
A NOTE ON GLOBAL INDUCTION MECHANISMS IN A �-CALCULUSWITH EXPLICIT APPROXIMATIONSCHRISTOPH SPRENGER AND MADS DAM1. Introdu
tionThe �rst-order �-
al
ulus [7℄ provides a useful setting for semi-automati
 program veri�
ation.It is expressive enough to en
ode, from the bottom up, a range of program logi
s (e.g. LTL, CTL,CTL*, Hoare Logi
) as well as pro
ess 
al
uli and programming languages in
luding their datatypes and operational semanti
s. A framework based on this idea is des
ribed in [4℄ and has beenapplied to a substantial part of a real 
on
urrent programming language Erlang in the ErlangVeri�
ation Tool [1℄.A key aspe
t in the design of su
h a framework is proof sear
h, in parti
ular the handling of�xed point formulas. The standard approa
h, Park's �xed point indu
tion rule (
f. [5℄), is notsuitable for proof sear
h in pra
ti
e. An alternative is to admit 
y
li
 proof stru
tures (
f. [6, 10, 3℄)and look for sound dis
harge 
onditions whi
h will ensure the well-foundedness of the indu
tivereasoning. In this paper, we study su
h dis
harge 
onditions in the 
ontext of a Gentzen-styleproof system for the �rst-order �-
al
ulus, whi
h is a variant of previous systems [3, 4, 8, 9℄. Inparti
ular, it shares with [3, 4, 8℄ the te
hnique, �rst proposed for the modal �-
al
ulus in [3℄,of introdu
ing expli
it approximation ordinal variables and ordering 
onstraints between theminto the proof system. Dis
harge 
onditions then rely on these ordering 
onstraints. The useof approximation ordinals 
onsiderably simpli�es earlier treatments (
f. [2℄). A simple semanti

ondition was proposed in [3℄ expressing in a natural way the requirement of well-foundedness ofall indu
tive reasoning. Due to its semanti
al nature it is not suitable for the purpose of pra
ti
alproof. However, it serves as a useful referen
e to whi
h other, more synta
ti
al 
onditions may be
ompared.Previous synta
ti
 dis
harge 
onditions [3, 4, 8℄ turn out to be stri
tly stronger than the semanti

ondition. The main 
ontribution of the present paper is the formulation of a synta
ti
 
onditionthat pre
isely mat
hes the semanti
 one. We introdu
e tra
es whi
h are non-in
reasing (w.r.t.the ordering 
onstraints) sequen
es of dependent ordinal variables running along a path in theproof stru
ture. They 
an be seen as a generalisation of the �- and �-tra
es in [6℄ to the settingof expli
it approximants. The 
hara
terisation result is then obtained by introdu
ing the notionof progress for tra
es and by establishing its 
lose 
orresponden
e with the semanti
 notion ofwell-foundedness. For pra
ti
al appli
ation we then give an automata-theoreti
 formulation of ourdis
harge 
ondition in terms of an in
lusion of the languages re
ognised by two Bü
hi automata.Finally, we remark that this work is part of a larger programme aiming at 
larifying the relationbetween the global, lazy indu
tion me
hanism used here and an eager indu
tion dis
ipline asimplemented in a lo
al proof rule for well-founded indu
tion on the ordinals.2. Logi
The logi
 we 
onsider augments �rst-order logi
 with two �xed point operators, a standard andan approximated one parametrised by an ordinal variable. Formulas � and abstra
tions �X of the�-
al
ulus over a �rst-order signature � are indu
tively de�ned as follows� ::= t = t0 j :� j �1 _ �2 j 9x:� j �X (t) and �X ::= X j �X(x):� j ��X(x):�where t ranges over �-terms, x over individual variables, � over ordinal variables and X overpredi
ate variables. Ea
h abstra
tion �X has the arity of X whi
h is required to mat
h the lengthsof the ve
tors x and t of individual variables and terms, respe
tively. Fixed point abstra
tionformation is subje
t to the usual synta
ti
 monotoni
ity 
ondition.1



A model M is a pair (A; �) where A is a �rst-order �-stru
ture with support set A and � isan A-environment interpreting ea
h variable a

ording to its type. Formulas are interpreted aselements of the two-point latti
e 2 = f0; 1g and n-ary abstra
tions as elements of Pred(An) = 2An ,the latti
e n-ary predi
ates over A under the pointwise ordering. For �rst-order formulas thesemanti
s is as expe
ted. For abstra
tions and their appli
ation we havekXkA� = �(X) k�X(x):�kA� = �	 k��X(x):�kA� = ��(�)	 k�X(t)kA� = k�XkA� (ktkA� )where 	 = �P:�a:k�kA�[P=X;a=x℄ : Pred(An)! Pred(An), �	 is the least �xed point of the (mono-tone) fun
tion 	 and ��(�)	 is the approximation �(�) of �	, both de�ned as usual.3. Proof RulesSequents of the proof system are of the form � `O �, where � and � are �nite multi-sets of �-
al
ulus formulas and O = (jOj; <O) is a stri
t partial order on a �nite set jOj of ordinal variables.Following [8℄ the latter is used to re
ord 
onstraints between ordinal variables. An environment �respe
ts O if �(�) < �(�) whenever � <O �. A sequent � `O � is valid if the formula V�! W�is satis�ed in all models M = (A; �), where � respe
ts O.The proof system extends the standard Gentzen-style rules for �rst-order logi
 with the followingrules for the �xed point operators (we omit an ordinal 
onstraint strengthening rule [8℄ for brevity):(�-L) �; (��X(x):�)(t) `O0 ��; (�X(x):�)(t) `O � � 62 jOj; O0=(jOj [ f�g; <O)(�-R) � `O �[�X(x):�=X; t=x℄;�� `O (�X(x):�)(t);�(��-L) �; �[��0X(x):�=X; t=x℄ `O0 ��; (��X(x):�)(t) `O � �0 62 jOj; O0 = (jOj [ f�0g; (<O [f(�0; �)g)+)(��-R) � `O �[��0X(x):�=X; t=x℄;�� `O (��X(x):�)(t);� �0 <O �4. Dis
harge ConditionsA derivation may be stopped at a leaf node N if N is a substitution instan
e of some node Min the derivation tree. It is worth noting thatM need not lie on the path from the root node to N .We write N(� `O �) to mean that N is labeled by the sequent � `O �. Given a nodeM(� `O �)and a leaf N(�0 `O0 �0) of a derivation tree and a substitution �, we say that R = (M;N; �) is arepeat, if �� � �0, �� � �0 and O� � O0, where � is order-preserving in the latter in
lusion. Weassume that � maps predi
ate variables to predi
ate variables. N is 
alled a repeat node andM its
ompanion. A pre-proof P = (D;R) for � `O � is a derivation tree D whose root node is labeledby � `O � together with a set of repeats R su
h that ea
h non-axiom leaf of D belongs to exa
tlyone repeat in R. A path � = N0 � � �Ni � � � of P is a (�nite or in�nite) sequen
e of nodes of Dstarting in the root N0 of D su
h that for any two su

essive nodes Ni and Ni+1 either (Ni; Ni+1)is an edge of D or there is a substitution � su
h that (Ni+1; Ni; �) 2 R is a repeat.Intuitively, ea
h repeat should 
orrespond to the appli
ation of an indu
tion hypothesis, butwe need to make sure that the indu
tive reasoning embodied in ea
h individual repeat and their
ombinations is indeed well-founded. This requires a (ne
essarily global) dis
harge 
ondition thatidenti�es the legal proofs. We present three su
h 
onditions, the semanti
al one from [3℄, a newsynta
ti
al 
ondition as well as its automata-theoreti
 formulation and establish their equivalen
e.Let P = (D;R) be a pre-proof, A a �-stru
ture and � = (N0; �0) � � � (Ni; �i) � � � a (�nite orin�nite) sequen
e of pairs of nodes Ni(�i `Oi �i) of D and A-environments �i. Then � is 
alleda run of P if N0 is the root of D, ea
h �i respe
ts Oi and for ea
h pair (Ni; Ni+1) either(1) (Ni; Ni+1) is an edge of D and �i+1; �i agree on free variables 
ommon to Ni and Ni+1, or(2) (Ni+1; Ni; �) 2 R is a repeat and �i+1 = �i Æ �.The run � is said to follow the path � = N0 � � �Ni � � �. A pre-proof P for � `O � satis�es dis
harge
ondition (R-DC) if all runs of P are �nite, in whi
h 
ase P is 
alled a proof for � `O �.2



Theorem 1. (Soundness) If there is a proof for � `O � then � `O � is valid.As 
ondition (R-DC) 
aptures the well-foundedness of the reasoning in a pre-proof in a verynatural way, it serves as our referen
e dis
harge 
ondition. Due to its semanti
al nature it is, how-ever, hardly usable in pra
ti
al proofs and we therefore introdu
e an alternative, purely synta
ti
al,dis
harge 
ondition.Let � = (N0; w0) � � � (Ni; wi) � � � be a (�nite or in�nite) sequen
e of pairs of nodes Ni(�i `Oi �i)of D and non-empty words wi over the alphabet of ordinal variables. Then � is 
alled a tra
e ofP if wi(j) 2 jOij and wi(j + 1) <Oi wi(j) for all i and j and for ea
h pair (Ni; Ni+1) either(1) (Ni; Ni+1) is an edge of D and wi(�) = wi+1(0), or(2) (Ni+1; Ni; �) is a repeat in R and wi(�) = �(wi+1(0)),where wi(�) denotes the last letter of wi. Intuitively, a tra
e � re
ords a sequen
e of verti
aldependen
ies (wi is a des
ending 
hain in Oi) and horizontal dependen
ies (linking Oi and Oi+1as in (1), (2)) between ordinal variables. So � roughly asso
iates a non-in
reasing 
hain of ordinalvariables with (a su�x of) a path. We say that a tra
e � progresses at position i if jwij > 1 andthat � is progressive if it progresses at in�nitely many positions. A path � of P is said to beprogressive if there is a progressive tra
e � = (N0; w0)(N1; w1) � � � su
h that N0N1 � � � is a su�x of�. Our synta
ti
 dis
harge 
ondition (T-DC) requires that all in�nite paths of P are progressive.If an in�nite path � is progressive, as witnessed by some � , then it 
annot be followed by an in�niterun, as respe
ting the dependen
ies in � would lead to an in�nite de
reasing 
hain of ordinals.Conversely, � 
an be extended to an in�nite run if there is no progressive tra
e following �. Thus,Theorem 2. A pre-proof satis�es (R-DC) if and only if it satis�es (T-DC).We now turn to an automata-theoreti
 formulation of these 
onditions, whi
h is more suitablefor the pra
ti
al appli
ation in a proof tool. Let P = (D;R) be a pre-proof. Sin
e Oi � Oi+1whenever (Ni; Ni+1) is an edge ofD, we may without loss of generality for 
ondition (T-DC) restri
tour attention to the normal tra
es of P making progress at most at repeat nodes. Based on thisobservation we 
onstru
t two Bü
hi automata over the alphabet R. Automaton B1 re
ognisessequen
es of repeats that are traversed on paths of P . Automaton B2 re
ognises sequen
es ofrepeats that are from some point on 
onne
ted through the ordinal variables they preserve. Morepre
isely, let s = R0R1 � � � be a sequen
e of repeats with Ri = (Mi; Ni; �i) and Ni(�i `Oi �i).Then r = �j(�j ; Rj ; �j+1)(�j+1; Rj+1; �j+2)(�j+2; Rj+2; �j+3) � � � is a run of B2 on s if j � 0 and�i(�i+1) �Oi �i for all i � j. It is a

epting if �i(�i+1) <Oi �i for in�nitely many i. Note that ifu 2 L(B1) then r indu
es a normal tra
e, whi
h is progressive pre
isely if r is a

epting. Hen
e,Theorem 3. A pre-proof satis�es (T-DC) if and only if L(B1) � L(B2).Referen
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