
Cheking Absene of Illiit Applet Interations:A Case Study⋆Marieke Huisman1, Dilian Gurov2,Christoph Sprenger1, and Gennady Chugunov3

1 INRIA Sophia Antipolis, Frane
2 Royal Institute of Tehnology, Kista, Sweden

3 Swedish Institute of Computer Siene, Kista, SwedenAbstrat. This paper presents the use of a method � and its orre-sponding tool set � for ompositional veri�ation of applet interationson a realisti industrial smart ard ase study. The ase study, an ele-troni purse, is provided by smart ard produer Gemplus as a test asefor formal methods for smart ards. The veri�ation method fouses onthe possible interations between di�erent applets, o�existing on thesame ard, and provides a tehnique to speify and detet illiit intera-tions between these applets. The method is ompositional, thus support-ing post�issuane loading of applets. The orretness of a global systemproperty an algorithmially be inferred from loal applet properties.Later, when loading applets on a ard, the implementations are mathedagainst these loal properties, in order to guarantee the global property.The theoretial framework underlying our method has been presentedelsewhere; the present paper evaluates its pratial usability by meansof an industrial ase study. In partiular, we outline the tool set that wehave assembled to support the veri�ation proess, ombining existingmodel hekers with newly developed tools, tailored to our method.1 IntrodutionThe growing market for smart ards and other small personal devies has in-reased the need to use formal validation and veri�ation tehniques in industry.These devies often ontain privay�sensitive information; this is the ase in typ-ial usages for smart ards suh as health are information systems and eletronipurses. Therefore strong seurity guarantees are needed for their wide�spread a-eptane. With the aeptane of evaluation shemes suh as Common Criteria1industry has ome to realise that the only way to ahieve suh high guaranteesis to adopt the use of formal methods in industrial pratie.Various work has been done, aiming at the veri�ation of di�erent kinds ofproperties of smart ard appliations. Properties under study are for examplefuntional orretness, on�dentiality, availability and restritions on informa-tion �ow. Often this work fouses on the orretness of a single applet, or of a set
⋆ Partially supported by the EU as part of the Veri�Card projet IST-2000-26328.1 See http://www.ommonriteria.org.

of applets that is known in advane. However, future generations of smart ardsare expeted to allow post�issuane loading of applets, where newly installedapplets interat with the applets already present on the ard. As a onsequene,at the time the ard is issued, it is not known whih applets it might ontain.Therefore, it is neessary to state minimal requirements for the applets that anbe loaded later on the ard, and to be able to verify at loading time that the ap-plets atually respet these requirements. Only then, existing applets an safelyommuniate with new applets, without orrupting the seurity of the ard.In the present ase study we fous on a partiular kind of properties toensure the seurity of the ard, namely the absene of illiit ontrol �ow betweenthe di�erent applets. For multi�appliation smart ards, ertain ontrol �owpaths an be undesirable beause of general platform�dependent restritions,like the reommendation to avoid reursion due to limited resoures, or dueto appliation�spei� restritions, like undesirable information �ow aused byilliit applet interations as studied in this paper.In a ompanion paper we presented an algorithmi ompositional veri�ationtehnique for suh ontrol �ow based safety properties [14℄, using a temporallogi spei�ation language for speifying applet properties. These an be eitherstrutural, interpreting formulae over the ontrol �ow graph of an applet, orbehavioural, interpreting formulae over applet behaviour. The approah is om-positional in that it allows global ontrol �ow properties of the whole system tobe inferred from loal ontrol �ow properties of the individual applets. In thisway, global seurity properties an be guaranteed to hold even in the preseneof post�issuane loading of applets, as long as these applets satisfy their loalproperties. The latter hek an be delegated to a separate authority not nees-sarily possessing the ode of the applets already residing on the ard. However,while the global properties an be behavioural or strutural, we require the lo-al properties to be strutural; our tehnique does not allow global behaviouralproperties to be algorithmially inferred from loal behavioural ones. For a moredetailed motivation for using strutural assumptions the reader is referred to [14℄.An important asset of our method is that the veri�ation tasks involved areall based on algorithmi tehniques, as opposed to earlier work in whih we de-veloped a proof system for ompositional veri�ation [1℄. Therefore, one thespei�ations for the di�erent applets and the illiit applet interation are given,all veri�ations an be done automatially, using push�button tehnology. Thispaper presents the tool set that we have assembled to support the whole veri�a-tion proess, and illustrates its usefulness by applying it to a realisti, industrialeletroni purse ase study, provided by the smart ard produer Gemplus. Theappliation is not atually used by Gemplus, but has been provided as a testase to apply formal methods to smart ard appliations. The properties thatwe verify illustrate typial appliation�dependent illiit applet interations.As far as we are aware, this work is the �rst to develop algorithmi tehniquesfor the ompositional veri�ation of ontrol �ow properties for applets. Earlier,we used part of our tool set for non-ompositional veri�ation of ontrol �owproperties [8℄. The underlying program model has been inspired by the work of

Besson et al. [2℄, who verify stak properties for Java programs. Our work di�ersonsiderably from more known model hekers for multi-threaded Java suh asBandera [11℄ and Java PathFinder [5℄. In ontrast to these tools, we fous on theontrol �ow of appliations and the ompositionality of the veri�ation. Finally,we mention the model heking algorithms for Push�Down Automata, developedby Bouajjani et al. [4℄. We use the implementation of these algorithms in themodel heker Alfred [13℄ to verify the orretness of the deomposition.The paper is strutured as follows. First, Setion 2 outlines the general stru-ture of the tool set. Next, Setion 3 summarises the theoretial framework under-lying our approah. Then, Setion 4 introdues the eletroni purse example, andmotivates the property that we are interested in. This property is formalised inSetion 5, together with appropriate loal properties for the individual applets.Finally, Setion 6 disusses the use of our tool set to establish the orretnessof the property deomposition and of the loal properties w.r.t. an implementa-tion. For a more detailed aount of the theoretial framework we refer to ourompanion paper [14℄.2 General Overview of the ApproahAs explained above, we aim at heking the absene of illiit applet intera-tions, given the possibility of post�issuane loading, by using a ompositionalveri�ation method. In our method, we identify the following tasks:1. spei�ation of global seurity properties as behavioural safety properties;2. spei�ation of loal properties as strutural safety properties;3. algorithmi veri�ation of property deompositions, ensuring that the loalproperties imply the global ones; and4. algorithmi veri�ation of loal properties for individual applets.Our method is based on the onstrution of maximal applets w.r.t. struturalsafety properties. An applet is onsidered to be maximal w.r.t. a property if itsimulates all applets respeting this property.Conretely, suppose we want to prove that the omposition of applets Aand B respets a seurity property, formulated as behavioural safety property
φ (Task 1). We speify strutural properties σA and σB (Task 2) for whih weonstrut maximal applets θIA

(σA) and θIB
(σB), respetively (where IA and IBare the interfaes of the applets A and B, respetively). We show, using exist-ing model heking tehniques, that their omposition respets the behaviouralsafety property φ, i.e. θIA

(σA) ⊎ θIB
(σB) |= φ. The validity of this assertionorresponds to the orretness of the property deomposition (Task 3), sinethe simulation pre�order is preserved under applet omposition and behaviouralproperties expressible in our logi are preserved by simulation. When we get on-rete implementations for A and B, we use existing model heking tehniques tohek whether these implementations respet σA and σB, respetively (Task 4).To support our ompositional veri�ation method, we have developed a toolset, ombining existing model heking tools and newly developed tools, spei�

Applet
Analyser

Maximal
model
constructor

Applet Graphs

CCS process

CWB

Alfred

PDA

Model
generator

YES/NO

YES/NOStructural
specification

Interface

Implementation

specification
Behavioural Fig. 1. Overview of tool setto our method. Figure 1 gives a general overview of our tool set. Setion 3 belowintrodues the underlying theoretial framework.As input we have for eah applet either an implementation, or a struturalproperty, restriting its possible implementations, plus an interfae, speifyingthe methods provided and required by the applet. For these inputs, we onstrutan applet representation, whih is basially a olletion of ontrol �ow graphsrepresenting methods, plus the applet interfae. In ase we have the applet im-plementation, we use the Applet Analyser to extrat the applet graph. In asewe have a strutural property, we use the Maximal Model Construtor to on-strut an applet graph that simulates all possible implementations of appletsrespeting the formula. For a given applet implementation, the Applet Anal-yser an also be used to obtain the applet interfae. If required, applets an beomposed, using the applet omposition operator ⊎. This operation essentiallyorresponds to forming the disjoint union of applets. Using the Model Generatorthe resulting applet graphs are translated into models whih serve as input fordi�erent model hekers. If we want to hek strutural properties, we translatethe resulting graphs into CCS proesses, whih an be used as input for theEdinburgh Conurreny Workbenh (CWB) [9℄. If for a omposed system wewant to verify whether it respets a behavioural safety property, we translatethe omposed graphs into Push�Down Automata (PDA), whih form the inputfor the model heker Alfred [13℄.3 A Framework for Compositional Veri�ationThis setion outlines the theoretial framework underlying our tool set. For amore omprehensive aount of the tehnial details the reader is referred to [14℄.3.1 Program ModelAs we are only studying ontrol �ow properties, we abstrat away from all datain our program model. Further, sine we are only onerned with smart ard

appliations, we only onsider sequential programs2. Basially, an applet is a ol-letion of method graphs, plus an interfae speifying whih methods it providesand requires. For eah method, there is a method graph desribing its possibleontrol �ow. Edges in the graphs denote method alls or internal omputations.As explained above, we distinguish between strutural level properties, re-striting possible implementations of methods, and behavioural level properties,restriting the possible behaviour of methods. Therefore, we also have two di�er-ent views on applets (and methods): strutural and behavioural. However, thesetwo views are instantiations of a single framework (see [14℄).General Framework First we present the general framework, de�ning the notionsof model and spei�ation over a set of labels L and a set of atomi propositions
A. These are later instantiated to the strutural and behavioural level.De�nition 1. (Model) A model over labels L and atomi propositions A isa struture M = (S, L,→, A, λ), where S is a set of states, L is a �nite setof labels, → ⊆ S × L × S is a transition relation, A is a �nite set of atomipropositions, and λ : S → P(A) is a valuation assigning to eah state s theatomi propositions that hold at s. A spei�ation S over L and A is a pair
(M, E), where M is a model over L and A and E ⊆ S is a set of states.Intuitively, one an think of E as the set of entry states of the model. We de�nethe usual notion of simulation ≤ (where related states satisfy the same atomipropositions).Applet Struture Before instantiating the notion of model on the strutural level,we �rst de�ne the notion of applet interfae. Let Meth be a ountably in�niteset of method names.De�nition 2. (Applet interfae) An applet interfae is a pair I = (I+, I−),where I+, I− ⊆ Meth are �nite sets of names of provided and required methods,respetively. The omposition of two interfaes I1 = (I+

1 , I−1) and I2 = (I+

2 , I−2)is de�ned by I1 ∪ I2 = (I+

1 ∪ I+

2 , I−1 ∪ I−2).As mentioned above, a method spei�ation is an instane of the general notionof spei�ation.De�nition 3. (Method spei�ation) A method graph for m ∈ Meth overa set M of method names is a �nite model
Mm = (Vm, Lm,→m, Am, λm)where Vm is the set of ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r},

m ∈ λm(v) for all v ∈ Vm, i.e. eah node is tagged with the method name, andthe nodes v ∈ Vm with r ∈ λm(v) are return points. A method spei�ation for
m ∈ Meth over M is a pair (Mm, Em), where Mm is a method graph for mover M and Em ⊆ Vm is a non�empty set of entry points of m.2 For example, Java Card, a dialet of Java for programming smart ards, does ur-rently not allow multi-threading.

(transfer) m ∈ I+ v →m v′ v |= ¬r

(v, σ)
ε
−→ (v′, σ)(all) m1, m2 ∈ I+ v1

m2−−→m1
v′

1 v1 |= ¬r v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′

1 · σ)(return) m1, m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)Table 1. Applet Transition RulesAn applet is basially a olletion of method spei�ations and an interfae. Forthe formal de�nition we use the notion of disjoint union of spei�ations S1⊎S2,where eah state is tagged with 1 or 2, respetively, and (s, i)

a
−→S1⊎S2

(t, i), for
i ∈ {1, 2}, if and only if s

a
−→Si

t.De�nition 4. (Applet) An applet A with interfae I, written A : I, is de�nedindutively by� (Mm, Em) : ({m}, M) if (Mm, Em) is a method spei�ation for m ∈ Methover M , and� A1 ⊎ A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.An applet is losed if I− ⊆ I+, i.e. it does not require any external methods.Simulation instantiated to this partiular type of models is alled struturalsimulation, denoted as ≤s.Applet Behaviour Next we instantiate spei�ations on the behavioural level.De�nition 5. (Behaviour) Let A = (M, E) : (I+, I−) be a losed applet where
M = (V, L,→, A, λ). The behaviour of A is desribed by the spei�ation b(A) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) suh that Sb = V × V ∗, i.e. statesare pairs of ontrol points and staks, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈
I+}∪ {ε}, →b is de�ned by the rules of Table 1, Ab = A, and λb((v, σ)) = λ(v).The set of initial states Eb is de�ned by Eb = E × {ε}, where ε denotes theempty sequene over V .Note that applet behaviour de�nes a Push�Down Automaton (see, e.g., [7℄ for asurvey of veri�ation tehniques for in�nite proess strutures). We exploit thisby using a model heker for PDAs to verify behavioural properties.Also on the behavioural level, we instantiate the de�nition of simulation ≤b.Any two applets that are related by strutural simulation, are also related bybehavioural simulation, but the onverse is not true (sine behavioural simulationonly requires reahable states to be related).

3.2 Property Spei�ation LanguageWe use a fragment of the modal µ�alulus [12℄, namely the one exluding dia-monds and least �xed points, to express properties restriting applet strutureand behaviour3. We all this fragment simulation logi, beause it is able toharaterise simulation logially and, vie versa, satisfation of a formula orre-sponds to being simulated by a maximal model derived from the formula. Similarlogis have been studied earlier for apturing branhing�time safety properties(see e.g. [3℄). Let X be a ountably in�nite set of variables over sets of states. Let
X ∈ X , a ∈ L and p ∈ A denote state variables, labels and atomi propositions,respetively. The formulae in simulation logi are indutively de�ned as follows.

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φWe only onsider losed formulae of simulation logi, i.e. all variables X ∈ Xhave to be bound by some binder νX . Their semantis is standard, see e.g.Kozen [12℄. The satisfation relation is extended from states to spei�ations asusual: a spei�ation satis�es a formula if all its entry points do. This relationis instantiated at both the strutural and the behavioural level, denoted as |=sand |=b, respetively. For eah applet A : I, we have an atomi proposition foreah m ∈ I+ and an atomi proposition r. At the strutural level, labels are in
I− ∪ {ǫ}, and boxes are interpreted over edges in the method graphs. At thebehavioural level, labels are in Lb (see De�nition 5), and boxes are interpretedover transitions (see Table 1).Writing spei�ations in the modal µ�alulus is known to be hard (even inour fragment), therefore we de�ne a olletion of ommonly used spei�ationpatterns (inspired by the Bandera Spei�ation Pattern projet [10℄). In our ex-periene, all relevant behavioural ontrol �ow safety properties an be expressedusing a small set of suh patterns � however, it is important to remember thatone an always fall bak on the full expressiveness of simulation logi. Below wepresent several spei�ation patterns, both at strutural and behavioural level.These are all used in the ase study at hand.Strutural Spei�ation Patterns We shall use Everywhere with the obvious for-malisation: Everywhere σ = νZ. σ ∧ [ε, I−]Zas well as the following patterns, for method sets M and M ′ of an applet withinterfae I:

M HasNoCallsTo M ′ =
(
∧

m∈M ¬m
)

∨ (Everywhere [M ′] false)HasNoOutsideCalls M = M HasNoCallsTo (I− \ M)The �rst pattern spei�es that method graphs in the set M do not ontain edgeslabelled with elements of the set M ′. The seond spei�es a losed set of methods
M , i.e. methods in M only ontain alls to methods in M .3 In fat, in our theoretial framework, we use an alternative, but equivalent formula-tion, expressing formulae as modal equation systems.

Behavioural Spei�ation Patterns Pattern Always is standard:Always φ = νZ. φ ∧ [Lb]ZFor speifying that a property φ is to hold within a all to method m, we usethe Within pattern formalised as follows:Within m φ = ¬m ∨ (Always φ)Notie that this is a typial behavioural pattern: the notion of Within a methodinvoation enompasses all methods that might be invoked during the all to m.This reahability notion annot diretly be expressed at the strutural level.Finally, for applet A : (I+, I−) and method set M , we de�ne:CanNotCall A M =
∧

m∈I+

∧

m′∈M

[m call m′] falseThis pattern holds for state (v, σ) if no all to a method in M is possible.3.3 Maximal Models and Compositional Veri�ationOur ompositional veri�ation rests on the idea of onstruting a so�alled max-imal model for a given property (w.r.t. a simulation pre�order). For every stru-tural property σ and applet interfae I, we an onstrut a so�alled maximalapplet θI(σ), i.e. an applet with interfae I that simulates all applets with thisinterfae, respeting property σ. As the simulation pre�order is preserved un-der applet omposition and behavioural properties expressible in the logi arepreserved by the simulation pre�order, we have the following ompositional ver-i�ation priniple:
A |=s σ θI(σ) ⊎ B |=b φ

A ⊎ B |=b φ
(beh-omp)This rule states that the omposition of applets A : I and B : J satis�es(global) behavioural property φ, if one an �nd a (loal) strutural property

σ, satis�ed by A, suh that the omposition of the maximal applet w.r.t. σ andinterfae I, omposed with applet B satis�es property φ. Thus, if we are given astrutural property for an applet A and an implementation for an applet B wean verify whether their omposition satis�es the required properties. We use theMaximal Model Construtor to ompute θI(σ), the Applet Analyser to extratthe applet graph for B, and the Model Generator to produe input for Alfred,so it an hek θI(σ)⊎B |=b φ. Later, when an implementation for applet A be-omes available, it an be veri�ed independently whether it respets σ, by usingthe Applet Analyser to extrat the applet graph for A, and the Model Generatorto generate input for CWB, whih is used to hek strutural properties.Note that, sine applet omposition is ommutative, we an apply the om-position priniple above to its seond premise and also replae applet B by aloal strutural property (in the same way as displayed above for applet A).

4 Illiit Applet Interations in the Eletroni PurseThe Gemplus eletroni purse ase study PACAP [6℄ is developed to provide arealisti ase study for applying formal methods to Java Card appliations. Thease study de�nes three appliations: CardIssuer, Purse and Loyalty. Typially, aard will ontain one ard issuer and one purse applet, but several loyalty applets.The property that we verify for this ase study only is onerned with Purseand Loyalty, therefore we will not disuss CardIssuer any further. If the ardholder wishes to join a loyalty program, the appropriate applet an be loadedon the ard. Subsequently, the purse and the di�erent loyalties will exhangeinformation about the purhases made, so the loyalty points an be redited.Current versions of Java Card use shareable interfaes to exhange this kind ofinformation, but in the future this is likely to hange. However, for our tehniquesit is not relevant how this ommuniation exatly takes plae, we only requirethat it is done in terms of method alls. The goal of our work is to ensure thatno illiit interations an happen between the applets on the ard.To understand the property that we are interested in, we look loser at howthe purse and the loyalties ommuniate about the purhases made with theard. For e�ieny reasons, the eletroni purse keeps a log table of all redit anddebit transations, and the loyalty applets an request the (relevant) informationstored in this table. Further, loyalties might have so�alled partner loyalties,whih means that a user an add up the points obtained with the di�erentloyalty programs. Therefore, eah loyalty should keep trak of its balane and aso�alled extended balane. If the user wishes to know how many loyalty pointsare available exatly, the loyalty applet will ask for the relevant entries of thepurse's log table in order to update its balane, and it will also ask the balanesof partner loyalties in order to ompute the extended balane.If the log table is full, existing entries will be replaed by new transations.In order to ensure that loyalties do not miss any of the logged transations, theyan subsribe to the so�alled logFull servie. This servie signals all subsribedloyalties that the log table will be overwritten soon, and that therefore theyshould update their balanes. Typially, loyalties will have to pay for this servie.Suppose we have an eletroni purse, whih ontains besides the eletronipurse itself two partner loyalties, say L1 and L2. Further, suppose that L1 hassubsribed to the logFull servie, while L2 has not. If in reation to the logFullmessage L1 always alls an interfae method of L2 (say to ask for its balane),
L2 an impliitly dedue that the log table might be full. A maliious imple-mentation of L2 might therefore request the information stored in the log tablebefore returning the value of its loal balane to L1. If loyalties have to pay forthe logFull servie, suh ontrol �ow is unwanted, sine the owner of the Purseapplet will not want other loyalties to get this information for free.This is a typial example of an illiit applet interation, that our ompo-sitional veri�ation tehnique an detet. Below, we show how the absene ofthis partiular undesired senario an be spei�ed and veri�ed algorithmially.We allow an arbitrary number of loyalty applets on the ard. Sine all loyaltyapplets have the same interfae, we apply lass�based analysis. We assume that

at veri�ation time only the Purse applet has been loaded on the ard; the odeof the loyalty applet lass is not yet available. We use ompositional reasoningto redue the global behavioural property expressing the absene of the senariodesribed above to loal strutural properties of the purse and loyalty appletlasses. The purse applet ode is then heked against its strutural property.When the loyalty applet ode beomes available, possibly after the ard has beenissued, it is heked against its strutural property before loading it on the ard.5 Spei�ationThis setion presents the formalisation of the global and loal seurity propertiesthat we need for our example. The next setion disusses the veri�ation of thedeomposition and of the implementations w.r.t. the loal properties.As mentioned above, ommuniation between applets takes plae via so�alled shareable interfaes. The Purse applet de�nes a shareable interfae forommuniation with loyalty applets, ontaining among others the methods get-Transation, and isThereTransation. The Loyalty applet de�nes shareable in-terfaes for ommuniation with Purse and with other loyalty applets, ontainingamong others the method logFull. The set I+

P denotes the methods provided byPurse, and MSI
L denotes the set of shareable interfae methods of Loyalty.The Global Seurity Property To guarantee that no loyalty will get the opportu-nity to irumvent subsribing to the logFull servie, we require that if the Pursealls the logFull method of a loyalty, within this all the loyalty does not ommu-niate with other loyalties. However, as the logFull method is supposed to allthe Purse for its transations, we also have to exlude indiret ommuniations,via the Purse. We require the following global behavioural property:A all to Loyalty.logFull does not trigger any alls to any other loyalty.This property an be formalised with the help of behavioural patterns:(φ) Within Loyalty.logFull(CanNotCall Loyalty MSI

L) ∧ (CanNotCall Purse MSI
L)Thus, if loyalty reeives a logFull message, it annot all any other loyalty (be-ause it annot all any of its shareable interfae methods), and in addition, ifthe Purse is ativated within the all to logFull, it annot all any loyalty applet.Property Deomposition Next, we phrase loal strutural properties for Purseand Loyalty. Here we explain their formalisation; Setion 6 presents how we atu-ally verify that they are su�ient to guarantee the global behavioural property.Within Loyalty.logFull, the Loyalty applet has to all the methods Purse.isThere-Transation and Purse.getTransation, but it should not make any other exter-nal alls (where alls to shareable interfae methods of Loyalty are onsideredexternal4). Thus, a natural strutural property for Loyalty would be, informally:4 Notie that sine we are performing lass�based analysis, we annot distinguish be-tween alls to interfae methods of other instanes, and those of the same instane.

From any entry point of Loyalty.logFull, the only reahable external allsare alls to Purse.isThereTransation and Purse.getTransation.Reahability is understood in terms of an extended graph of Loyalty ontainingexpliit inter�method all edges.For the Purse applet we know that within a all to Loyalty.logFull it anonly be ativated via Purse.isThereTransation or Purse.getTransation.From any entry point of Purse.isThereTransation or Purse.getTransation,no external all is reahable.Again, reahability should be understood in terms of a graph ontaining expliitinter�method all edges. As our program model does not ontain these, theabove properties annot be formalised diretly in our logi. However, they an beformalised on a meta�level; for example for the Purse, the property holds, if andonly if there exist sets of methods MgT ⊆ I+

P , ontaining Purse.getTransation,and MiTT ⊆ I+

P , ontaining Purse.isThereTransation, suh that:(σP) HasNoOutsideCalls MiTT ∧ HasNoOutsideCalls MgTThese sets represent the methods in Purse whih an be alled transitively fromPurse.isThereTransation and Purse.getTransation, respetively. We an usethe Applet Analyser to �nd them. Similarly, to express the property for Loyaltywe need a set of methods MlF ⊆ I+

L ontaining Loyalty.logFull, suh that:(σL) MlF HasNoCallsTo I−L \
(

M \ MSI
L

)where M = MlF ∪ {Purse.isThereT ransaction, Purse.getT ransaction}. Callsto MSI
L are exluded, sine, as explained above, the methods in MSI

L are treatedas external. Sine we assume that the ode of the loyalty applet lass is not yetavailable at veri�ation time, MlF has to be guessed. Here we take the (possiblytoo) simple hoie MlF = {Loyalty.logFull}. Under this hoie, σL simpli�es to
MlF HasNoCallsTo I−L \ {Purse.isThereT ransaction, Purse.getT ransaction}.However, if later one wishes to load an implementation of Loyalty with a di�erentset MlF , orretness of the deomposition an be re�established automatially.6 Veri�ationNow that we have spei�ed global and loal seurity properties, we have to show:(1) the loal properties are su�ient to establish the global seurity property, and(2) the implementations of the di�erent applets respet the loal properties. Inorder to do this, we identify the following (independent) tasks, disussed below.1. Verifying the orretness of the property deomposition by:(a) building θIP

(σP) and θIL
(σL), the maximal applets for σP and σL; and(b) model heking θIP

(σP) ⊎ θIL
(σL) |=b φ.2. Verifying the loal strutural properties by:

nodes # edges onstr. time
σL 474 277 700 25 min.
σP 2 786 603 128 13 hrs.Table 2. Statistis for maximal applet onstrution.(a) extrating the applet graphs P of the Purse and L of the Loyalty ; and(b) model heking P |=s σP and L |=s σL.As explained above, we have developed a tool set to support these veri�ationtasks, ombining existing model heking tools (CWB and Alfred) with our owntools (Maximal Model Construtor, Applet Analyser and the Model Generator).6.1 Corretness of the Property DeompositionTo hek orretness of the property deomposition, we onstrut maximal ap-plets w.r.t. the spei�ations of the Purse and the Loyalty, and verify whethertheir omposition respets the global behavioural property.Construting Maximal Applets Given applet interfae I and strutural safetyproperty σ, we produe θI(σ), the maximal applet for I and σ, using the proe-dure desribed in [14℄, implemented in Oaml as the Maximal Model Constru-tor. The onstrution proeeds in three steps. First, the interfae I is translatedinto a strutural safety property haraterising all behaviour possible under thisinterfae. Then, the onjuntion of this formula and the property σ is trans-formed into a semantially equivalent normal form, whih an diretly be trans-lated into a model. This model is the maximal applet θI(σ). In general, the sizeof a maximal applet is exponential in the size of the input. We implementedsome optimisations, whih save both time and, more importantly, memory.In the maximal applet for σL we

iTT, gTiTT, gT, eps

v1

v2 Loyalty.m, r

Loyalty.m

I−, eps

v1

v2 Loyalty.logFull, r

Loyalty.logFull

iTT, gT, eps

iTT, gT, eps I−, eps

iTT, gT, eps

I−, eps

I−, epsFig. 2. Methods in θIL
(σL)

an distinguish between two kinds ofmethods, whih are illustrated in Fig-ure 2: the methods in MlF (that islogFull) have the left method graph,and only ontain alls to Purse.iTTand Purse.gT. All other methods pro-vided by Loyalty have the form of theright method graph, and do not on-tain any restritions on the method alls. Eah method of the applet θIL
(σL) hastwo nodes. The maximal applet for σP is similar, but eah method onsists of twoto eight nodes depending on the set it belongs to (MiTT , MgT or I+

P). Table 2provides statistis on the size of the onstruted graphs, and the orrespondingonstrution time on a Pentium 1.9 GHz mahine.

lasses # methods # nodes # edges extr. time verif. timeLoyalty 11 237 3 782 4 372 5.6 se. 12 se.Purse 15 367 5 882 7 205 7.5 se. 19 se.Table 3. Statistis on applet graph extration and veri�ation.Model Cheking Behavioural Properties One the maximal applets θIP
(σP) and

θIL
(σL) are onstruted, we produe their omposition θIP

(σP) ⊎ θIL
(σL). Thebehaviour of this applet is a (possibly in�nite state) model generated by a push-down automaton (PDA) given as a set of prodution rules. The model hekingproblem for this lass of models is exponential both in the size of the formulaand in the number of ontrol states of the PDA [7℄. We base our experiments onAlfred [13℄, a demonstrator tool for model heking alternation�free modal µ�alulus properties of PDAs. We developed the Model Generator � implementedin Java � to translate applet graphs (in this ase θIP

(σP) ⊎ θIL
(σL)) to a PDArepresentation, whih serves as input to Alfred. We were suessful in hekingorretness of (similar) property deompositions for applets with a small numberof interfae methods; when dealing with applets with large interfaes as in ourase study, however, Alfred failed to sale up. Currently, we are investigatinghow to enode applets more e�iently, into ontext-free proesses, whih areequivalent to PDAs with a single ontrol state. For this lass of proesses themodel heking omplexity beomes polynomial in the number of produtions.6.2 Corretness of the Loal Strutural PropertiesExtrating Applet Graphs The Applet Analyser is used to extrat applet graphsand the appropriate set of entry points from the byte ode of an applet. This is astati analysis tool, built on top of the SOOT Java Optimization Framework [15℄.The byte ode of a Java Card applet is transformed into Jimple basi bloks,while abstrating away variables, method parameters, and alls to methods ofthe Java Card API. We use SOOT's standard lass hierarhy analysis to produea safe over-approximation of the all graph. If, for example, the stati analysisannot determine the reeiver of a virtual method all, a all edge is generatedfor every possible method implementation. Table 3 provides statistis on theextrated applet graphs.Model Cheking Strutural Properties Applet graphs an be viewed as �niteKripke strutures. This allows strutural properties expressed in temporal log-is to be heked using standard model heking tools suh as CWB [9℄. TheKripke strutures of the CWB are labelled transition systems generated fromCCS proess de�nitions. For this purpose, we use the Model Generator to on-vert applet graphs into a representation as CCS proesses. Sine CCS does nothave the notion of valuation, atomi propositions p assigned to a node in an ap-plet are represented by probes, that is, self�loops labelled by p. The translation

also produes a set of proess onstants orresponding to the entry nodes of therespetive applet. To model hek an applet graph against a strutural safetyproperty, all initial states have to be heked individually. We enode the prop-erties to be heked as µ�alulus formulae, replaing atomi propositions p by
〈p〉 true. Sine CWB supports parametrised formulae, our spei�ation patternsan diretly be enoded.When verifying L |=s σL, we realised that in fat the hoie of MlF was toooptimisti, as the implementation of Loyalty.logFull uses several other (internal)methods. Using the Applet Analyser we omputed MlF as the set of methodsreahable from Loyalty.logFull, adapted the spei�ation σL and reveri�ed L |=s

σL. Reverifying the deomposition an be done automatially. The last olumnin Table 3 gives the veri�ation times for model heking P |=s σP and L |=s σLon a Pentium 1.9 GHz mahine.7 ConlusionsThis paper demonstrates a method to detet illiit interations between applets,installed on a single smart ard. The method is ompositional, and thereforesupports seure post�issuane loading of applets. In partiular, the method al-lows to establish global ontrol �ow safety properties for a omposed system,provided su�ient loal properties are given for the applets. When the appletsare loaded (post�issuane) it only remains to be shown that they respet theirloal property. while the global properties an be strutural or behavioural, theloal properties need to be strutural. To support the spei�ation proess, a ol-letion of spei�ation patterns is proposed, with appropriate translations intothe underlying logi.We assembled a tool set � ombining existing and newly developed tools � tosupport the veri�ation tasks that arise in our method. One the spei�ationsare available, all veri�ations an be done using push�button tehnology. Thus,it an be automatially heked whether an applet an be aepted on the ard.The ase study shows that the presented veri�ation method and tool setan be used in pratie for guaranteeing absene of illiit applet interations.However, there are some possibilities for improvement. Finding suitable loalproperties, whih requires ingenuity, is ompliated by the requirement of for-mulating loal properties struturally. Another di�ulty stems from the inherentalgorithmi omplexity of two of the tasks: both maximal model onstrution andmodel heking behavioural properties are problems exponential in the size ofthe formula, thus making optimisations of these algorithms ruial for their su-essful appliation. For some ommon property patterns suh as Everywhere σ,the size of the formula depends on the size of the interfae. Therefore, it is ruialto develop abstration tehniques to abstrat away from method names whihare irrelevant to the given property.Future work will thus go into �ne�tuning the notion of interfae, by de�ningpubli and private interfaes. Now interfaes ontain all methods provided andrequired by a method. We wish to restrit the veri�ation of the global safety

properties to publi interfaes, ontaining only the externally visible methods,provided and required by an applet. In order to hek whether an implementa-tion respets its loal property, we will need to de�ne an appropriate notion ofhiding. We also intend to extend the set of spei�ation patterns that we use,by investigating whih lasses of seurity properties generally are used. Finally,on a more theoretial side, we will study if we an extend the expressiveness ofthe logi used (e.g. by adding diamond modalities) and under what onditionswe an allow behavioural loal properties.Referenes1. G. Barthe, D. Gurov, and M. Huisman. Compositional veri�ation of seure appletinterations. In R.-D. Kutshe and H. Weber, editors, Fundamental Approahes toSoftware Engineering 2002, number 2306 in LNCS, pages 15�32. Springer, 2002.2. F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model heking seurityproperties of ontrol �ow graphs. J. of Computer Seurity, 9(3):217�250, 2001.3. A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety forbranhing time semantis. In Automata, Languages and Programming, pages 76�92, 1991.4. Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reahability analysis of push-down automata: Appliation to model-heking. In International Conferene onConurreny Theory, pages 135�150, 1997.5. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - seond generationof a Java model heker. In Workshop on Advanes in Veri�ation, 2000.6. E. Bretagne, A. El Marouani, P. Girard, and J.-L. Lanet. Paap purse and loyaltyspei�ation. Tehnial Report V 0.4, Gemplus, 2000.7. O. Burkart, D. Caual, F. Moller, and B. Ste�en. Veri�ation on in�nite strutures.In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Proess Algebra,pages 545�623. North Holland, 2000.8. G. Chugunov, L.-å. Fredlund, and D. Gurov. Model heking of multi-applet Java-Card appliations. In CARDIS'02, pages 87�95. USENIX Publiations, 2002.9. R. Cleaveland, J. Parrow, and B. Ste�en. A semantis based veri�ation tool for�nite state systems. In Pro. 9th IFIP Symp. Protool Spei�ation, Veri�ationand Testing, 1989.10. J. Corbett, M. Dwyer, J. Hatli�, and Robby. A language framework for expressinghekable properties of dynami software. In SPIN Model Cheking and SoftwareVeri�ation, number 1885 in LNCS. Springer, 2000.11. J. Hatli� and M. Dwyer. Using the Bandera tool set to model-hek propertiesof onurrent Java software. Tehnial report, SAnToS Laboratory, Departmentof Computing and Information Sienes, Kansas State University, 2000.12. D. Kozen. Results on the propositional µ-alulus. TCS, 27:333�354, 1983.13. D. Polanský. Verifying properties of in�nite-state systems. Master's thesis,Masaryk University, Faulty of Informatis, Brno, 2000.14. C. Sprenger, D. Gurov, and M. Huisman. Simulation logi, applets and omposi-tional veri�ation. Tehnial Report RR-4890, INRIA, 2003.15. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -a Java Optimization Framework. In CASCON 1999, pages 125�135, 1999.

