
stracts to the ciphertext message (mEncv tg k m) if the in-
dex i contains (iEncv pki mi), the indexpki abstracts to
the public key message (mPke k), the indexmi abstracts to
messagem, and the tagtg is the image ofi under i2t . The
main property proved formessageis its functionality.

The bisimulation relation essentially consists of pairs of
states for which the domains of the knowledge maps are
identical and the message atknowsM s u h(if defined) is an
abstraction of the index atknowsI s u h.

2Formally, this can be explained as a coalgebraic bisimulation [21].



I2M :: ( ind ⇒ tag) ⇒
((’ d, ’ s) iLibStatescheme×
(’ d, ’ s) mLibStatescheme) set

I2M i2t ≡ {(s, t ). bij i2t ∧
(∀ u. dom(knowsI s u) = dom(knowsM t u)) ∧
(∀ u h i m.

knowsI s u h= Some i∧ knowsM t u h= Some m
−→ ( i , m) ∈ message i2t s) }

We have actually defined a family of relations parametrized
by a function i2t of type ind ⇒ tag, which is required to
be a bijection in order to map different database entries to
different messages. The proper bisimulation relation is the
union over all family members, i.e., the second-order prop-
erty R =

⋃
i2t . I2M i2t . Since both indices and tags are

freely allocated, but not all indices are associated with a tag
(e.g. payload data is untagged), the parameteri2t cannot
be determined statically. DefiningR as the union over all
parameters allows us to updatei2t with mappings (i , tg),
where i is a fresh index andtg is a fresh tag. Since the
resulting map must again be a bijection, we achieve this up-
date by swapping the values ofi2t at i and i2t−1(tg).

For the proof of bisimulation, we use a set of derived
proof rules similar to those of Hoare logic, but involving
two components instead of just one as for invariant proofs.
The proof relies on basic invariants proved for the indexed
and the term-based BPW model.

4. Protocol Verification Framework

Based on the term-based BPW model, we model a
generic framework for the specification and cryptographi-
cally sound verification of security protocols. Afterwards,
we instantiate this framework to the concrete protocols.

4.1. Protocols and Observer

The global state extends the BPW model state with the
local state for each protocol component and the trace ob-
served at the user interface.

record (’ i , ’ o, ’ d, ’ s) globState= ’ d mLibState+
loc :: user⇒ ’ s −− local state
trace :: (’ i , ’ o) trace −− observed user i /o trace

Our setup is polymorphic in four types: the type ’d of pay-
load data (from the BPW model), the type ’s of local states,
as well as ’i and ’o, the types of user input and output, re-
spectively. Concrete protocols later instantiate these type
parameters to concrete types.

Next, we define the interface of protocol components.
Similarly to other models (e.g. [2, 36]), we define proto-
cols in a role-based, process-oriented way by specifying the
reaction of the protocol components to user and network in-
put. Each protocol component therefore provides a user and

a network input handler. Each of these handlers may manip-
ulate the component’s local state to reflect the progress of
the current protocol sessions and may produce output either
to the user or the network (cf. Fig. 1). A protocol is then
defined as a function from users to protocol components.

datatype ’o proto out = pToUser’ o | pToNet netmsg

record (’ i , ’ o, ’ d, ’ s) proto comp=
proto userhandler :: ’ i ⇒

(’ o proto out , (’ i , ’ o, ’ d, ’ s) globState) S

proto net handler :: user⇒ hnd⇒
(’ o proto out , (’ i , ’ o, ’ d, ’ s) globState) S

types (’ i , ’ o, ’ d, ’ s) protocol =
user⇒ (’ i , ’ o, ’ d, ’ s) proto comp

Note that we do not explicitly represent protocol sessions,
we leave the handling of sessions to the protocol implemen-
tation. Typically, each protocol session is initiated and ter-
minated by explicit, observable, user I/O events, possibly
with additional user interaction in between. This user inter-
action enables the formulation of cryptographically mean-
ingful properties about user I/O traces.

The observer trace is a history variable, where all user
I/O events are recorded. Its type is a list of pairs of a user
name and an input or output event:

datatype (’ i , ’ o) uio = uIn ’ i | uOut ’ o −− user i /o
types (’ i , ’ o) trace = (user × (’ i , ’ o) uio) list

The observer has a single interface functionlog, which sim-
ply adds an I/O event to the trace.

4.2. The Complete System

We compose the BPW model with the protocol and the
observer, yielding the complete system. This system has
two types of interface functions: the system user and net-
work handlers and the local functions provided by the BPW
model to the adversary. We restrict our presentation to the
system user and network handlers, whose types are:

sysuserhandler :: (’ i , ’ o, ’ d, ’ s) protocol ⇒
user⇒ ’ i ⇒ (’ o sysout , (’ i , ’ o, ’ d, ’ s) globState) S

sysnet handler :: (’ i , ’ o, ’ d, ’ s) protocol ⇒
netmsg⇒ (’ o sysout , (’ i , ’ o, ’ d, ’ s) globState) S

Both handlers produce a system output of type ’o sysout,
which is just the system-level version of type ’o proto out.
The user handler takes an input from the user (of type ’i ),
while the network handler takes a network message as an
argument. Network messages are triples (u, v, h), where
u is the supposed sender,v is the receiver, andh is a message
handle. The BPW model provides two send functions, one
for users and one for the adversary:



sendi , adv sendi ::
netmsg⇒ (netmsg, (’ d, ’ s) mLibStatescheme) S

By invoking sendi (u, v, uh), the useru sends the mes-
sage denoted by his handleuh to the adversary (intended
for userv). The result is a network message (u, v, ah),
whereah is the adversary’s handle for the same message.
Such a handle is created if it does not exist yet. The call
adv sendi (u, v, ah) has a similar effect, but this time
the message is sent from the adversary to userv. Note that
the adversary is free to falsify the nameu of the originator.
This gives the adversary complete control over the network,
as in other Dolev-Yao models.

In order to illustrate the message flow through the system
(cf. Fig. 1), let us consider the system network handler:

sysnet handler proto anm≡
do (v, u, mh)← adv sendi anm; −− receive msg
do pout← proto net handler (proto u) v mh;
case poutof

pToUser uom⇒
do log (u, uOut uom); −− log output
return (sToUser u uom) −− output to user

| pToNet unm⇒
do anm’ ← sendi unm; −− send reply
return (sToNet anm’)

Its input is a network message from the adversary, which he
sends to the receiveru using the send functionadv sendi .
The resulting network message contains a message foru,
which is fed into the protocol network handler of the re-
ceiver’s protocol component. The output of the handler
is either intended for the user, in which case the output is
logged by the observer and returned to the user, or it is a
reply message that is sent back to the network (adversary)
via the user send functionsendi .

When specifying a concrete protocol in this framework,
we need to provide the user and network handlers for our
protocol. This determines concrete types for user I/O, pay-
load data, and the local state of protocol components, in-
stantiating the type variables ’i , ’ o, ’ d, and ’s. Once this is
done, we are ready to specify and verify protocol properties.

5. A Cryptographically Sound Proof of NSL

We model and verify the well-known three message ver-
sion of the NSL protocol:

NSL1. u→ v : {Nu, u}Kv

NSL2. v → u : {Nu, Nv, v}Ku

NSL3. u→ v : {Nv}Kv

Here, we assume that each user has generated an asymmet-
ric key pair and that the authentic public keys of all users
are known to every party. Below, we introduce our formal
specification of the NSL protocol. Afterwards, we describe

the invariants we have verified and sketch the proof of one
such invariant. Finally, we discuss the benefits gained from
the abstractions we have made.

5.1. Protocol specification

We specify the NSL protocol in our framework by defin-
ing a protocol component for each user. Each such compo-
nentPu records the set of nonces it generates in protocol
sessions with userv in the local variablenonces, under the
name of userv:

record ustate = nonces :: user⇒ hnd set

We can initiate a protocol run by indicating the name of the
responder. The protocol is terminated by returning the name
of the initiator to the responder. Thus, both user input and
output are of typeuser. Moreover, the only payload data
used in the NSL protocol are user names. Therefore, we
use an abbreviation for the states of the protocol:

types NSLstate= (user, user, user, ustate) globState

The NSL protocol is then specified by instantiating the user
and network handlers:

NeedhamSchroederLowe::
(user, user, user, ustate) protocol

NeedhamSchroederLowe u≡ (|
proto userhandler = λv. −− initiate with v

do enforceb (u 6= v); −− no talking to self
mk msg1 u v, −− 1st message

proto net handler = λv emh. −− reply to messages
do enforceb (u 6= v); −− no talking to self
do pm← parsemsg u v emh;
case pmof

msg1 vnh vid⇒ mk msg2 u v vnh −− 2nd msg
| msg2 unh vnh vid⇒ mk msg3 u v vnh−− 3rd msg
| msg3 vnh⇒ return (pToUser v) |) −− terminate

The user handler for useru initiates a protocol session with
userv by constructing the first protocol message. This can
be done any time and thus there is no limit on the num-
ber of possible sessions. The network handler takes the
namev of the sender and a message handleemh, parses
the message and, depending on the result, replies by either
producing a reply message or by terminating the protocol,
indicating which user has (supposedly) been authenticated.
Besides parsing messages, the functionparsemsgalso en-
sures correct message sequencing by verifying that all nec-
essary conditions for replying to an incoming message are
satisfied. For example, after successfully parsing a message
of format NSL2, this function checks that the nonce in the
first message component was indeed generated for a session
with the user indicated in the third message field and raises
an exception otherwise. Theenforcebstatements throw an
exception if a protocol component tries to talk to itself.



As an example, we show the definition ofmk msg1 u v,
which constructs the first protocol message (NSL1):

mk msg1:: user⇒ user⇒ (user protoout , NSLstate) S
mk msg1 u v≡

do nh← genadd nonce u v; −− fresh nonce
do uih ← store (User u) u;
do mh← pair (User u) (nh, uih)
do emh← encrypt(User u) (pke (User u) v) mh;
return (pToNet(u, v, emh)) −− send 1st msg

In this definition, pke (User u) v denotes the handle by
which useru refers to userv’s public keymPke(ukey v).
The statementgenadd nonce u vgenerates a fresh nonce
and adds it tononces( loc s u) v, i.e. the nonces used by
useru in sessions with userv. The subsequent calls incre-
mentally construct the message.

5.2. Verified Properties

The main property we have proved is that the responder
authenticates the initiator. This is formulated as a property
of the observed user I/O trace and therefore transfers to the
cryptographic level.

authRI :: NSLstate set
authRI≡ {s. ∀ I R.

Commit R I∈ set ( trace s) ∧ I 6= R−→
Init I R ∈ set ( trace s)}

Here Init I R is a nicer syntax for (I , uIn R) andCommit
R I for (R, uOut I). We require that the initiator and re-
sponder are distinct. The observer history variabletrace
makes the entire trace of I/O events available in each state
s. To express the authentication property it is sufficient to
considerset ( trace s), the unorderedsetof I/O events at
states. The use of a history variable to record I/O traces
has the advantage of reducing temporal precedence proper-
ties with reference to the past to simple invariants (i.e. sets
of states). The actual theorem states thatauthRI is an in-
variant. This is formulated in Isabelle as the LTL property:

theorem authRI invariant: NSLtrsys|= 2(Pred authRI)

This theorem says that all states on all runs of the transi-
tion systemNSLtrsysderived from the NSL protocol sys-
tem satisfyauthRI. The proof of this invariant is based on
the auxiliary invariants listed in Fig. 2, along with their de-
pendencies.

The basic invariants correctNonceOwner and
uniqueNonceUsestate properties of the local variable
nonces: handles stored in this variable do indeed de-
note nonces and each nonce recorded in this variable is
created by a unique user for a protocol session with a
unique responder. The invariantsuniqueInitNonceand
uniqueResponseNonceexpress that the initiator nonce in
message NSL1 and the responder nonce in NSL2 uniquely

beforeM2

nonceSecrecy

uniqueInitNonce uniqueRespNonce

uniqueNonceUse

correctNonceOwner

authRI

beforeM1beforeM3beforeCommit

Figure 2. Invariants of the NSL protocol

determine all the other fields of the respective message.
Based on these invariants we can prove that the protocol
nonces remain secret (invariantnonceSecrecy) between the
protocol participants:

nonceSecrecy:: NSLstate set
nonceSecrecy≡ {s. ∀ u v n.

n ∈ Nonces s u v−→
secret s(mNonce n) {User u, User v}}

Here,Noncesis the set of nonces denoted by handles stored
in the variablenonces:

Nonces:: NSLstate⇒ user⇒ user⇒ tag set
Nonces s u v≡ {n.
∃ h. knowsM s(User u) h = Some(mNonce n) ∧

h ∈ nonces( loc s u) v}

The notion of secrecy was already defined in Sect. 3.2. Fi-
nally, the authentication propertyauthRI is derived from
the conjunction of four auxiliary invariants,beforeCommit,
beforeM3, beforeM2, and beforeM1, each of these going
one message back in the protocol (dashed line in Fig. 2).

5.3. A Typical Invariant Proof

A protocol invariant is usually proved by showing that
it is preserved by all system interface functions. As an ex-
ample, let us consider the proof ofnonceSecrecy. Here, we
focus on the most interesting points of this proof and we de-
fer the discussion of our general proof strategy to Sect. 5.4.

We proceed bottom-up by showing that the invariant is
preserved by all BPW model interface functions. Unsur-
prisingly, the most interesting cases are the send functions,
where messages are exchanged between parties. The lemma
for the user send functionsendi reads as follows:

lemma nonceSecrecysendiN:
{nSsendpre u h∩ nonceSecrecy∩
correctNonceOwner∩ finiteKnowsM}

sendi (u, v, h)
{> λx. nonceSecrecy}



This Hoare triple states that ifsendi is called in a state sat-
isfying the precondition and terminates normally, then the
resulting state again satisfiesnonceSecrecy. Note that pre-
viously proved invariants are used to strengthen the precon-
dition. The basic auxiliary invariantscorrectNonceOwner
and finiteKnowsMare sufficient to establish the preserva-
tion of nonceSecrecyby all BPW model interface functions
exceptsendi , where we need an additional precondition:

nSsendpre :: user⇒ hnd⇒ NSLstate set
nSsendpre u h≡ {s. ∀ m n w ua va.

knowsM s(User u) h = Some m−→
n ∈ Nonces s ua va−→

mNonce n∈ analyze({m} ∪
ran (knowsM s w) ∪ ran (knowsM s Adv)) −→

w∈ {User ua, User va} }

Note the similarity with the definition ofnonceSecrecy(af-
ter unfolding the definition ofsecret), which is obtained
by ignoring the third line, which fixes a messagem, and
the singleton subterm{m}. Intuitively, this predicate states
that the messagem to be sent (and referred to by the handle
h) can be added to the knowledge of the adversary without
compromising the secrecy of any protocol nonces. This pre-
condition is formulated in a largely protocol-independent
manner. It remains to show that our concrete protocol mes-
sages satisfy this condition.

Interestingly, the strengthening of the definition of se-
crecy obtained by adding the adversary knowledge under
theanalyzeoperator is essential. It has the effect that nonce
secrecy is trivially preserved by the adversary’s send func-
tion adv sendi . Without this strengthening, the predicate
nSsendpre would arise as a precondition ofadv sendi
and make that case unprovable, since we cannot control
what messages the adversary may send to users. The
strengthening shifts the precondition to the user side, where
the protocol determines which messages are sent.

Using invariants keySecrecy, uniqueInitNonce, and
uniqueRespNonce, we can indeed show that the protocol
messages satisfy the preconditionnSsendpre (the BPW-
model invariantkeySecrecyguarantees that secret keys do
not leak to the adversary). For example, for the preservation
of nonceSecrecyby the system user handler, we have proved
that proto userhandler establishes a postcondition stating
that message NSL1 has been constructed with a fresh nonce.
Together with the invariantkeySecrecy, this fact implies
nSsendpre for message NSL1. The cases for messages
NSL2 and NSL3 are similar, but require the additional use
of uniqueInitNonceanduniqueRespNonce, respectively.

The preservation results on the BPW-model level are
easily lifted to protocol functions not callingsendi (e.g.
mk msg1) by repeated application of the Hoare proof rule
for sequential composition, “pulling” the invariant over the
individual function calls.

5.4. Discussion and Evaluation

Reasoning in the BPW model is inherently stateful and,
as originally proposed involves complex pointer-based data
structures. As observed in the introduction, our main task
in formalizing this model was to develop abstractions, proof
strategies, and supporting proof tools to allow us to reduce
this complexity and reason efficiently about the state and
the state-transitions that result from calls to the interface
functions. One of our strategies was to automate as much
reasoning as possible using the WPC. The main enabling
factors for this strategy were the model abstraction provided
by moving from the indexed to the term-based model and
the property abstraction introduced by using the operators
analyzeandparts along with their equational theories. We
now routinely use the WPC up to the level of BPW-model
interface functions and switch to Hoare logic only at the
protocol and system levels.

More precisely, we have adopted the following proof
strategy for systematically proving invariants, which we il-
lustrate using the NSL protocol and a hypothetical invariant
I as an example. We explain our three-step strategy in a
top-down manner, although we often proceed bottom-up in
practice. First, we apply a LTL proof rule to reduce the
temporal statement thatI is an NSL invariant (expressed as
NSLtrsys|= 2(Pred I)) to a set of Hoare triples of the form:

{I ∩ J} h x {> λz. I}

There is one such triple for each system interface function
h, stating thath preservesI on all inputsx. The LTL proof
rule achieving this reduction embodies an induction over
positions in system runs and uses auxiliary invariants (here
represented byJ) in order to strengthen the induction hy-
pothesis. Second, we use the rules of Hoare logic to decom-
pose these preservation statements into similar statements
about the BPW-model interface functions. However, as il-
lustrated in Sect. 5.3, the preservation of the invariantI by
BPW-model interface functionsf may require auxiliary pre-
conditions (pre f x):

{( pre f x) ∩ I ∩ J} f x {> λz. I}

We must ensure that we can derive any such auxiliary pre-
condition (pre f x) of a BPW-model interface functionf
called in a protocol handlerh from the postconditions of
functions called inh before f .3 In order to minimize the
use of ad hoc lemmas, we prove characteristic Hoare triples
for the auxiliary functions appearing in the protocol han-
dlers (such asparsemsgandmk msg1in the NSL proto-
col). These Hoare triples have only auxiliary invariants in
the precondition and a strong postcondition characterizing

3Note that since the adversary’s interface functions are also system-
level interface functions, they are not allowed to have such auxiliary pre-
conditions if I is to be system invariant.



the effect of the respective function. The idea is to col-
lect all the information we need to prove (pre f x) from
these postconditions. The difficulty of this step depends on
the number of BPW interface functions requiring auxiliary
preconditions, which are generally few (often onlysendi ).
In the third step, we prove the preservation lemmas for the
BPW-model interface functions by unfolding them into the
WPC and then applying the automatic proof tools including
the simplifier and the tableau reasoner. The former makes
heavy use of the equational theories ofanalyzeand parts.
The automatic tools may require additional lemmas about
consequences of auxiliary invariants to complete the proof.

After abstracting most of the non-inherent complexity of
the BPW model, we obtained a framework in which crypto-
graphically sound protocol verification in the sense of BR-
SIM/UC is possible. However, due to the pointer-like na-
ture of handles we are constrained to the fine-grained BPW
interface functions to handle messages in a constructor-
wise manner. This is the main remaining intrinsic com-
plexity in our model. In contrast, the complexity added
by the non-standard aspects of the cryptographic operations
(e.g. length-revealing ciphertexts, probabilistic encryption
and signature transformations) do not complicate proofs
significantly.

Paulson’s security protocol proofs in Isabelle/HOL pro-
vide a natural benchmark for our own proofs and for judg-
ing the cost of this remaining complexity. Ideally, the cost
would be zero. That is, we could construct proofs using
cryptographically sound abstractions with an effort com-
parable to that required when using the considerably sim-
pler abstractions provided by the Dolev-Yao model. For
the moment, we are still some distance from this ideal as
our proofs are roughly two orders of magnitudes larger than
Paulson’s. Whereas he uses a few lines to prove an in-
variant, we need an entire Isabelle theory of several hun-
dred lines. A similar picture arises at the global level: his
NSL proof needs roughly 3 pages (counting the automati-
cally generated Isabelle documentation), while ours occu-
pies 140 pages. However, the length of a proof is a poor
measure of its complexity. A substantial part of this dif-
ference can be attributed to the fact that we have to show
preservation of every invariant by all 17 BPW-model inter-
face functions before we can start reasoning at the protocol
level. However, as explained above, most lemmas can be
derived systematically and largely automatically using the
WPC. A typical proof script for a preservation lemma in an
invariant proof requires 2–6 lines of tactics and the varia-
tions between them are small. We think that the complexity
of the property specifications and the proofs (e.g., the in-
vention of invariants) is comparable to Paulson’s and we
are optimistic about being able to further reduce this gap in
the future.

6. Conclusion

We have developed an abstraction of the BPW model,
along with strategies and proof tools, that enables practical
protocol security proofs in Isabelle/HOL with strong sound-
ness guarantees. In doing so, we have substantially reduced
the non-inherent complexity of the BPW model in a way
that brings us closer to the considerably simpler abstrac-
tions provided by the standard Dolev-Yao model and induc-
tive proof techniques used, e.g., by Paulson.

We see a number of directions for future work. First,
we would like to develop methods to reduce the impact of
the inherent complexity. One possibility is to investigate
changes to the model, either by building a higher-level inter-
face for protocols or even changing the model itself (which
would, however, necessitate a new soundness proof). For
example, it would simplify proofs to reduce the number
of interface functions from 17 to 3, namely functions for
building, parsing, and sending messages. This would en-
able more compact protocol specifications as well as shorter
proofs based on general results about these functions. Sec-
ond, we have built basic proof tools and have developed
systematic strategies for constructing proofs using the gen-
eral automated reasoning tools provided by Isabelle, mainly
rewriting and tableau theorem proving. However we have
not yet developed any specialized proof tactics tailored to
our strategies. As mentioned in Sect. 5.4, we see consider-
able potential for improvement here. Finally, we intend to
carry out further case studies in order to broaden our expe-
rience with our formalization and proof strategies. It would
be useful here to incorporate more features into our formal-
ization such as symmetric encryption and MACs. The tech-
nical details have been worked out [7, 4] and await imple-
mentation.
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