
A NOTE ON GLOBAL INDUCTION MECHANISMS IN A �-CALCULUSWITH EXPLICIT APPROXIMATIONSCHRISTOPH SPRENGER AND MADS DAM1. IntrodutionThe �rst-order �-alulus [7℄ provides a useful setting for semi-automati program veri�ation.It is expressive enough to enode, from the bottom up, a range of program logis (e.g. LTL, CTL,CTL*, Hoare Logi) as well as proess aluli and programming languages inluding their datatypes and operational semantis. A framework based on this idea is desribed in [4℄ and has beenapplied to a substantial part of a real onurrent programming language Erlang in the ErlangVeri�ation Tool [1℄.A key aspet in the design of suh a framework is proof searh, in partiular the handling of�xed point formulas. The standard approah, Park's �xed point indution rule (f. [5℄), is notsuitable for proof searh in pratie. An alternative is to admit yli proof strutures (f. [6, 10, 3℄)and look for sound disharge onditions whih will ensure the well-foundedness of the indutivereasoning. In this paper, we study suh disharge onditions in the ontext of a Gentzen-styleproof system for the �rst-order �-alulus, whih is a variant of previous systems [3, 4, 8, 9℄. Inpartiular, it shares with [3, 4, 8℄ the tehnique, �rst proposed for the modal �-alulus in [3℄,of introduing expliit approximation ordinal variables and ordering onstraints between theminto the proof system. Disharge onditions then rely on these ordering onstraints. The useof approximation ordinals onsiderably simpli�es earlier treatments (f. [2℄). A simple semantiondition was proposed in [3℄ expressing in a natural way the requirement of well-foundedness ofall indutive reasoning. Due to its semantial nature it is not suitable for the purpose of pratialproof. However, it serves as a useful referene to whih other, more syntatial onditions may beompared.Previous syntati disharge onditions [3, 4, 8℄ turn out to be stritly stronger than the semantiondition. The main ontribution of the present paper is the formulation of a syntati onditionthat preisely mathes the semanti one. We introdue traes whih are non-inreasing (w.r.t.the ordering onstraints) sequenes of dependent ordinal variables running along a path in theproof struture. They an be seen as a generalisation of the �- and �-traes in [6℄ to the settingof expliit approximants. The haraterisation result is then obtained by introduing the notionof progress for traes and by establishing its lose orrespondene with the semanti notion ofwell-foundedness. For pratial appliation we then give an automata-theoreti formulation of ourdisharge ondition in terms of an inlusion of the languages reognised by two Bühi automata.Finally, we remark that this work is part of a larger programme aiming at larifying the relationbetween the global, lazy indution mehanism used here and an eager indution disipline asimplemented in a loal proof rule for well-founded indution on the ordinals.2. LogiThe logi we onsider augments �rst-order logi with two �xed point operators, a standard andan approximated one parametrised by an ordinal variable. Formulas � and abstrations �X of the�-alulus over a �rst-order signature � are indutively de�ned as follows� ::= t = t0 j :� j �1 _ �2 j 9x:� j �X (t) and �X ::= X j �X(x):� j ��X(x):�where t ranges over �-terms, x over individual variables, � over ordinal variables and X overprediate variables. Eah abstration �X has the arity of X whih is required to math the lengthsof the vetors x and t of individual variables and terms, respetively. Fixed point abstrationformation is subjet to the usual syntati monotoniity ondition.1



A model M is a pair (A; �) where A is a �rst-order �-struture with support set A and � isan A-environment interpreting eah variable aording to its type. Formulas are interpreted aselements of the two-point lattie 2 = f0; 1g and n-ary abstrations as elements of Pred(An) = 2An ,the lattie n-ary prediates over A under the pointwise ordering. For �rst-order formulas thesemantis is as expeted. For abstrations and their appliation we havekXkA� = �(X) k�X(x):�kA� = �	 k��X(x):�kA� = ��(�)	 k�X(t)kA� = k�XkA� (ktkA� )where 	 = �P:�a:k�kA�[P=X;a=x℄ : Pred(An)! Pred(An), �	 is the least �xed point of the (mono-tone) funtion 	 and ��(�)	 is the approximation �(�) of �	, both de�ned as usual.3. Proof RulesSequents of the proof system are of the form � `O �, where � and � are �nite multi-sets of �-alulus formulas and O = (jOj; <O) is a strit partial order on a �nite set jOj of ordinal variables.Following [8℄ the latter is used to reord onstraints between ordinal variables. An environment �respets O if �(�) < �(�) whenever � <O �. A sequent � `O � is valid if the formula V�! W�is satis�ed in all models M = (A; �), where � respets O.The proof system extends the standard Gentzen-style rules for �rst-order logi with the followingrules for the �xed point operators (we omit an ordinal onstraint strengthening rule [8℄ for brevity):(�-L) �; (��X(x):�)(t) `O0 ��; (�X(x):�)(t) `O � � 62 jOj; O0=(jOj [ f�g; <O)(�-R) � `O �[�X(x):�=X; t=x℄;�� `O (�X(x):�)(t);�(��-L) �; �[��0X(x):�=X; t=x℄ `O0 ��; (��X(x):�)(t) `O � �0 62 jOj; O0 = (jOj [ f�0g; (<O [f(�0; �)g)+)(��-R) � `O �[��0X(x):�=X; t=x℄;�� `O (��X(x):�)(t);� �0 <O �4. Disharge ConditionsA derivation may be stopped at a leaf node N if N is a substitution instane of some node Min the derivation tree. It is worth noting thatM need not lie on the path from the root node to N .We write N(� `O �) to mean that N is labeled by the sequent � `O �. Given a nodeM(� `O �)and a leaf N(�0 `O0 �0) of a derivation tree and a substitution �, we say that R = (M;N; �) is arepeat, if �� � �0, �� � �0 and O� � O0, where � is order-preserving in the latter inlusion. Weassume that � maps prediate variables to prediate variables. N is alled a repeat node andM itsompanion. A pre-proof P = (D;R) for � `O � is a derivation tree D whose root node is labeledby � `O � together with a set of repeats R suh that eah non-axiom leaf of D belongs to exatlyone repeat in R. A path � = N0 � � �Ni � � � of P is a (�nite or in�nite) sequene of nodes of Dstarting in the root N0 of D suh that for any two suessive nodes Ni and Ni+1 either (Ni; Ni+1)is an edge of D or there is a substitution � suh that (Ni+1; Ni; �) 2 R is a repeat.Intuitively, eah repeat should orrespond to the appliation of an indution hypothesis, butwe need to make sure that the indutive reasoning embodied in eah individual repeat and theirombinations is indeed well-founded. This requires a (neessarily global) disharge ondition thatidenti�es the legal proofs. We present three suh onditions, the semantial one from [3℄, a newsyntatial ondition as well as its automata-theoreti formulation and establish their equivalene.Let P = (D;R) be a pre-proof, A a �-struture and � = (N0; �0) � � � (Ni; �i) � � � a (�nite orin�nite) sequene of pairs of nodes Ni(�i `Oi �i) of D and A-environments �i. Then � is alleda run of P if N0 is the root of D, eah �i respets Oi and for eah pair (Ni; Ni+1) either(1) (Ni; Ni+1) is an edge of D and �i+1; �i agree on free variables ommon to Ni and Ni+1, or(2) (Ni+1; Ni; �) 2 R is a repeat and �i+1 = �i Æ �.The run � is said to follow the path � = N0 � � �Ni � � �. A pre-proof P for � `O � satis�es dishargeondition (R-DC) if all runs of P are �nite, in whih ase P is alled a proof for � `O �.2



Theorem 1. (Soundness) If there is a proof for � `O � then � `O � is valid.As ondition (R-DC) aptures the well-foundedness of the reasoning in a pre-proof in a verynatural way, it serves as our referene disharge ondition. Due to its semantial nature it is, how-ever, hardly usable in pratial proofs and we therefore introdue an alternative, purely syntatial,disharge ondition.Let � = (N0; w0) � � � (Ni; wi) � � � be a (�nite or in�nite) sequene of pairs of nodes Ni(�i `Oi �i)of D and non-empty words wi over the alphabet of ordinal variables. Then � is alled a trae ofP if wi(j) 2 jOij and wi(j + 1) <Oi wi(j) for all i and j and for eah pair (Ni; Ni+1) either(1) (Ni; Ni+1) is an edge of D and wi(�) = wi+1(0), or(2) (Ni+1; Ni; �) is a repeat in R and wi(�) = �(wi+1(0)),where wi(�) denotes the last letter of wi. Intuitively, a trae � reords a sequene of vertialdependenies (wi is a desending hain in Oi) and horizontal dependenies (linking Oi and Oi+1as in (1), (2)) between ordinal variables. So � roughly assoiates a non-inreasing hain of ordinalvariables with (a su�x of) a path. We say that a trae � progresses at position i if jwij > 1 andthat � is progressive if it progresses at in�nitely many positions. A path � of P is said to beprogressive if there is a progressive trae � = (N0; w0)(N1; w1) � � � suh that N0N1 � � � is a su�x of�. Our syntati disharge ondition (T-DC) requires that all in�nite paths of P are progressive.If an in�nite path � is progressive, as witnessed by some � , then it annot be followed by an in�niterun, as respeting the dependenies in � would lead to an in�nite dereasing hain of ordinals.Conversely, � an be extended to an in�nite run if there is no progressive trae following �. Thus,Theorem 2. A pre-proof satis�es (R-DC) if and only if it satis�es (T-DC).We now turn to an automata-theoreti formulation of these onditions, whih is more suitablefor the pratial appliation in a proof tool. Let P = (D;R) be a pre-proof. Sine Oi � Oi+1whenever (Ni; Ni+1) is an edge ofD, we may without loss of generality for ondition (T-DC) restritour attention to the normal traes of P making progress at most at repeat nodes. Based on thisobservation we onstrut two Bühi automata over the alphabet R. Automaton B1 reognisessequenes of repeats that are traversed on paths of P . Automaton B2 reognises sequenes ofrepeats that are from some point on onneted through the ordinal variables they preserve. Morepreisely, let s = R0R1 � � � be a sequene of repeats with Ri = (Mi; Ni; �i) and Ni(�i `Oi �i).Then r = �j(�j ; Rj ; �j+1)(�j+1; Rj+1; �j+2)(�j+2; Rj+2; �j+3) � � � is a run of B2 on s if j � 0 and�i(�i+1) �Oi �i for all i � j. It is aepting if �i(�i+1) <Oi �i for in�nitely many i. Note that ifu 2 L(B1) then r indues a normal trae, whih is progressive preisely if r is aepting. Hene,Theorem 3. A pre-proof satis�es (T-DC) if and only if L(B1) � L(B2).Referenes[1℄ T. Arts, M. Dam, L. Fredlund, and D. Gurov. System desription: Veri�ation of distributed Erlang programs.In Pro. CADE'98, volume 1421 of Leture Notes in Arti�ial Intelligene, pages 38�41, 1998.[2℄ M. Dam. Proving properties of dynami proess networks. Information and Computation, 140:95�114, 1998.[3℄ M. Dam and D. Gurov. �-alulus with expliit points and approximations. In Fixed Points in ComputerSiene, FICS 2000, 2000.[4℄ L. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis, Royal Institute of Tehnology,Stokholm, Sweden, 2001.[5℄ D. Kozen. Results on the propositional �-alulus. Theoretial Computer Siene, 27:333�354, 1983.[6℄ D. Niwi«ski and I. Walukiewiz. Games for the �-alulus. Theoretial Computer Siene, 163:99�116, 1997.[7℄ D. Park. Finiteness is mu-ine�able. Theoretial Computer Siene, 3(2):173�181, 1976.[8℄ U. Shöpp. Formal veri�ation of proesses. Master's thesis, University of Edinburgh, 2001.[9℄ U. Shöpp and A. Simpson. Verifying temporal properties using expliit approximants: Completeness forontext-free proesses. In FOSSACS '02, Leture Notes in Computer Siene. Springer-Verlag, 2002. to appear.[10℄ C. Stirling and D. Walker. Loal model heking in the modal �-alulus. Theoretial Computer Siene,89:161�177, 1991.Christoph Sprenger, Swedish Institute of Computer Siene (SICS), Kista, SwedenE-mail address: sprenger�sis.seMads Dam, Royal Institute of Tehnology (KTH), Kista, SwedenE-mail address: mfd�kth.se 3


