
Che
king Absen
e of Illi
it Applet Intera
tions:A Case Study⋆Marieke Huisman1, Dilian Gurov2,Christoph Sprenger1, and Gennady Chugunov3

1 INRIA Sophia Antipolis, Fran
e
2 Royal Institute of Te
hnology, Kista, Sweden

3 Swedish Institute of Computer S
ien
e, Kista, SwedenAbstra
t. This paper presents the use of a method � and its
orre-sponding tool set � for
ompositional veri�
ation of applet intera
tionson a realisti
 industrial smart
ard
ase study. The
ase study, an ele
-troni
 purse, is provided by smart
ard produ
er Gemplus as a test
asefor formal methods for smart
ards. The veri�
ation method fo
uses onthe possible intera
tions between di�erent applets,
o�existing on thesame
ard, and provides a te
hnique to spe
ify and dete
t illi
it intera
-tions between these applets. The method is
ompositional, thus support-ing post�issuan
e loading of applets. The
orre
tness of a global systemproperty
an algorithmi
ally be inferred from lo
al applet properties.Later, when loading applets on a
ard, the implementations are mat
hedagainst these lo
al properties, in order to guarantee the global property.The theoreti
al framework underlying our method has been presentedelsewhere; the present paper evaluates its pra
ti
al usability by meansof an industrial
ase study. In parti
ular, we outline the tool set that wehave assembled to support the veri�
ation pro
ess,
ombining existingmodel
he
kers with newly developed tools, tailored to our method.1 Introdu
tionThe growing market for smart
ards and other small personal devi
es has in-
reased the need to use formal validation and veri�
ation te
hniques in industry.These devi
es often
ontain priva
y�sensitive information; this is the
ase in typ-i
al usages for smart
ards su
h as health
are information systems and ele
troni
purses. Therefore strong se
urity guarantees are needed for their wide�spread a
-
eptan
e. With the a

eptan
e of evaluation s
hemes su
h as Common Criteria1industry has
ome to realise that the only way to a
hieve su
h high guaranteesis to adopt the use of formal methods in industrial pra
ti
e.Various work has been done, aiming at the veri�
ation of di�erent kinds ofproperties of smart
ard appli
ations. Properties under study are for examplefun
tional
orre
tness,
on�dentiality, availability and restri
tions on informa-tion �ow. Often this work fo
uses on the
orre
tness of a single applet, or of a set
⋆ Partially supported by the EU as part of the Veri�Card proje
t IST-2000-26328.1 See http://www.
ommon
riteria.org.

of applets that is known in advan
e. However, future generations of smart
ardsare expe
ted to allow post�issuan
e loading of applets, where newly installedapplets intera
t with the applets already present on the
ard. As a
onsequen
e,at the time the
ard is issued, it is not known whi
h applets it might
ontain.Therefore, it is ne
essary to state minimal requirements for the applets that
anbe loaded later on the
ard, and to be able to verify at loading time that the ap-plets a
tually respe
t these requirements. Only then, existing applets
an safely
ommuni
ate with new applets, without
orrupting the se
urity of the
ard.In the present
ase study we fo
us on a parti
ular kind of properties toensure the se
urity of the
ard, namely the absen
e of illi
it
ontrol �ow betweenthe di�erent applets. For multi�appli
ation smart
ards,
ertain
ontrol �owpaths
an be undesirable be
ause of general platform�dependent restri
tions,like the re
ommendation to avoid re
ursion due to limited resour
es, or dueto appli
ation�spe
i�
 restri
tions, like undesirable information �ow
aused byilli
it applet intera
tions as studied in this paper.In a
ompanion paper we presented an algorithmi

ompositional veri�
ationte
hnique for su
h
ontrol �ow based safety properties [14℄, using a temporallogi
 spe
i�
ation language for spe
ifying applet properties. These
an be eitherstru
tural, interpreting formulae over the
ontrol �ow graph of an applet, orbehavioural, interpreting formulae over applet behaviour. The approa
h is
om-positional in that it allows global
ontrol �ow properties of the whole system tobe inferred from lo
al
ontrol �ow properties of the individual applets. In thisway, global se
urity properties
an be guaranteed to hold even in the presen
eof post�issuan
e loading of applets, as long as these applets satisfy their lo
alproperties. The latter
he
k
an be delegated to a separate authority not ne
es-sarily possessing the
ode of the applets already residing on the
ard. However,while the global properties
an be behavioural or stru
tural, we require the lo-
al properties to be stru
tural; our te
hnique does not allow global behaviouralproperties to be algorithmi
ally inferred from lo
al behavioural ones. For a moredetailed motivation for using stru
tural assumptions the reader is referred to [14℄.An important asset of our method is that the veri�
ation tasks involved areall based on algorithmi
 te
hniques, as opposed to earlier work in whi
h we de-veloped a proof system for
ompositional veri�
ation [1℄. Therefore, on
e thespe
i�
ations for the di�erent applets and the illi
it applet intera
tion are given,all veri�
ations
an be done automati
ally, using push�button te
hnology. Thispaper presents the tool set that we have assembled to support the whole veri�
a-tion pro
ess, and illustrates its usefulness by applying it to a realisti
, industrialele
troni
 purse
ase study, provided by the smart
ard produ
er Gemplus. Theappli
ation is not a
tually used by Gemplus, but has been provided as a test
ase to apply formal methods to smart
ard appli
ations. The properties thatwe verify illustrate typi
al appli
ation�dependent illi
it applet intera
tions.As far as we are aware, this work is the �rst to develop algorithmi
 te
hniquesfor the
ompositional veri�
ation of
ontrol �ow properties for applets. Earlier,we used part of our tool set for non-
ompositional veri�
ation of
ontrol �owproperties [8℄. The underlying program model has been inspired by the work of

Besson et al. [2℄, who verify sta
k properties for Java programs. Our work di�ers
onsiderably from more known model
he
kers for multi-threaded Java su
h asBandera [11℄ and Java PathFinder [5℄. In
ontrast to these tools, we fo
us on the
ontrol �ow of appli
ations and the
ompositionality of the veri�
ation. Finally,we mention the model
he
king algorithms for Push�Down Automata, developedby Bouajjani et al. [4℄. We use the implementation of these algorithms in themodel
he
ker Alfred [13℄ to verify the
orre
tness of the de
omposition.The paper is stru
tured as follows. First, Se
tion 2 outlines the general stru
-ture of the tool set. Next, Se
tion 3 summarises the theoreti
al framework under-lying our approa
h. Then, Se
tion 4 introdu
es the ele
troni
 purse example, andmotivates the property that we are interested in. This property is formalised inSe
tion 5, together with appropriate lo
al properties for the individual applets.Finally, Se
tion 6 dis
usses the use of our tool set to establish the
orre
tnessof the property de
omposition and of the lo
al properties w.r.t. an implementa-tion. For a more detailed a

ount of the theoreti
al framework we refer to our
ompanion paper [14℄.2 General Overview of the Approa
hAs explained above, we aim at
he
king the absen
e of illi
it applet intera
-tions, given the possibility of post�issuan
e loading, by using a
ompositionalveri�
ation method. In our method, we identify the following tasks:1. spe
i�
ation of global se
urity properties as behavioural safety properties;2. spe
i�
ation of lo
al properties as stru
tural safety properties;3. algorithmi
 veri�
ation of property de
ompositions, ensuring that the lo
alproperties imply the global ones; and4. algorithmi
 veri�
ation of lo
al properties for individual applets.Our method is based on the
onstru
tion of maximal applets w.r.t. stru
turalsafety properties. An applet is
onsidered to be maximal w.r.t. a property if itsimulates all applets respe
ting this property.Con
retely, suppose we want to prove that the
omposition of applets Aand B respe
ts a se
urity property, formulated as behavioural safety property
φ (Task 1). We spe
ify stru
tural properties σA and σB (Task 2) for whi
h we
onstru
t maximal applets θIA

(σA) and θIB
(σB), respe
tively (where IA and IBare the interfa
es of the applets A and B, respe
tively). We show, using exist-ing model
he
king te
hniques, that their
omposition respe
ts the behaviouralsafety property φ, i.e. θIA

(σA) ⊎ θIB
(σB) |= φ. The validity of this assertion
orresponds to the
orre
tness of the property de
omposition (Task 3), sin
ethe simulation pre�order is preserved under applet
omposition and behaviouralproperties expressible in our logi
 are preserved by simulation. When we get
on-
rete implementations for A and B, we use existing model
he
king te
hniques to
he
k whether these implementations respe
t σA and σB, respe
tively (Task 4).To support our
ompositional veri�
ation method, we have developed a toolset,
ombining existing model
he
king tools and newly developed tools, spe
i�

Applet
Analyser

Maximal
model
constructor

Applet Graphs

CCS process

CWB

Alfred

PDA

Model
generator

YES/NO

YES/NOStructural
specification

Interface

Implementation

specification
Behavioural Fig. 1. Overview of tool setto our method. Figure 1 gives a general overview of our tool set. Se
tion 3 belowintrodu
es the underlying theoreti
al framework.As input we have for ea
h applet either an implementation, or a stru
turalproperty, restri
ting its possible implementations, plus an interfa
e, spe
ifyingthe methods provided and required by the applet. For these inputs, we
onstru
tan applet representation, whi
h is basi
ally a
olle
tion of
ontrol �ow graphsrepresenting methods, plus the applet interfa
e. In
ase we have the applet im-plementation, we use the Applet Analyser to extra
t the applet graph. In
asewe have a stru
tural property, we use the Maximal Model Constru
tor to
on-stru
t an applet graph that simulates all possible implementations of appletsrespe
ting the formula. For a given applet implementation, the Applet Anal-yser
an also be used to obtain the applet interfa
e. If required, applets
an be
omposed, using the applet
omposition operator ⊎. This operation essentially
orresponds to forming the disjoint union of applets. Using the Model Generatorthe resulting applet graphs are translated into models whi
h serve as input fordi�erent model
he
kers. If we want to
he
k stru
tural properties, we translatethe resulting graphs into CCS pro
esses, whi
h
an be used as input for theEdinburgh Con
urren
y Workben
h (CWB) [9℄. If for a
omposed system wewant to verify whether it respe
ts a behavioural safety property, we translatethe
omposed graphs into Push�Down Automata (PDA), whi
h form the inputfor the model
he
ker Alfred [13℄.3 A Framework for Compositional Veri�
ationThis se
tion outlines the theoreti
al framework underlying our tool set. For amore
omprehensive a

ount of the te
hni
al details the reader is referred to [14℄.3.1 Program ModelAs we are only studying
ontrol �ow properties, we abstra
t away from all datain our program model. Further, sin
e we are only
on
erned with smart
ard

appli
ations, we only
onsider sequential programs2. Basi
ally, an applet is a
ol-le
tion of method graphs, plus an interfa
e spe
ifying whi
h methods it providesand requires. For ea
h method, there is a method graph des
ribing its possible
ontrol �ow. Edges in the graphs denote method
alls or internal
omputations.As explained above, we distinguish between stru
tural level properties, re-stri
ting possible implementations of methods, and behavioural level properties,restri
ting the possible behaviour of methods. Therefore, we also have two di�er-ent views on applets (and methods): stru
tural and behavioural. However, thesetwo views are instantiations of a single framework (see [14℄).General Framework First we present the general framework, de�ning the notionsof model and spe
i�
ation over a set of labels L and a set of atomi
 propositions
A. These are later instantiated to the stru
tural and behavioural level.De�nition 1. (Model) A model over labels L and atomi
 propositions A isa stru
ture M = (S, L,→, A, λ), where S is a set of states, L is a �nite setof labels, → ⊆ S × L × S is a transition relation, A is a �nite set of atomi
propositions, and λ : S → P(A) is a valuation assigning to ea
h state s theatomi
 propositions that hold at s. A spe
i�
ation S over L and A is a pair
(M, E), where M is a model over L and A and E ⊆ S is a set of states.Intuitively, one
an think of E as the set of entry states of the model. We de�nethe usual notion of simulation ≤ (where related states satisfy the same atomi
propositions).Applet Stru
ture Before instantiating the notion of model on the stru
tural level,we �rst de�ne the notion of applet interfa
e. Let Meth be a
ountably in�niteset of method names.De�nition 2. (Applet interfa
e) An applet interfa
e is a pair I = (I+, I−),where I+, I− ⊆ Meth are �nite sets of names of provided and required methods,respe
tively. The
omposition of two interfa
es I1 = (I+

1 , I−1) and I2 = (I+

2 , I−2)is de�ned by I1 ∪ I2 = (I+

1 ∪ I+

2 , I−1 ∪ I−2).As mentioned above, a method spe
i�
ation is an instan
e of the general notionof spe
i�
ation.De�nition 3. (Method spe
i�
ation) A method graph for m ∈ Meth overa set M of method names is a �nite model
Mm = (Vm, Lm,→m, Am, λm)where Vm is the set of
ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r},

m ∈ λm(v) for all v ∈ Vm, i.e. ea
h node is tagged with the method name, andthe nodes v ∈ Vm with r ∈ λm(v) are return points. A method spe
i�
ation for
m ∈ Meth over M is a pair (Mm, Em), where Mm is a method graph for mover M and Em ⊆ Vm is a non�empty set of entry points of m.2 For example, Java Card, a diale
t of Java for programming smart
ards, does
ur-rently not allow multi-threading.

(transfer) m ∈ I+ v →m v′ v |= ¬r

(v, σ)
ε
−→ (v′, σ)(
all) m1, m2 ∈ I+ v1

m2−−→m1
v′

1 v1 |= ¬r v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′

1 · σ)(return) m1, m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)Table 1. Applet Transition RulesAn applet is basi
ally a
olle
tion of method spe
i�
ations and an interfa
e. Forthe formal de�nition we use the notion of disjoint union of spe
i�
ations S1⊎S2,where ea
h state is tagged with 1 or 2, respe
tively, and (s, i)

a
−→S1⊎S2

(t, i), for
i ∈ {1, 2}, if and only if s

a
−→Si

t.De�nition 4. (Applet) An applet A with interfa
e I, written A : I, is de�nedindu
tively by� (Mm, Em) : ({m}, M) if (Mm, Em) is a method spe
i�
ation for m ∈ Methover M , and� A1 ⊎ A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.An applet is
losed if I− ⊆ I+, i.e. it does not require any external methods.Simulation instantiated to this parti
ular type of models is
alled stru
turalsimulation, denoted as ≤s.Applet Behaviour Next we instantiate spe
i�
ations on the behavioural level.De�nition 5. (Behaviour) Let A = (M, E) : (I+, I−) be a
losed applet where
M = (V, L,→, A, λ). The behaviour of A is des
ribed by the spe
i�
ation b(A) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) su
h that Sb = V × V ∗, i.e. statesare pairs of
ontrol points and sta
ks, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈
I+}∪ {ε}, →b is de�ned by the rules of Table 1, Ab = A, and λb((v, σ)) = λ(v).The set of initial states Eb is de�ned by Eb = E × {ε}, where ε denotes theempty sequen
e over V .Note that applet behaviour de�nes a Push�Down Automaton (see, e.g., [7℄ for asurvey of veri�
ation te
hniques for in�nite pro
ess stru
tures). We exploit thisby using a model
he
ker for PDAs to verify behavioural properties.Also on the behavioural level, we instantiate the de�nition of simulation ≤b.Any two applets that are related by stru
tural simulation, are also related bybehavioural simulation, but the
onverse is not true (sin
e behavioural simulationonly requires rea
hable states to be related).

3.2 Property Spe
i�
ation LanguageWe use a fragment of the modal µ�
al
ulus [12℄, namely the one ex
luding dia-monds and least �xed points, to express properties restri
ting applet stru
tureand behaviour3. We
all this fragment simulation logi
, be
ause it is able to
hara
terise simulation logi
ally and, vi
e versa, satisfa
tion of a formula
orre-sponds to being simulated by a maximal model derived from the formula. Similarlogi
s have been studied earlier for
apturing bran
hing�time safety properties(see e.g. [3℄). Let X be a
ountably in�nite set of variables over sets of states. Let
X ∈ X , a ∈ L and p ∈ A denote state variables, labels and atomi
 propositions,respe
tively. The formulae in simulation logi
 are indu
tively de�ned as follows.

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φWe only
onsider
losed formulae of simulation logi
, i.e. all variables X ∈ Xhave to be bound by some binder νX . Their semanti
s is standard, see e.g.Kozen [12℄. The satisfa
tion relation is extended from states to spe
i�
ations asusual: a spe
i�
ation satis�es a formula if all its entry points do. This relationis instantiated at both the stru
tural and the behavioural level, denoted as |=sand |=b, respe
tively. For ea
h applet A : I, we have an atomi
 proposition forea
h m ∈ I+ and an atomi
 proposition r. At the stru
tural level, labels are in
I− ∪ {ǫ}, and boxes are interpreted over edges in the method graphs. At thebehavioural level, labels are in Lb (see De�nition 5), and boxes are interpretedover transitions (see Table 1).Writing spe
i�
ations in the modal µ�
al
ulus is known to be hard (even inour fragment), therefore we de�ne a
olle
tion of
ommonly used spe
i�
ationpatterns (inspired by the Bandera Spe
i�
ation Pattern proje
t [10℄). In our ex-perien
e, all relevant behavioural
ontrol �ow safety properties
an be expressedusing a small set of su
h patterns � however, it is important to remember thatone
an always fall ba
k on the full expressiveness of simulation logi
. Below wepresent several spe
i�
ation patterns, both at stru
tural and behavioural level.These are all used in the
ase study at hand.Stru
tural Spe
i�
ation Patterns We shall use Everywhere with the obvious for-malisation: Everywhere σ = νZ. σ ∧ [ε, I−]Zas well as the following patterns, for method sets M and M ′ of an applet withinterfa
e I:

M HasNoCallsTo M ′ =
(
∧

m∈M ¬m
)

∨ (Everywhere [M ′] false)HasNoOutsideCalls M = M HasNoCallsTo (I− \ M)The �rst pattern spe
i�es that method graphs in the set M do not
ontain edgeslabelled with elements of the set M ′. The se
ond spe
i�es a
losed set of methods
M , i.e. methods in M only
ontain
alls to methods in M .3 In fa
t, in our theoreti
al framework, we use an alternative, but equivalent formula-tion, expressing formulae as modal equation systems.

Behavioural Spe
i�
ation Patterns Pattern Always is standard:Always φ = νZ. φ ∧ [Lb]ZFor spe
ifying that a property φ is to hold within a
all to method m, we usethe Within pattern formalised as follows:Within m φ = ¬m ∨ (Always φ)Noti
e that this is a typi
al behavioural pattern: the notion of Within a methodinvo
ation en
ompasses all methods that might be invoked during the
all to m.This rea
hability notion
annot dire
tly be expressed at the stru
tural level.Finally, for applet A : (I+, I−) and method set M , we de�ne:CanNotCall A M =
∧

m∈I+

∧

m′∈M

[m call m′] falseThis pattern holds for state (v, σ) if no
all to a method in M is possible.3.3 Maximal Models and Compositional Veri�
ationOur
ompositional veri�
ation rests on the idea of
onstru
ting a so�
alled max-imal model for a given property (w.r.t. a simulation pre�order). For every stru
-tural property σ and applet interfa
e I, we
an
onstru
t a so�
alled maximalapplet θI(σ), i.e. an applet with interfa
e I that simulates all applets with thisinterfa
e, respe
ting property σ. As the simulation pre�order is preserved un-der applet
omposition and behavioural properties expressible in the logi
 arepreserved by the simulation pre�order, we have the following
ompositional ver-i�
ation prin
iple:
A |=s σ θI(σ) ⊎ B |=b φ

A ⊎ B |=b φ
(beh-
omp)This rule states that the
omposition of applets A : I and B : J satis�es(global) behavioural property φ, if one
an �nd a (lo
al) stru
tural property

σ, satis�ed by A, su
h that the
omposition of the maximal applet w.r.t. σ andinterfa
e I,
omposed with applet B satis�es property φ. Thus, if we are given astru
tural property for an applet A and an implementation for an applet B we
an verify whether their
omposition satis�es the required properties. We use theMaximal Model Constru
tor to
ompute θI(σ), the Applet Analyser to extra
tthe applet graph for B, and the Model Generator to produ
e input for Alfred,so it
an
he
k θI(σ)⊎B |=b φ. Later, when an implementation for applet A be-
omes available, it
an be veri�ed independently whether it respe
ts σ, by usingthe Applet Analyser to extra
t the applet graph for A, and the Model Generatorto generate input for CWB, whi
h is used to
he
k stru
tural properties.Note that, sin
e applet
omposition is
ommutative, we
an apply the
om-position prin
iple above to its se
ond premise and also repla
e applet B by alo
al stru
tural property (in the same way as displayed above for applet A).

4 Illi
it Applet Intera
tions in the Ele
troni
 PurseThe Gemplus ele
troni
 purse
ase study PACAP [6℄ is developed to provide arealisti

ase study for applying formal methods to Java Card appli
ations. The
ase study de�nes three appli
ations: CardIssuer, Purse and Loyalty. Typi
ally, a
ard will
ontain one
ard issuer and one purse applet, but several loyalty applets.The property that we verify for this
ase study only is
on
erned with Purseand Loyalty, therefore we will not dis
uss CardIssuer any further. If the
ardholder wishes to join a loyalty program, the appropriate applet
an be loadedon the
ard. Subsequently, the purse and the di�erent loyalties will ex
hangeinformation about the pur
hases made, so the loyalty points
an be
redited.Current versions of Java Card use shareable interfa
es to ex
hange this kind ofinformation, but in the future this is likely to
hange. However, for our te
hniquesit is not relevant how this
ommuni
ation exa
tly takes pla
e, we only requirethat it is done in terms of method
alls. The goal of our work is to ensure thatno illi
it intera
tions
an happen between the applets on the
ard.To understand the property that we are interested in, we look
loser at howthe purse and the loyalties
ommuni
ate about the pur
hases made with the
ard. For e�
ien
y reasons, the ele
troni
 purse keeps a log table of all
redit anddebit transa
tions, and the loyalty applets
an request the (relevant) informationstored in this table. Further, loyalties might have so�
alled partner loyalties,whi
h means that a user
an add up the points obtained with the di�erentloyalty programs. Therefore, ea
h loyalty should keep tra
k of its balan
e and aso�
alled extended balan
e. If the user wishes to know how many loyalty pointsare available exa
tly, the loyalty applet will ask for the relevant entries of thepurse's log table in order to update its balan
e, and it will also ask the balan
esof partner loyalties in order to
ompute the extended balan
e.If the log table is full, existing entries will be repla
ed by new transa
tions.In order to ensure that loyalties do not miss any of the logged transa
tions, they
an subs
ribe to the so�
alled logFull servi
e. This servi
e signals all subs
ribedloyalties that the log table will be overwritten soon, and that therefore theyshould update their balan
es. Typi
ally, loyalties will have to pay for this servi
e.Suppose we have an ele
troni
 purse, whi
h
ontains besides the ele
troni
purse itself two partner loyalties, say L1 and L2. Further, suppose that L1 hassubs
ribed to the logFull servi
e, while L2 has not. If in rea
tion to the logFullmessage L1 always
alls an interfa
e method of L2 (say to ask for its balan
e),
L2
an impli
itly dedu
e that the log table might be full. A mali
ious imple-mentation of L2 might therefore request the information stored in the log tablebefore returning the value of its lo
al balan
e to L1. If loyalties have to pay forthe logFull servi
e, su
h
ontrol �ow is unwanted, sin
e the owner of the Purseapplet will not want other loyalties to get this information for free.This is a typi
al example of an illi
it applet intera
tion, that our
ompo-sitional veri�
ation te
hnique
an dete
t. Below, we show how the absen
e ofthis parti
ular undesired s
enario
an be spe
i�ed and veri�ed algorithmi
ally.We allow an arbitrary number of loyalty applets on the
ard. Sin
e all loyaltyapplets have the same interfa
e, we apply
lass�based analysis. We assume that

at veri�
ation time only the Purse applet has been loaded on the
ard; the
odeof the loyalty applet
lass is not yet available. We use
ompositional reasoningto redu
e the global behavioural property expressing the absen
e of the s
enariodes
ribed above to lo
al stru
tural properties of the purse and loyalty applet
lasses. The purse applet
ode is then
he
ked against its stru
tural property.When the loyalty applet
ode be
omes available, possibly after the
ard has beenissued, it is
he
ked against its stru
tural property before loading it on the
ard.5 Spe
i�
ationThis se
tion presents the formalisation of the global and lo
al se
urity propertiesthat we need for our example. The next se
tion dis
usses the veri�
ation of thede
omposition and of the implementations w.r.t. the lo
al properties.As mentioned above,
ommuni
ation between applets takes pla
e via so�
alled shareable interfa
es. The Purse applet de�nes a shareable interfa
e for
ommuni
ation with loyalty applets,
ontaining among others the methods get-Transa
tion, and isThereTransa
tion. The Loyalty applet de�nes shareable in-terfa
es for
ommuni
ation with Purse and with other loyalty applets,
ontainingamong others the method logFull. The set I+

P denotes the methods provided byPurse, and MSI
L denotes the set of shareable interfa
e methods of Loyalty.The Global Se
urity Property To guarantee that no loyalty will get the opportu-nity to
ir
umvent subs
ribing to the logFull servi
e, we require that if the Purse
alls the logFull method of a loyalty, within this
all the loyalty does not
ommu-ni
ate with other loyalties. However, as the logFull method is supposed to
allthe Purse for its transa
tions, we also have to ex
lude indire
t
ommuni
ations,via the Purse. We require the following global behavioural property:A
all to Loyalty.logFull does not trigger any
alls to any other loyalty.This property
an be formalised with the help of behavioural patterns:(φ) Within Loyalty.logFull(CanNotCall Loyalty MSI

L) ∧ (CanNotCall Purse MSI
L)Thus, if loyalty re
eives a logFull message, it
annot
all any other loyalty (be-
ause it
annot
all any of its shareable interfa
e methods), and in addition, ifthe Purse is a
tivated within the
all to logFull, it
annot
all any loyalty applet.Property De
omposition Next, we phrase lo
al stru
tural properties for Purseand Loyalty. Here we explain their formalisation; Se
tion 6 presents how we a
tu-ally verify that they are su�
ient to guarantee the global behavioural property.Within Loyalty.logFull, the Loyalty applet has to
all the methods Purse.isThere-Transa
tion and Purse.getTransa
tion, but it should not make any other exter-nal
alls (where
alls to shareable interfa
e methods of Loyalty are
onsideredexternal4). Thus, a natural stru
tural property for Loyalty would be, informally:4 Noti
e that sin
e we are performing
lass�based analysis, we
annot distinguish be-tween
alls to interfa
e methods of other instan
es, and those of the same instan
e.

From any entry point of Loyalty.logFull, the only rea
hable external
allsare
alls to Purse.isThereTransa
tion and Purse.getTransa
tion.Rea
hability is understood in terms of an extended graph of Loyalty
ontainingexpli
it inter�method
all edges.For the Purse applet we know that within a
all to Loyalty.logFull it
anonly be a
tivated via Purse.isThereTransa
tion or Purse.getTransa
tion.From any entry point of Purse.isThereTransa
tion or Purse.getTransa
tion,no external
all is rea
hable.Again, rea
hability should be understood in terms of a graph
ontaining expli
itinter�method
all edges. As our program model does not
ontain these, theabove properties
annot be formalised dire
tly in our logi
. However, they
an beformalised on a meta�level; for example for the Purse, the property holds, if andonly if there exist sets of methods MgT ⊆ I+

P ,
ontaining Purse.getTransa
tion,and MiTT ⊆ I+

P ,
ontaining Purse.isThereTransa
tion, su
h that:(σP) HasNoOutsideCalls MiTT ∧ HasNoOutsideCalls MgTThese sets represent the methods in Purse whi
h
an be
alled transitively fromPurse.isThereTransa
tion and Purse.getTransa
tion, respe
tively. We
an usethe Applet Analyser to �nd them. Similarly, to express the property for Loyaltywe need a set of methods MlF ⊆ I+

L
ontaining Loyalty.logFull, su
h that:(σL) MlF HasNoCallsTo I−L \
(

M \ MSI
L

)where M = MlF ∪ {Purse.isThereT ransaction, Purse.getT ransaction}. Callsto MSI
L are ex
luded, sin
e, as explained above, the methods in MSI

L are treatedas external. Sin
e we assume that the
ode of the loyalty applet
lass is not yetavailable at veri�
ation time, MlF has to be guessed. Here we take the (possiblytoo) simple
hoi
e MlF = {Loyalty.logFull}. Under this
hoi
e, σL simpli�es to
MlF HasNoCallsTo I−L \ {Purse.isThereT ransaction, Purse.getT ransaction}.However, if later one wishes to load an implementation of Loyalty with a di�erentset MlF ,
orre
tness of the de
omposition
an be re�established automati
ally.6 Veri�
ationNow that we have spe
i�ed global and lo
al se
urity properties, we have to show:(1) the lo
al properties are su�
ient to establish the global se
urity property, and(2) the implementations of the di�erent applets respe
t the lo
al properties. Inorder to do this, we identify the following (independent) tasks, dis
ussed below.1. Verifying the
orre
tness of the property de
omposition by:(a) building θIP

(σP) and θIL
(σL), the maximal applets for σP and σL; and(b) model
he
king θIP

(σP) ⊎ θIL
(σL) |=b φ.2. Verifying the lo
al stru
tural properties by:

nodes # edges
onstr. time
σL 474 277 700 25 min.
σP 2 786 603 128 13 hrs.Table 2. Statisti
s for maximal applet
onstru
tion.(a) extra
ting the applet graphs P of the Purse and L of the Loyalty ; and(b) model
he
king P |=s σP and L |=s σL.As explained above, we have developed a tool set to support these veri�
ationtasks,
ombining existing model
he
king tools (CWB and Alfred) with our owntools (Maximal Model Constru
tor, Applet Analyser and the Model Generator).6.1 Corre
tness of the Property De
ompositionTo
he
k
orre
tness of the property de
omposition, we
onstru
t maximal ap-plets w.r.t. the spe
i�
ations of the Purse and the Loyalty, and verify whethertheir
omposition respe
ts the global behavioural property.Constru
ting Maximal Applets Given applet interfa
e I and stru
tural safetyproperty σ, we produ
e θI(σ), the maximal applet for I and σ, using the pro
e-dure des
ribed in [14℄, implemented in O
aml as the Maximal Model Constru
-tor. The
onstru
tion pro
eeds in three steps. First, the interfa
e I is translatedinto a stru
tural safety property
hara
terising all behaviour possible under thisinterfa
e. Then, the
onjun
tion of this formula and the property σ is trans-formed into a semanti
ally equivalent normal form, whi
h
an dire
tly be trans-lated into a model. This model is the maximal applet θI(σ). In general, the sizeof a maximal applet is exponential in the size of the input. We implementedsome optimisations, whi
h save both time and, more importantly, memory.In the maximal applet for σL we

iTT, gTiTT, gT, eps

v1

v2 Loyalty.m, r

Loyalty.m

I−, eps

v1

v2 Loyalty.logFull, r

Loyalty.logFull

iTT, gT, eps

iTT, gT, eps I−, eps

iTT, gT, eps

I−, eps

I−, epsFig. 2. Methods in θIL
(σL)

an distinguish between two kinds ofmethods, whi
h are illustrated in Fig-ure 2: the methods in MlF (that islogFull) have the left method graph,and only
ontain
alls to Purse.iTTand Purse.gT. All other methods pro-vided by Loyalty have the form of theright method graph, and do not
on-tain any restri
tions on the method
alls. Ea
h method of the applet θIL
(σL) hastwo nodes. The maximal applet for σP is similar, but ea
h method
onsists of twoto eight nodes depending on the set it belongs to (MiTT , MgT or I+

P). Table 2provides statisti
s on the size of the
onstru
ted graphs, and the
orresponding
onstru
tion time on a Pentium 1.9 GHz ma
hine.

lasses # methods # nodes # edges extr. time verif. timeLoyalty 11 237 3 782 4 372 5.6 se
. 12 se
.Purse 15 367 5 882 7 205 7.5 se
. 19 se
.Table 3. Statisti
s on applet graph extra
tion and veri�
ation.Model Che
king Behavioural Properties On
e the maximal applets θIP
(σP) and

θIL
(σL) are
onstru
ted, we produ
e their
omposition θIP

(σP) ⊎ θIL
(σL). Thebehaviour of this applet is a (possibly in�nite state) model generated by a push-down automaton (PDA) given as a set of produ
tion rules. The model
he
kingproblem for this
lass of models is exponential both in the size of the formulaand in the number of
ontrol states of the PDA [7℄. We base our experiments onAlfred [13℄, a demonstrator tool for model
he
king alternation�free modal µ�
al
ulus properties of PDAs. We developed the Model Generator � implementedin Java � to translate applet graphs (in this
ase θIP

(σP) ⊎ θIL
(σL)) to a PDArepresentation, whi
h serves as input to Alfred. We were su

essful in
he
king
orre
tness of (similar) property de
ompositions for applets with a small numberof interfa
e methods; when dealing with applets with large interfa
es as in our
ase study, however, Alfred failed to s
ale up. Currently, we are investigatinghow to en
ode applets more e�
iently, into
ontext-free pro
esses, whi
h areequivalent to PDAs with a single
ontrol state. For this
lass of pro
esses themodel
he
king
omplexity be
omes polynomial in the number of produ
tions.6.2 Corre
tness of the Lo
al Stru
tural PropertiesExtra
ting Applet Graphs The Applet Analyser is used to extra
t applet graphsand the appropriate set of entry points from the byte
ode of an applet. This is astati
 analysis tool, built on top of the SOOT Java Optimization Framework [15℄.The byte
ode of a Java Card applet is transformed into Jimple basi
 blo
ks,while abstra
ting away variables, method parameters, and
alls to methods ofthe Java Card API. We use SOOT's standard
lass hierar
hy analysis to produ
ea safe over-approximation of the
all graph. If, for example, the stati
 analysis
annot determine the re
eiver of a virtual method
all, a
all edge is generatedfor every possible method implementation. Table 3 provides statisti
s on theextra
ted applet graphs.Model Che
king Stru
tural Properties Applet graphs
an be viewed as �niteKripke stru
tures. This allows stru
tural properties expressed in temporal log-i
s to be
he
ked using standard model
he
king tools su
h as CWB [9℄. TheKripke stru
tures of the CWB are labelled transition systems generated fromCCS pro
ess de�nitions. For this purpose, we use the Model Generator to
on-vert applet graphs into a representation as CCS pro
esses. Sin
e CCS does nothave the notion of valuation, atomi
 propositions p assigned to a node in an ap-plet are represented by probes, that is, self�loops labelled by p. The translation

also produ
es a set of pro
ess
onstants
orresponding to the entry nodes of therespe
tive applet. To model
he
k an applet graph against a stru
tural safetyproperty, all initial states have to be
he
ked individually. We en
ode the prop-erties to be
he
ked as µ�
al
ulus formulae, repla
ing atomi
 propositions p by
〈p〉 true. Sin
e CWB supports parametrised formulae, our spe
i�
ation patterns
an dire
tly be en
oded.When verifying L |=s σL, we realised that in fa
t the
hoi
e of MlF was toooptimisti
, as the implementation of Loyalty.logFull uses several other (internal)methods. Using the Applet Analyser we
omputed MlF as the set of methodsrea
hable from Loyalty.logFull, adapted the spe
i�
ation σL and reveri�ed L |=s

σL. Reverifying the de
omposition
an be done automati
ally. The last
olumnin Table 3 gives the veri�
ation times for model
he
king P |=s σP and L |=s σLon a Pentium 1.9 GHz ma
hine.7 Con
lusionsThis paper demonstrates a method to dete
t illi
it intera
tions between applets,installed on a single smart
ard. The method is
ompositional, and thereforesupports se
ure post�issuan
e loading of applets. In parti
ular, the method al-lows to establish global
ontrol �ow safety properties for a
omposed system,provided su�
ient lo
al properties are given for the applets. When the appletsare loaded (post�issuan
e) it only remains to be shown that they respe
t theirlo
al property. while the global properties
an be stru
tural or behavioural, thelo
al properties need to be stru
tural. To support the spe
i�
ation pro
ess, a
ol-le
tion of spe
i�
ation patterns is proposed, with appropriate translations intothe underlying logi
.We assembled a tool set �
ombining existing and newly developed tools � tosupport the veri�
ation tasks that arise in our method. On
e the spe
i�
ationsare available, all veri�
ations
an be done using push�button te
hnology. Thus,it
an be automati
ally
he
ked whether an applet
an be a

epted on the
ard.The
ase study shows that the presented veri�
ation method and tool set
an be used in pra
ti
e for guaranteeing absen
e of illi
it applet intera
tions.However, there are some possibilities for improvement. Finding suitable lo
alproperties, whi
h requires ingenuity, is
ompli
ated by the requirement of for-mulating lo
al properties stru
turally. Another di�
ulty stems from the inherentalgorithmi

omplexity of two of the tasks: both maximal model
onstru
tion andmodel
he
king behavioural properties are problems exponential in the size ofthe formula, thus making optimisations of these algorithms
ru
ial for their su
-
essful appli
ation. For some
ommon property patterns su
h as Everywhere σ,the size of the formula depends on the size of the interfa
e. Therefore, it is
ru
ialto develop abstra
tion te
hniques to abstra
t away from method names whi
hare irrelevant to the given property.Future work will thus go into �ne�tuning the notion of interfa
e, by de�ningpubli
 and private interfa
es. Now interfa
es
ontain all methods provided andrequired by a method. We wish to restri
t the veri�
ation of the global safety

properties to publi
 interfa
es,
ontaining only the externally visible methods,provided and required by an applet. In order to
he
k whether an implementa-tion respe
ts its lo
al property, we will need to de�ne an appropriate notion ofhiding. We also intend to extend the set of spe
i�
ation patterns that we use,by investigating whi
h
lasses of se
urity properties generally are used. Finally,on a more theoreti
al side, we will study if we
an extend the expressiveness ofthe logi
 used (e.g. by adding diamond modalities) and under what
onditionswe
an allow behavioural lo
al properties.Referen
es1. G. Barthe, D. Gurov, and M. Huisman. Compositional veri�
ation of se
ure appletintera
tions. In R.-D. Kuts
he and H. Weber, editors, Fundamental Approa
hes toSoftware Engineering 2002, number 2306 in LNCS, pages 15�32. Springer, 2002.2. F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model
he
king se
urityproperties of
ontrol �ow graphs. J. of Computer Se
urity, 9(3):217�250, 2001.3. A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety forbran
hing time semanti
s. In Automata, Languages and Programming, pages 76�92, 1991.4. Ahmed Bouajjani, Javier Esparza, and Oded Maler. Rea
hability analysis of push-down automata: Appli
ation to model-
he
king. In International Conferen
e onCon
urren
y Theory, pages 135�150, 1997.5. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - se
ond generationof a Java model
he
ker. In Workshop on Advan
es in Veri�
ation, 2000.6. E. Bretagne, A. El Marouani, P. Girard, and J.-L. Lanet. Pa
ap purse and loyaltyspe
i�
ation. Te
hni
al Report V 0.4, Gemplus, 2000.7. O. Burkart, D. Cau
al, F. Moller, and B. Ste�en. Veri�
ation on in�nite stru
tures.In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Pro
ess Algebra,pages 545�623. North Holland, 2000.8. G. Chugunov, L.-å. Fredlund, and D. Gurov. Model
he
king of multi-applet Java-Card appli
ations. In CARDIS'02, pages 87�95. USENIX Publi
ations, 2002.9. R. Cleaveland, J. Parrow, and B. Ste�en. A semanti
s based veri�
ation tool for�nite state systems. In Pro
. 9th IFIP Symp. Proto
ol Spe
i�
ation, Veri�
ationand Testing, 1989.10. J. Corbett, M. Dwyer, J. Hat
li�, and Robby. A language framework for expressing
he
kable properties of dynami
 software. In SPIN Model Che
king and SoftwareVeri�
ation, number 1885 in LNCS. Springer, 2000.11. J. Hat
li� and M. Dwyer. Using the Bandera tool set to model-
he
k propertiesof
on
urrent Java software. Te
hni
al report, SAnToS Laboratory, Departmentof Computing and Information S
ien
es, Kansas State University, 2000.12. D. Kozen. Results on the propositional µ-
al
ulus. TCS, 27:333�354, 1983.13. D. Polanský. Verifying properties of in�nite-state systems. Master's thesis,Masaryk University, Fa
ulty of Informati
s, Brno, 2000.14. C. Sprenger, D. Gurov, and M. Huisman. Simulation logi
, applets and
omposi-tional veri�
ation. Te
hni
al Report RR-4890, INRIA, 2003.15. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -a Java Optimization Framework. In CASCON 1999, pages 125�135, 1999.

