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t. We investigate a Gentzen-style proof system for the �rst-order µ-
al
ulus based on 
y
li
 proofs, produ
ed by unfolding �xedpoint formulas and dete
ting repeated proof goals. Our system uses ex-pli
it ordinal variables and approximations to support a simple seman-ti
 indu
tion dis
harge 
ondition whi
h ensures the well-foundedness ofindu
tive reasoning. As the main result of this paper we propose a newsynta
ti
 dis
harge 
ondition based on tra
es and establish its equiva-len
e with the semanti
 
ondition. We give an automata-theoreti
 re-formulation of this 
ondition whi
h is more suitable for pra
ti
al proofs.For a detailed 
omparison with previous work we 
onsider two simplersynta
ti
 
onditions and show that they are more restri
tive than ournew 
ondition.1991 Mathemati
s Subje
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ation. 68Q60, 03F07, 03B35.1. Introdu
tionThe �rst-order µ-
al
ulus [9℄ provides a useful setting for semi-automati
 pro-gram veri�
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ode, from the bottom up, a rangeof program logi
s (e.g. LTL, CTL, CTL*, Hoare Logi
) as well as pro
ess 
al
uliand programming languages in
luding their data types and operational semanti
s.A framework based on this idea is des
ribed by Fredlund [6℄ and has been appliedto a substantial part of the 
on
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ation Tool [1℄. A key aspe
t in the design of su
h a framework is proof
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2 TITLE WILL BE SET BY THE PUBLISHERsear
h, in parti
ular the handling of �xed point formulas. The standard approa
h,Park's �xed point indu
tion rule (
f. [7℄), is not suitable for proof sear
h in pra
-tise. An alternative is to admit 
y
li
 proof stru
tures (
f. [2,4,8,14℄) and look forsound indu
tion dis
harge 
onditions, external global 
riteria that ensure the well-foundedness of the indu
tive reasoning. In this setting, proof trees are 
ompletedinto proof graphs by adding ba
k edges (
alled repeats) from non-axiom leafs tonodes of whi
h they are substitution instan
es. This type of proof is favourable toproof sear
h as it allows one to delay de
isions 
on
erning indu
tion strategies aslong as possible.In this paper, we study indu
tion dis
harge 
onditions in the 
ontext of aGentzen-style proof system for the �rst-order µ-
al
ulus and present a new synta
-ti
 
ondition, whi
h is weaker than previously published ones in the sense that itquali�es more proof stru
tures as valid proofs. Our proof system is a variant of pre-vious systems [4,6,11,12℄. In parti
ular, it shares with [4,6,11℄ the te
hnique, �rstproposed for the modal µ-
al
ulus by Dam and Gurov [4℄, of introdu
ing expli
itapproximation ordinal variables and ordering 
onstraints between them into theproof system. Dis
harge 
onditions then rely on these ordering 
onstraints. In thepresen
e of a Cut rule, the use of approximation ordinals 
onsiderably simpli�esearlier treatments (
f. [3℄). Dam and Gurov proposed a simple semanti
 dis
harge
ondition, whi
h essentially requires that no in�nite path in the proof stru
ture 
anbe assigned a 
oherent in�nite sequen
e of valuations. This 
ondition expresses ina natural way the requirement of well-foundedness of all indu
tive reasoning, butdue to its semanti
 nature it is not suitable for the purpose of pra
ti
al proof. Weshow that it is equivalent to our pra
ti
ally more useful synta
ti
 
ondition, whileprevious synta
ti
 
onditions [4, 6, 11℄ turn out to be stri
tly more restri
tive.Our new 
ondition relies on the notion of tra
es, whi
h are non-in
reasing 
hains(w.r.t. the ordering 
onstraints) of ordinal variables asso
iated with a path of aproof stru
ture. They 
an be seen as a uniform generalisation of the µ- and
ν-tra
es des
ribed by Niwi«ski and Walukiewi
z [8℄ to systems with a Cut ruleand expli
it approximants. We identify progress in a tra
e with positions wherea stri
t de
rease with respe
t to the 
onstraints o

urs. The equivalen
e withthe semanti
 
ondition is then established by showing that a tra
e progressingat in�nitely many positions implies well-foundedness on the semanti
 side and,
onversely, the absen
e of su
h a tra
e gives rise to non-wellfoundedness. Basedon the observation that every tra
e 
an be transformed into a normal tra
e whereprogress is made only at repeat nodes, we are able to give a 
ompa
t automata-theoreti
 
hara
terisation of our tra
e-based dis
harge 
ondition in terms of anin
lusion of the languages re
ognised by two Bü
hi automata. This formulationmay serve as the basis of an implementation in a proof tool su
h as the ErlangVeri�
ation Tool. Being weaker than previously known 
onditions, the automata-based 
riterion might be able to dete
t proofs where the others fail to do so, whi
his an advantage for semi-automati
 proof sear
h.For a detailed 
omparison of our new 
ondition with previously published work,we then turn our attention to two simpler dis
harge 
onditions. Common to bothof these is that they are based on progress and preservation properties of single



TITLE WILL BE SET BY THE PUBLISHER 3ordinal variables at the repeats of the proof stru
ture. The �rst 
ondition requiresthat in ea
h strongly 
onne
ted subgraph of the proof stru
ture there is a repeatprogressing on some ordinal variable, while all other repeats preserve that variable.We show how this 
ondition, whi
h is similar to one proposed by Fredlund [6℄(and [12℄, though in a somewhat di�erent setting), 
orresponds to a simpli�ed, butstri
tly stronger version of our automata-based 
ondition. Se
ondly, we restri
tour attention to the spe
ial 
ase of simple proof stru
tures, where repeats loopba
k to an
estral nodes (i.e. they point to a node on the path from the root to thedis
harged leaf) and introdu
e a new alternative notion of dis
harge where repeatsare organised in a partial order, 
alled indu
tion order. Progress and preservationproperties imposed on ea
h repeat then depend on its position in this order. Forsimple proof stru
tures this 
ondition generalises the one originally proposed byDam and Gurov [4℄ and is equivalent to both the previous one as well as to the
ondition presented by S
höpp [11℄. While drawing its inspiration from the latter,it is more lo
al in the sense that it avoids a quanti�
ation over strongly 
onne
tedsubgraphs.The outline of the rest of the paper is as follows. The next se
tion introdu
esthe µ-
al
ulus with expli
it approximations. Se
tion 3 presents the proof system,using the semanti
 indu
tion dis
harge 
ondition in the basi
 notion of proof. InSe
tion 4 we �rst introdu
e our tra
e-based dis
harge 
ondition and establish itsequivalen
e with the semanti
 one. Based on the notion of normal tra
es we thenpropose an automata-theoreti
 
hara
terisation of this 
ondition. Restri
ted formsof synta
ti
 dis
harge are dis
ussed in Se
tion 5 and 
ompared to previous work.Se
tion 6 
on
ludes the paper with a dis
ussion of the results and an outlook onfuture work.2. µ-Cal
ulus with Expli
it Approximations2.1. Fixed pointsWe �rst brie�y re
all some basi
 fa
ts from �xed point theory. Suppose A is anarbitrary set. Let 2 = {0, 1} be the two-point latti
e and let Pred(A) = 2
A be thelatti
e of predi
ates over A ordered pointwise.De�nition 2.1. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). Theordinal approximation µαΨ of the �xed point µΨ is de�ned by

µ0Ψ = λx.0
µα+1Ψ = Ψ(µαΨ)
µγΨ =

∨

α<γ µ
αΨ for a limit ordinal γTheorem 2.2. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). Then(1) µΨ =

∨

α µ
αΨ is the least �xed point of Ψ (Knaster-Tarski)(2) µαΨ =

∨

β<α Ψ(µβΨ)



4 TITLE WILL BE SET BY THE PUBLISHER2.2. SyntaxWe assume 
ountably in�nite sets of individual variables x, y, z, . . . ∈ VI , pred-i
ate variables Xn, Y n, Zn, . . . ∈ V n
P of ea
h arity n ≥ 0, and ordinal variables

ι, κ, λ, . . . ∈ VO. We write v, v′, . . . for variables of any of the aforementioned types.Let t, t′, . . . range over the terms of some �rst-order signature Σ. We write t for ave
tor t1, . . . , tn of terms, let |t| denote its length n and {t} the set {t1, . . . , tn}.De�nition 2.3. The syntax of µ-
al
ulus formulas φ and n-ary abstra
tions Φnover signature Σ is indu
tively de�ned by
φ ::= t = t′ | ¬φ | φ1 ∨ φ2 | ∃x.φ | ∃κ.φ | ∃κ′<κ.φ | Φn(t)
Φn ::= Xn | µXn(x).φ | µκXn(x).φwith the restri
tion that |x| = n in �xed point abstra
tions µXn(x).φ and approx-imation abstra
tions µκXn(x).φ, and |t| = n in appli
ations Φn(t). Furthermore,�xed point and approximation abstra
tion formation are subje
t to the usual for-mal monotoni
ity 
ondition requiring that ea
h o

urren
e of Xn in φ appears inthe s
ope of an even number of negation symbols.We will hen
eforth omit the arity annotations from predi
ate variables andassume that arities mat
h as required by the previous de�nition. The sets of freevariables of formulas and abstra
tions are de�ned as expe
ted. In parti
ular, wehave

fv(∃κ′<κ.φ) = (fv(φ) − {κ′}) ∪ {κ}
fv(Φ(t)) = fv(Φ) ∪ fv(t)
fv(µX(x).φ) = fv(φ) − {X,x}
fv(µκX(x).φ) = (fv(φ) − {X,x}) ∪ {κ}This is extended to sets of formulas ∆ by de�ning fv(∆) =

⋃

{fv(φ) | φ ∈ ∆}.We identify formulas and abstra
tions that di�er only by a renaming of theirbound variables. Dual 
onne
tives are de�ned from the primitive ones in the usualway. The greatest �xed point νX(x).φ and the greatest �xed point approximation
νκX(x).φ are de�ned by

νX(x).φ = ¬µX(x).¬φ[¬X/X ]
νκX(x).φ = ¬µκX(x).¬φ[¬X/X ]We assume that substitutions σ, σ′, . . .map term variables to terms, predi
ate vari-ables to abstra
tions of the same arity and ordinal variables to ordinal variables.We write φσ or σ(φ) to denote the formula obtained from φ by substituting ea
ho

urren
e of a variable v by σ(v), renaming bound variables as ne
essary to avoid
apture of free variables.2.3. Semanti
sLet Σ be a �rst-order signature. A Σ-model M = (A, ρ) 
onsists of a Σ-stru
ture A interpreting the symbols in Σ and an A-environment ρ interpreting
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h variable in its respe
tive domain. We write |A| for the support set of the stru
-ture A. The semanti
s interprets a µ-
al
ulus formula φ as an element ‖φ‖M ∈ 2and a n-ary abstra
tion Φ as an element ‖Φ‖M ∈ Pred(|A|n). We usually drop
M and write ‖φ‖ρ and ‖Φ‖ρ if the stru
ture A is 
lear from the 
ontext. Thesemanti
s ‖t‖ρ ∈ |A| of a term t is de�ned as usual.De�nition 2.4. (Semanti
s) Given a signature Σ and a Σ-model (A, ρ) thesemanti
s of µ-
al
ulus formulas φ and abstra
tions Φ over Σ is indu
tively de�nedby

‖t = t′‖ρ = if ‖t‖ρ = ‖t′‖ρ then 1 else 0
‖¬φ‖ρ = 1 − ‖φ‖ρ

‖φ1 ∨ φ2‖ρ = max{‖φ1‖ρ, ‖φ2‖ρ}
‖∃x.φ‖ρ =

∨

a∈|A|‖φ‖ρ[a/x]

‖∃κ.φ‖ρ =
∨

β‖φ‖ρ[β/κ]

‖∃κ′<κ.φ‖ρ =
∨

β<ρ(κ)‖φ‖ρ[β/κ′]

‖Φ(t)‖ρ = ‖Φ‖ρ(‖t‖ρ)
‖X‖ρ = ρ(X)
‖µX(x).φ‖ρ = µΨ

‖µκX(x).φ‖ρ = µρ(κ)Ψwhere Ψ = λP.λa.‖φ‖ρ[P/X,a/x] in the 
lauses for �xed point and approximationabstra
tions.A model M = (A, ρ) satis�es a formula φ, written M |= φ if ‖φ‖ρ = 1. Theformula φ is 
alled valid, written |= φ, if it is satis�ed in all Σ-models. Given a
Σ-model M = (A, ρ) we extend ρ a posteriori to terms t and formulas φ otherthan variables by de�ning ρ(t) = ‖t‖ρ and ρ(φ) = ‖φ‖ρ. This allows us to 
omposesubstitutions σ and environments ρ as in ρ ◦ σ.3. The Proof SystemThe proof system we present in this se
tion is an adaptation to the �rst-ordersetting of the one proposed by S
höpp [11℄ for the modal µ-
al
ulus. The maindi�eren
e with the original proposal [4℄ is the addition of ordinal quanti�
ation.We would like to stress, however, that all results of this paper remain valid forsystems without ordinal quanti�
ation as well as for modal variants.3.1. Ordinal ConstraintsOur proof system uses expli
it ordinal approximations of �xed point formulas.Constraints between ordinal variables will be re
orded in stri
t partial orders O =
(|O|, <O), where |O| is a �nite set of ordinal variables from VO and <O is abinary, irre�exive and transitive relation on |O|. We refer to O as a set of ordinal
onstraints. We write ι ≤O κ if either ι <O κ or κ ∈ |O| and ι = κ (synta
ti




6 TITLE WILL BE SET BY THE PUBLISHERidentity). If O and O′ are two stri
t partial orders we write O ⊆ O′ to mean that
|O| ⊆ |O′| and <O ⊆ <O′. In sequents, we will write O, κ for (|O| ∪ {κ}, <O)and O, κ′ < κ for O′ = (|O| ∪ {κ′, κ}, <O′), where <O′ is the transitive 
losureof <O ∪{(κ′, κ)}. It is worth noting that the latter notation will only be used in
ase O′ is indeed a stri
t partial order. Given a model M = (A, ρ) we say that ρrespe
ts O, if ρ(ι) < ρ(κ) whenever ι <O κ.3.2. Sequents and Proof RulesThe sequents of the proof system are of the form Γ ⊢O ∆, where Γ and ∆ are�nite sets of formulas and O = (|O|, <O) is a set of ordinal 
onstraints. A sequentis well-formed if all ordinal variables o

urring free in Γ or ∆ are elements of |O|.We restri
t our attention to well-formed sequents without further mention. Theset of free variables of a sequent is de�ned by fv(Γ ⊢O ∆) = fv(Γ∪∆)∪|O|. Givena Σ-model M = (A, ρ) we say that M satis�es a sequent Γ ⊢O ∆ whenever ρrespe
ts O and M |= φ for all φ ∈ Γ then M |= ψ for some ψ ∈ ∆. A model Mfalsi�es a sequent Γ ⊢O ∆ if M does not satisfy Γ ⊢O ∆ . The sequent Γ ⊢O ∆is valid if it is satis�ed in all models and invalid otherwise. The purpose of theproof system is to establish the validity of sequents.The rules of our proof system are displayed in Tables 1 and 2. They are pre-sented in tableau style with the 
on
lusion above the line and the premises below.Table 1 shows standard rules of �rst-order logi
 with equality. The �xed pointrules of Table 2 are a dire
t appli
ation of Theorem 2.2. Note the asymmetry ofthe rules (µ1-L) and (µ0-R). It is not di�
ult to show, on
e the notion of proofhas been introdu
ed (see De�nition 3.5), the derivability of the sequents

• Γ, (µX(x).φ)(t) ⊢O φ[µX(x).φ/X, t/x],∆, and
• Γ, ∃κ.(µκX(x).φ)(t) ⊢O (µX(x).φ)(t),∆whi
h is su�
ient to derive the symmetri
 rules (µ0-L) and (µ1-R), respe
tively.However, rule (µ0-R) is not derivable using (µ0-L), (µ1-L) and (µ1-R), essentiallybe
ause (µ0-R) is the only proof rule for
ing µ-formulas to be interpreted as �xedpoints. To see this we use a non-standard interpretation of �xed points1. Inter-pret µX(x).φ as µωX(x).φ, and interpret ordinal variables as ranging over �niteordinals. This interpretation validates all proof rules in
luding (µ0-L), (µ1-L) and(µ1-R), but not (µ0-R), whi
h is seen by 
onsidering any model stru
ture and �xedpoint formula with 
losure ordinal ω + 1.Rules (∃O-L) and (∃<

O-L) both introdu
e a fresh ordinal variable while the latterrule additionally generates a new ordinal 
onstraint. Their right hand side versions,(∃O-R) and (∃<
O-R), respe
tively require an ordinal variable and a 
onstraint as awitness. Rule (OrdStr), originally proposed by S
höpp [11℄, allows us to strengthenordinal 
onstraints in a 
ontrolled way. More pre
isely, we may add new ordinalvariables and 
onstraints to the order O of a sequent Γ ⊢O ∆ as long as nonew variable goes below a variable in |O|. This rule is sometimes helpful to �nd1This argument is 
ontributed by one of the anonymous referees.
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tural Rules(Id) Γ, φ ⊢O φ,∆

·
(Cut) Γ ⊢O ∆

Γ, φ ⊢O ∆ Γ ⊢O φ,∆(W-L) Γ, φ ⊢O ∆

Γ ⊢O ∆
(W-R) Γ ⊢O φ,∆

Γ ⊢O ∆Logi
al and Equality Rules(¬-L) Γ,¬φ ⊢O ∆

Γ ⊢O φ,∆
(¬-R) Γ ⊢O ¬φ,∆

Γ, φ ⊢O ∆(∨-L) Γ, φ1 ∨ φ2 ⊢O ∆

Γ, φ1 ⊢O ∆ Γ, φ2 ⊢O ∆
(∨-R) Γ ⊢O φ1 ∨ φ2,∆

Γ ⊢O φ1, φ2,∆(∃I -L) Γ, ∃x.φ ⊢O ∆

Γ, φ ⊢O ∆
x 6∈ fv(Γ ∪ ∆) (∃I -R) Γ ⊢O ∃x.φ,∆

Γ ⊢O φ[t/x],∆(=-L) Γ[t2/x], t1 = t2 ⊢O ∆[t2/x]

Γ[t1/x] ⊢O ∆[t1/x]
(=-R) Γ ⊢O t = t,∆

·Table 1. Proof Rules of First-Order Logi
 with Equalityrepeats (see De�nition 3.1 below) and seems to be required to prove some simplevalid sequents su
h as Γ, ∃κ.φ ⊢O ∃κ.∃κ′<κ.φ[κ′/κ],∆.3.3. Pre-Proofs, Runs and ProofsA derivation tree D = (N , E ,L) is a tree (N , E) with nodes N and edges E ⊆
N ×N together with a fun
tion L labelling ea
h node of the tree with a sequentin a way that is 
onsistent with the appli
ation of the proof rules. We will oftenwrite N(Γ ⊢O ∆) for L(N) = Γ ⊢O ∆. The proof stru
tures of our system areessentially �nite graphs, whi
h are generated from a derivation tree by adding aba
k edge from ea
h non-axiom leaf to a node of whi
h it is a repetition (up tosome substitution). Let us �x an arbitrary derivation tree D = (N , E ,L).De�nition 3.1. (Repeat) Let M(Γ ⊢O ∆) and N(Γ′ ⊢O′ ∆′) be nodes of D.Then the triple (M,N, σ) is 
alled a repeat of D, if N is a leaf of D and σ is asubstitution su
h that(1) φ ∈ Γ implies σ(φ) ∈ Γ′, and



8 TITLE WILL BE SET BY THE PUBLISHERFixed Point Rules(µ1-L) Γ, (µX(x).φ)(t) ⊢O ∆

Γ, ∃κ.(µκX(x).φ)(t) ⊢O ∆
(µ0-R) Γ ⊢O (µX(x).φ)(t),∆

Γ ⊢O φ[µX(x).φ/X, t/x],∆(µκ-L) Γ, (µκX(x).φ)(t) ⊢O ∆

Γ, ∃κ′<κ.φ[µκ′X(x).φ/X, t/x] ⊢O ∆(µκ-R) Γ ⊢O (µκX(x).φ)(t),∆

Γ ⊢O ∃κ′<κ.φ[µκ′X(x).φ/X, t/x],∆Ordinal Rules(∃O-L) Γ, ∃κ.φ ⊢O ∆

Γ, φ ⊢O,κ ∆
κ 6∈ |O| (∃O-R) Γ ⊢O ∃κ.φ,∆

Γ ⊢O φ[ι/κ],∆
ι ∈ |O|(∃<

O-L) Γ, ∃κ′<κ.φ ⊢O ∆

Γ, φ ⊢O,κ′<κ ∆
κ′ 66∈ |O| (∃<

O-R) Γ ⊢O ∃κ′<κ.φ,∆

Γ ⊢O φ[ι/κ′],∆
ι<O κ(OrdStr) Γ ⊢O ∆

Γ ⊢O′ ∆
O ⊆ O′ and ι<O′ κ, κ ∈ |O| ⇒ ι ∈ |O|Table 2. Fixed Point and Ordinal Proof Rules(2) ψ ∈ ∆ implies σ(ψ) ∈ ∆′, and(3) κ ∈ |O| implies σ(κ) ∈ |O′|, and(4) ι<O κ implies σ(ι)<O′ σ(κ).The node N is 
alled repeat node and M its 
ompanion node.It is worth remarking that we do not require 
ompanions to be an
estors oftheir 
orresponding repeat nodes in D.De�nition 3.2. (Pre-Proof) A pre-proof P = (D,R) for a sequent Γ ⊢O ∆
onsists of a derivation tree D = (N , E ,L) with root node labelled by Γ ⊢O ∆and a set of repeats R for D su
h that ea
h non-axiom leaf appears in exa
tlyone repeat of R. The pre-proof graph of P is de�ned by G(P) = (N , E ′,L), where

E ′ = E ∪ {(N,M) | ∃σ.(M,N, σ) ∈ R}.By a path of P we mean a path in G(P). A path π is 
alled rooted if its �rstnode π(0) is the root of D. We write πi for the ith su�x of π, that is, the pathobtained by dropping the �rst i nodes of π. This yields the empty sequen
e in



TITLE WILL BE SET BY THE PUBLISHER 9
ase that i is greater or equal to the length of π. We say that π traverses a repeat
R = (M,N, σ) if π(i) = N and π(i+ 1) = M for some position i.Example 3.3. (Lexi
ographi
 Order) In order to illustrate the pre
eding def-initions, we now present a proof in our system showing that the lexi
ographi
ordering of two well-founded relations is again well-founded. We assume that oursignature in
ludes the unary fun
tion symbols π1 and π2 (to be interpreted as theleft and right proje
tions of a pair). In this example, we write t1 as a shorthandfor π1(t) and t2 for π2(t).Well-foundedness 
an be de�ned in terms of the notion of a

essibility of anelement x with respe
t to a binary relation X :

Acc(X,x) = (µZ(z).∀y.¬X(y, z) ∨ Z(y))(x)
Wf(X) = ∀x.Acc(X,x)The least �xed point in the de�nition of a

essibility for
es the absen
e of in�nitelydes
ending X-
hains from a given element x of the domain. A binary relation Xis well-founded if all elements of the domain are a

essible with respe
t to X . Thelexi
ographi
 ordering of two binary relations X and Y is de�ned by

Lex(X,Y )(u,w) = X(u1, w1) ∨ (u1 = w1 ∧ Y (u2, w2))With these de�nitions the sequent we would like to prove valid is
Γ0 ⊢ Wf(Lex(X,Y )) (1)where Γ0 = Wf(X),Wf(Y ). Before presenting a proof of this sequent, we needto introdu
e some derived rules and abbreviations. The derivation uses the rules(∧-L), (∀I -L) and (∀I -R) for 
onjun
tion and universal quanti�
ation:(∧-L) Γ, φ1 ∧ φ2 ⊢O ∆

Γ, φ1, φ2 ⊢O ∆
(∀I -L) Γ, ∀x.φ ⊢O ∆

Γ, φ[t/x] ⊢O ∆
(∀I -R) Γ ⊢O ∀x.φ,∆

Γ ⊢O φ,∆
CThe side 
ondition C of rule (∀I -R) requires that x 6∈ fv(Γ ∪ ∆). These rules areeasily derived from their duals (∨-R), (∃I -R) and (∃I -L), respe
tively. We alsointrodu
e the following abbreviations:

Acc
κ(X,x) = (µκZ(z).∀y.¬X(y, z) ∨ Z(y))(x)

A(X,Y, z) = Acc(Lex(X,Y ), z)Figure 1 shows a derivation tree for sequent (1) whi
h is 
ontinued in Figures 2and 3. For brevity, we use a minimalisti
 notation for ordinal 
onstraints. We writefor instan
e Γ ⊢κ
λ′<λ ∆ for the sequent Γ ⊢O ∆, where O = ({κ, λ, λ′}, {(λ′, λ)}).This should not give rise to any 
onfusion. We use the label (FO) to denote anunspe
i�ed series of �rst-order logi
 rule appli
ations.Let us now look at the derivation in some detail. At the root node N0 weremove the universal quanti�er appearing in the de�nition of Wf on the right
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N0[Γ0 ⊢ Wf(Lex(X, Y ))] (∀I-R)

N1[Γ0 ⊢ A(X,Y, w)] (RS1)
N∗

2 [Γ0, Acc
κ(X, w1) ⊢κ A(X,Y, w)] (RS1)

N∗∗

3 [Γ0, Acc
κ(X, w1), Acc

λ(Y, w2) ⊢κ,λ A(X, Y,w)] (µ0-R, FO)
N4[Γ0, Acc

κ(X, w1), Acc
λ(Y, w2), Lex(X, Y )(u, w) ⊢κ,λ A(X, Y, u)] (FO)

DL DRFigure 1. Derivation tree D for lexi
ographi
 order example
N5[Γ0, Acc

κ(X, w1), X(u1, w1) ⊢κ,λ A(X, Y, u)] (RS2)
N6[Γ0,¬X(u1, w1) ∨ Acc

κ′

(X, u1), X(u1, w1) ⊢λ
κ′<κ A(X, Y, u)] (FO)

N∗

7 [Γ0, Acc
κ′

(X, u1) ⊢λ
κ′<κ A(X,Y, u)] N8[X(u1, w1) ⊢λ

κ′<κ X(u1, w1)]Figure 2. Derivation DL

N9[Γ0, Acc
κ(X, w1), Acc

λ(Y, w2), u1 = w1, Y (u2, w2) ⊢κ,λ A(X, Y, u)] (=-L)
N10[Γ0, Acc

κ(X, u1), Acc
λ(Y,w2), Y (u2, w2) ⊢κ,λ A(X, Y, u)] (RS2)

N11[Γ0, Acc
κ(X, u1),¬Y (u2, w2) ∨ Acc

λ′

(Y, u2), Y (u2, w2) ⊢κ
λ′<λ A(X, Y, u)]

N∗∗

12 [Γ0, Acc
κ(X, u1), Acc

λ′

(Y, u2) ⊢κ
λ′<λ A(X, Y, u)] N13[Y (u2, w2) ⊢κ

λ′<λ Y (u2, w2)]Figure 3. Derivation DRhand side of the turnstile. Then we apply rule sequen
e (RS1)=(∀I -L, µ1-L, ∃O-L) twi
e to approximate Acc(X,w1) to Acc
κ(X,w1) at node N1 and Acc(Y,w2) to

Acc
λ(Y,w2) at N2, introdu
ing the fresh ordinal variables κ and λ, respe
tively.At node N3 the formula A(X,Y,w) is unfolded using rule (µ0-R) followed byappli
ations of �rst-order logi
 rules. Next, at N4 we apply a series of booleanrules to Lex(X,Y )(u,w), produ
ing nodes N5 in Figure 2 and N9 in Figure 3,
orresponding to the two 
ases in the de�nition of the lexi
ographi
 ordering.From N5 to N7 we unfold and instantiate the approximation Acc

κ(X,w1) usingrule sequen
e (RS2)=(µκ-L, ∃<
O-L, ∀I -L) and �rst-order logi
 rules. This yieldsa new ordinal 
onstraint κ′ < κ and approximation Acc

κ′

(X,u1) as well as theaxiom node N7. In DR, after rewriting the equation at node N11, we apply thesame sequen
e of rules as in DL to Acc
λ(Y,w2), resulting in the ordinal 
onstraint

λ′ < λ and the approximation Acc
λ′

(Y, u2) at node N12 and the axiom at N13.



TITLE WILL BE SET BY THE PUBLISHER 11Finally, we extend the derivation tree D with two repeats L and R (indi
atedin the �gures by ∗ and ∗∗) as follows:
L = (N2, N7, σL) where σL = [u/w, κ′/κ]
R = (N3, N12, σR) where σR = [u/w, λ′/λ]This yields the pre-proof P = (D, {L,R}).Not every pre-proof is a proof of the validity of its root sequent. The simplestexample of a pre-proof that is not a proof is given by the derivation that infersthe sequent ⊢ µX.X from itself using rule (µ0-R). This two-node pre-proof 
learlyuses 
ir
ular reasoning and should therefore be reje
ted as a proof.We now give a simple semanti
 indu
tion dis
harge 
ondition ensuring that allindu
tive reasoning embodied in a pre-proof is well-founded.De�nition 3.4. (Run) Let P = (D,R) be a pre-proof, A a Σ-stru
ture andsuppose Π = (N0, ρ0) · · · (Ni, ρi) · · · is a (�nite or in�nite) sequen
e of pairs ofnodes of D and A-environments. Suppose that Ni(Γi ⊢Oi

∆i). Then Π is 
alled arun of the pre-proof P if(1) N0 is the root of P , and(2) ρi respe
ts Oi for all i, and(3) for all su

essive pairs (Ni, Ni+1) of nodes, either(a) (Ni, Ni+1) ∈ E and ρi+1 agrees with ρi on all free variables 
ommonto Ni and Ni+1, or(b) (Ni+1, Ni, σ) ∈ R and ρi+1 = ρi ◦ σ.Note that π = N0 · · ·Ni · · · is a rooted path of P . We say that the run Π followsthe path π.De�nition 3.5. (Proof) A pre-proof P for Γ ⊢O ∆ satis�es dis
harge 
ondition(rDC) if all runs of P are �nite, in whi
h 
ase P is 
alled a proof for Γ ⊢O ∆.Intuitively, the �niteness of runs in a proof rests on the well-foundedness of theunderlying interpretation of the ordinal variables and thus prevents unsound 
ir
u-lar reasoning. Note that the �niteness of runs is independent of the interpretationof non-ordinal variables. This intuition will be made expli
it in Se
tion 4.Example 3.6. Consider again the pre-proof P from Example 3.3. Let πL =
N2 · · ·N7 and πR = N3N4N9 · · ·N12 be the simple 
y
les 
orresponding to repeats
L and R, respe
tively. Suppose there is an in�nite run r following a path traversingthe left loop inde�nitely from some point on, that is, a path ending in πω

L. ByDe�nition 3.4 the interpretation of κ remains 
onstant along πL, sin
e κ is free inall of these sequents. Now suppose r(i) = (N7, ρi) and r(i+ 1) = (N2, ρi+1). Thisstep traverses the repeat L. In this 
ase De�nition 3.4 requires that ρi+1(κ) =
(ρi◦σL)(κ) = ρi(κ

′). But sin
e ρi respe
ts κ′ < κ atN7, we have ρi(κ
′) < ρi(κ) andhen
e ρi+1(κ) < ρi(κ). Sin
e the run r was assumed to be in�nite and traverse Lin�nitely often, the interpretation of κ must de
rease at in�nitely many positions.This 
ontradi
ts the well-foundedness of the ordinals. Hen
e, su
h a run does not



12 TITLE WILL BE SET BY THE PUBLISHERexist. A similar argument shows that there is no in�nite run following a pathending in πω
R, sin
e this implies that the interpretation of λ de
reases inde�nitely.By observing that the interpretation of κ remains 
onstant along πR and whentraversing repeat R, we see that there is no in�nite run following any path travers-ing ea
h of the loops πL and πR in�nitely often. Thus, P is a proof. We 
on
ludethis example by remarking that the synta
ti
 dis
harge 
onditions introdu
ed inSe
tions 4 and 5 provide a mu
h more 
onvenient method to determine whether apre-proof is a proof.3.4. SoundnessLemma 3.7. (Lo
al soundness) The proof rules of Tables 1 and 2 are sound.In parti
ular, if there is a Σ-model (A, ρ) falsifying the 
on
lusion C of a rule thenthere is an A-environment ρ′ su
h that (A, ρ′) falsi�es some premise P of thatrule. Moreover, ρ and ρ′ agree on all free variables 
ommon to C and P .Proof. By inspe
tion of the proof rules. For the �xed point rules the 
laim followsimmediately from Theorem 2.2. The 
ases of the ordinal rules are straightforwardex
ept for rule (OrdStr), whi
h we dis
uss now. Suppose some model (A, ρ) falsi�esthe sequent Γ ⊢O ∆ in the 
on
lusion. The sequent in the premise is Γ ⊢O′ ∆ with

O ⊆ O′. Sin
e <O′ is a �nite stri
t partial order, we 
an de�ne the environment
ρ′ by well-founded indu
tion on <O′ as follows

ρ′(v) =

{

max{ρ′(ι) | ι<O′ v} + 1 if v ∈ |O′| − |O|
ρ(v) otherwiseIt is su�
ient to 
he
k that ρ′ respe
ts O′ and thus falsi�es the premise sequent

Γ ⊢O′ ∆. Consider some 
onstraint ι<O′ κ. If κ ∈ |O| then also ι ∈ |O| by the side
ondition of the rule. Hen
e, ρ′(ι) < ρ′(κ) is inherited from O. If κ ∈ |O′| − |O|then we have ρ′(ι) < ρ′(ι) + 1 ≤ ρ′(κ) by the de�nition of ρ′. �Lemma 3.8. Let (M,N, σ) be a repeat and let (A, ρ) be a model falsifying L(N).Then (A, ρ ◦ σ) falsi�es L(M).Proof. By the de�nition of a repeat. �Theorem 3.9. (Soundness) If there is a proof for Γ ⊢O ∆, then Γ ⊢O ∆ isvalid.Proof. Let P = (D,R) be a proof for Γ ⊢O ∆ and suppose for a 
ontradi
tionthat some model (A, ρ0) falsi�es Γ ⊢O ∆. We iteratively 
onstru
t an in�nite run
Π. The 
onstru
tion starts with Π0 = (N0, ρ0), where N0 is the root node of P .Clearly, ρ0 respe
ts O0 sin
e (A, ρ0) falsi�es L(N0). Hen
e, Π0 is a �nite run.Assume that we have already 
onstru
ted the �nite run Πi = (N0, ρ0) · · · (Ni, ρi)for some i ≥ 0 su
h that (A, ρi) is a model falsifying L(Ni). Note that L(Ni) 
annot be an axiom. We show that Πi 
an be extended to a run Πi+1 = Πi(Ni+1, ρi+1)su
h that (A, ρi+1) is a model falsifying L(Ni+1) = Γi+1 ⊢Oi+1

∆i+1 (and hen
e
ρi+1 respe
ts Oi+1). We distinguish two 
ases. If Ni is a non-leaf node then there
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essor node M of Ni and an A-environment ρ su
h that
(A, ρ) falsi�es L(M) and ρ agrees with ρi on all free variables 
ommon to L(Ni)and L(M). Then the sequen
e Πi+1 obtained by setting Ni+1 = M and ρi+1 = ρis again a run. If Ni is a repeat node then there is a repeat (M,Ni, σ) ∈ R andwe set Ni+1 = M and ρi+1 = ρi ◦ σ. By Lemma 3.8 (A, ρi+1) falsi�es L(Ni+1),so Πi+1 is a run. The limit Π of the sequen
e Π0,Π1, . . . is an in�nite run of P ,
ontradi
ting the assumption that P is a proof. �4. Synta
ti
 Dis
harge ConditionsAs 
ondition (rDC) 
aptures the well-foundedness of the reasoning in a pre-proof in a very natural way, it serves as our referen
e dis
harge 
ondition. Dueto its semanti
 nature it is, however, hardly usable in pra
ti
al proofs and wetherefore introdu
e two alternative, purely synta
ti
al, dis
harge 
onditions andshow that they 
hara
terise 
ondition (rDC). For the remainder of this se
tion we�x an arbitrary pre-proof P = (D,R) with D = (N , E ,L).4.1. Tra
es and ProgressA tra
e of P is a path of P labelled by ordinal 
onstraints that are linked toyield a non-in
reasing 
hain of ordinal dependen
ies.De�nition 4.1. (Tra
e) Let τ = (N0, (κ0, κ

′
0)) · · · (Ni, (κi, κ

′
i)) · · · be a (�nite orin�nite) sequen
e of pairs 
onsisting of a node of D and a pair of ordinal variablesof VO. Suppose that Ni(Γi ⊢Oi

∆i). Then τ is a tra
e of P if(1) κ′i ≤Oi
κi for all i, and(2) for all su

essive pairs (Ni, Ni+1) of nodes, either(a) (Ni, Ni+1) ∈ E and κ′i = κi+1, or(b) (Ni+1, Ni, σ) ∈ R and κ′i = σ(κi+1).We say that the tra
e τ = (N0, (κ0, κ

′
0)) · · · (Ni, (κi, κ

′
i)) · · · follows the path π =

N0 · · ·Ni · · · .De�nition 4.2. (Progress) Let τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · · and sup-pose L(Ni) = Γi ⊢Oi

∆i. Then
• τ progresses at position i if κ′i <Oi

κi, and
• τ is progressive if there are in�nitely many positions where τ progresses,and
• a path π in G(P) is progressive if there is a progressive tra
e τ following asu�x πi of π.Example 4.3. Figure 4 represents the tra
e

τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ)),
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σ1 σ2

α α

β

α

γ

κ

λ

δ

ε β

γ

β

Figure 4. Example of a tra
ewhere R1 = (N0, N1, σ1) and R2 = (N3, N4, σ2) are repeats with σ1(α) = ǫ and
σ2(κ) = γ. The tra
e follows the path N0N1N2N3N4 and progresses at positions
0, 1 and 2.4.2. The Tra
e-Based Dis
harge ConditionDe�nition 4.4. (tDC) A pre-proof P satis�es dis
harge 
ondition (tDC) if allin�nite paths of P are progressive.Theorem 4.5. A pre-proof P is a proof if and only if it satis�es 
ondition (tDC).Proof. It is su�
ient to show for any in�nite rooted path π in P that there is noin�nite run following π if and only if there is a progressive tra
e following somesu�x of π. Let π = N0 · · ·Ni · · · be an in�nite path in P and let Oj denote thepartial order appearing in sequent L(Nj).�⇒� By 
ontraposition. Suppose that there is no progressive tra
e followinga su�x of π. We will 
onstru
t an in�nite run Π following π. De�ne the height
hi(κ) of ordinal variable κ in the order Oi indu
tively as follows:

hi(κ) =

{

0 if κ is minimal in Oi

max{hi(ι) | ι<Oi
κ} + 1 otherwiseWe obviously have hi(ι) < hi(κ) whenever ι <Oi

κ. The height h(τ) of a non-progressive tra
e τ = (M0, (κ0, κ
′
0)) · · · (Mi, (κi, κ

′
i)) · · · is then de�ned by

h(τ) =
∑

j

(hj(κj) − hj(κ
′
j))

h(τ) is �nite, be
ause τ is non-progressive. Now we de�ne d(i, κ) = max(H(i, κ)),where
H(i, κ) = {h(τ) | τ is a tra
e following πi with τ(0) = (Ni, (κi, κ

′
i)) and κi = κ}In order to see that d is well-de�ned note that no non-progressive tra
e following

πi 
an have more than m = n · k2 progressing positions, where n = |N | is thenumber of nodes of P and k is the number of distin
t ordinal variables in P . Anytra
e τ with more than m progressing positions must repeat some pair τ(j) =
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τ(k) = (N, (κ, κ′)) with j < k, N(Γ ⊢O ∆) and κ′ <O κ. This implies that
τ ′ = (τ(j)τ(j+1) · · · τ(k−1))ω is a progressive tra
e following πi+j , 
ontradi
tingour assumption that no su
h tra
e exists. Hen
e, H(i, κ) is bounded bym·l, where
l = max{hj(κ

′) | j ≥ i and κ′ ∈ Oj}, showing that d is well-de�ned.Next, we show that d satis�es the following properties:(i) d(i, κ) < d(i, λ) whenever κ<Oi
λ,(ii) d(i+ 1, κ) ≤ d(i, κ) whenever (Ni, Ni+1) ∈ E and κ ∈ |Oi|, and(iii) d(i+ 1, κ) ≤ d(i, σ(κ)) whenever (Ni+1, Ni, σ) ∈ R and κ ∈ |Oi+1|.To see (i) assume that τ = (Ni, (κ, κ

′))τ ′ is a tra
e following πi su
h that h(τ) =
d(i, κ). Then τ ′′ = (Ni, (λ, κ

′))τ ′ is a tra
e following πi with h(τ ′′) > h(τ),hen
e d(i, λ) ≥ h(τ ′′) > d(i, κ). For (ii) suppose (Ni, Ni+1) ∈ E is an edge of
D, κ ∈ |Oi| and τ = (Ni+1, (κ, κ

′))τ ′ is a tra
e following πi+1 su
h that h(τ) =
d(i+1, κ). Then τ ′′ = (Ni, (κ, κ))τ is a tra
e following πi with h(τ ′′) = h(τ), thus
d(i, κ) ≥ h(τ ′′) = d(i + 1, κ). For (iii) suppose (Ni+1, Ni, σ) is a repeat in R andthat τ = (Ni+1, (κ, κ

′))τ ′ is a tra
e following πi+1 su
h that h(τ) = d(i + 1, κ).Then τ ′′ = (Ni, (σ(κ), σ(κ)))τ is a tra
e following πi with h(τ ′′) = h(τ), thus
d(i, σ(κ)) ≥ h(τ ′′) = d(i+ 1, κ).We are now in a position to 
onstru
t an in�nite run Π = (N0, ρ0) · · · (Ni, ρi) · · ·following π. The 
onstru
tion will satisfy the invariants(J1) ρi(κ) ≥ d(i, κ) for all κ ∈ |Oi|(J2) ρi respe
ts Oiat ea
h position i ∈ N. We start by setting ρ0(κ) = d(0, κ) for ea
h κ ∈ |O0|,whi
h trivially satis�es (J1). ρ0 also satis�es (J2) by (i) above.Now suppose we have already 
onstru
ted (N0, ρ0) · · · (Ni, ρi) su
h that (J1)and (J2) hold for i. We de�ne ρi+1 and show that it satis�es invariants (J1) and(J2). We distinguish two 
ases:Case 1. (Ni, Ni+1) is an edge of D. We pro
eed by a 
ase analysis on the on therule applied at Ni. Common to all 
ases is that we de�ne ρi+1(v) = ρi(v) for ea
h
v ∈ fv(L(Ni)) (and, in parti
ular, for κ ∈ |Oi|). This implies(a) ρi+1(κ) ≥ d(i+ 1, κ) for all κ ∈ |Oi|, and(b) ρi+1(ι) < ρi+1(κ) whenever ι <Oi

κby the indu
tion hypothesis and (ii). Sin
e we have Oi ⊆ Oi+1, this establishes(J1) and (J2) for all rules ex
ept (∃O-L), (∃<
O-L) and (OrdStr). For the latter rulesit remains to de�ne ρi+1 on any freshly introdu
ed ordinal variables and to 
he
kinvariants (J1) and (J2) for the additional 
ases 
on
erning the fresh variables:(∃O-L): We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variableintrodu
ed by the rule. (J1) is satis�ed by 
onstru
tion and (J2) is satis�edva
uously, sin
e there are no 
ases involving ι.(∃<

O-L): We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variableintrodu
ed by the rule. (J1) is satis�ed by 
onstru
tion. For (J2) let
κ ∈ |Oi| su
h that ι <Oi+1

κ. By (i) we have d(i + 1, ι) < d(i + 1, κ) andby (a) d(i+ 1, κ) ≤ ρi+1(κ), so ρi+1(ι) < ρi+1(κ) as required.



16 TITLE WILL BE SET BY THE PUBLISHER(OrdStr): Let m = max{ρi(λ) | λ ∈ |Oi|} and ρi+1(κ) = d(i+ 1, κ)+m+ 1for κ ∈ |Oi+1| − |Oi|. Invariant (J1) is 
learly satis�ed by 
onstru
tion. Itremains to verify (J2). Suppose that ι <Oi+1
κ. Sin
e the side 
onditionof the rule guarantees that ι ∈ |Oi| whenever ι <Oi+1

κ and κ ∈ |Oi|,there are two 
ases not already 
overed by (a) and (b). In the �rst 
ase,where ι, κ ∈ |Oi+1| − |Oi|, the result follows from (i). For the se
ond 
ase,where ι ∈ |Oi| and κ ∈ |Oi+1| − |Oi|, we have ρi+1(ι) ≤ m < ρi+1(κ) bythe de�nitions of m and ρi+1.Case 2. (Ni+1, Ni, σ) is a repeat in R. We set ρi+1 = ρi ◦ σ. By indu
tionhypothesis we have ρi(σ(κ)) ≥ d(i, σ(κ)) and by (iii) d(i, σ(κ)) ≥ d(i+1, κ), hen
e(J1) holds. For (J2) suppose that ι <Oi+1
κ. Then σ(ι) <Oi

σ(κ) by the de�nitionof a repeat, thus we get ρi+1(ι) = ρi(σ(ι)) < ρi(σ(κ)) = ρi+1(κ) from the indu
tionhypothesis.Continuing this 
onstru
tion ad in�nitum yields an in�nite run Π following π.�⇐� For the opposite dire
tion suppose there is a progressive tra
e
τ = (Ni, (κi, κ

′
i))(Ni+1, (κi+1, κ

′
i+1)) · · ·following the su�x πi of π. For a 
ontradi
tion suppose further that there is anin�nite run Π = (N0, ρ0) · · · (Ni, ρi) · · · following π. Let j ≥ i. Then we have

ρj(κj) ≥ ρj(κ
′
j), sin
e ρj respe
ts Oj . We also have ρj(κ

′
j) = ρj+1(κj+1) bythe de�nition of a run, sin
e κ′j = κj+1 whenever (Nj , Nj+1) ∈ E is a tree edgeand κ′j = σ(κj+1) whenever (Nj+1, Nj , σ) ∈ R is a repeat of P . Thus, there isan in�nite 
hain ρi(κi) ≥ ρi+1(κi+1) ≥ · · · of ordinals, whi
h stri
tly de
reasesat in�nitely many positions, sin
e τ is progressive. This 
ontradi
ts the well-foundedness of the ordinals. �4.3. Automata-Theoreti
 Chara
terisationWhile the tra
e-based dis
harge 
ondition is synta
ti
, it is � as it stands � stillnot suitable for pra
ti
al appli
ation in a proof tool, sin
e it is de�ned in terms ofin�nite obje
ts. In order to obtain an implementable 
ondition, we now turn toan automata-theoreti
 reformulation of the tra
e-based dis
harge 
ondition.Te
hni
ally, this new 
ondition will be realised using Bü
hi automata for whi
hwe introdu
e the following 
onventions. A Bü
hi automaton A = (A,Q,Q0, δ, F )is 
omposed of an alphabet A, a �nite set of states Q, a set of initial states Q0 ⊆ Q,a transition relation δ ⊆ Q×A×Q and a set of a

epting states F ⊆ Q. An in�niteword σ ∈ Aω is a

epted by A if there is a run r ∈ Qω over σ visiting F in�nitelyoften. We denote by L(A) the language a

epted by A. For more details we referthe reader to Thomas' handbook 
hapter [15℄.Essentially, the automata-theoreti
 
hara
terisation looks for the existen
e ofspe
i�
 tra
es, whi
h progress only at repeat nodes.
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e) A tra
e τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · ·is 
alled normal if, for all i, node Ni is a repeat node whenever τ progresses atposition i. ♦

σ1 σ2
α α

β

α

γ

κ

λ

δ

ε β

γ

β

Figure 5. Example of a normal tra
eExample 4.7. Figure 5 shows the the tra
e
τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ)),of the previous Example 4.3 using 
ontinuous lines. Repla
ing the 
ontinuous linewith the dashed lines between positions 1 and 3 yields the normal variant
τ ′ = (N0, (δ, ε))(N1, (α, α))(N2, (α, α))(N3, (α, γ))(N4, (κ, κ)),of τ , where progress of τ at positions 1 and 2 is deferred to the repeat node atposition 3 in τ ′.Lemma 4.8. Every tra
e τ 
an be transformed into a normal tra
e τ ′ su
h that

τ is progressive if and only if τ ′ is progressive.Proof. (Sket
h) Sin
e Oi ⊆ Oi+1 whenever (Ni, Ni+1) ∈ E , progress 
an be de-ferred to repeat nodes in the manner suggested by Example 4.7. As progress isonly deferred to the next repeat but never lost, progressiveness is preserved bythis transformation. �By Lemma 4.8 we may without loss of generality for 
ondition (tDC) restri
tour attention to the normal tra
es of P . Based on this observation we 
onstru
ttwo Bü
hi automata, B1 and B2, over the alphabet R of repeats.The path automaton B1: re
ognises those sequen
es of repeats that aretraversed by paths of P .The progress automaton B2: re
ognises sequen
es of repeats that are po-tentially 
onne
ted through a normal tra
e; potentially, be
ause this au-tomaton tra
ks ordinal variable dependen
ies as in a normal tra
e, but
ompletely ignores whether the sequen
e of repeats it a

epts may be tra-versed by some path of P .The language in
lusion L(B1) ⊆ L(B2) then holds pre
isely if there is a normaltra
e along ea
h in�nite path of P . Some auxiliary de�nitions prepare the formalde�nition of these two automata.



18 TITLE WILL BE SET BY THE PUBLISHERDe�nition 4.9. The relation →⊆ R×R on the set of repeats of P is de�ned by
R→ R′ if there is a path in the derivation tree D of P from the 
ompanion nodeof R to the repeat node of R′.We also de�ne Vo =

⋃

{|O| | N(Γ ⊢O ∆) ∈ N}, the set of free ordinal variablesof P , and let rπ be the sequen
e of repeats traversed by a path π of P .De�nition 4.10. The path automaton of P is the Bü
hi automaton
B1 = (R, Q1, Q

0
1, δ1, F1)where Q1 = Q0

1 = F1 = R and the transition relation δ1 ⊆ Q1 ×R×Q1 is de�nedby δ1 = {(R,R,R′) | R → R′}.The following 
hara
terisation of the language a

epted by B1 follows immedi-ately from the de�nitions.Lemma 4.11. L(B1) = {rπ | π an in�nite path of P}.De�nition 4.12. The progress automaton of P is the Bü
hi automaton
B2 = (R, Q2, Q

0
2, δ2, F2)where Q2 = Q0

2 = (Vo × 2× Vo)∪ {♦}, F2 = Vo ×{1}× Vo and δ2 ⊆ Q2 ×R×Q2is de�ned by δ2 = δ′2 ∪ ({♦} ×R×Q2) with
δ′2 = {((ι, a, κ), (M,N, σ), (κ, b, λ)) | σ(κ)≤ON

ι and a = 0 ⇔ σ(κ) = ι}Note the presen
e of the state ♦ and the transitions from this state to anyother state (in
luding itself). Its role is to ensure that the language a

epted by
B2 is 
losed under pre�xing with �nite words over R, re�e
ting the requirement in
ondition (tDC) that ea
h in�nite rooted path π has a tra
e following some su�xof π. Let us now illustrate these de�nitions with an example.

R11(δ,   , α) j(α,  , κ)

α α α κ

ε

δ

γ

σ1 σ2

Figure 6. Example transition of automaton B2Example 4.13. The upper part of Figure 6 shows a simpli�ed version of thenormal tra
e from Example 4.7. Sin
e σ1(α) <O0
δ this tra
e gives rise to atransition (δ, 1, α)

R1→ (α, j, κ) of automaton B2 for ea
h j ∈ 2.
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ondition (aDC) if
L(B1) ⊆ L(B2).Theorem 4.15. A pre-proof P satis�es 
ondition (tDC) if and only if P satis�es
ondition (aDC). The latter 
ondition 
an be 
he
ked in time 2O(m2 log m), where

m = n + r is the sum of the number of nodes n of P and the number of ordinalvariables r o

urring free in the root sequent of P.Proof. By Lemmas 4.8 and 4.11, it is su�
ient to show for all in�nite paths π thatthere is a progressive normal tra
e τ following a su�x of π if and only if there isan a

epting run r of B2 on rπ. A

ordingly, let π = N0N1 · · · be an in�nite pathof P with Ni(Γi ⊢Oi
∆i).�⇒� Consider a progressive normal tra
e
τ = (Nk, (κk, κ

′
k))(Nk+1, (κk+1, κ

′
k+1) · · · (2)following πk for some k ≥ 0. Let i0, i1, . . . be the positions where a repeat nodeappears on τ and let Rj = (Nij+1, Nij

, σj) for j ≥ 0 be the 
orresponding repeats.We 
onstru
t the in�nite sequen
e
r = ♦p(λ0, k0, λ1)(λ1, k1, λ2) · · · (3)where p is the number of repeat nodes appearing before position k on π and

λj = κij
for j ≥ 0. Sin
e τ is a tra
e, we have λj = κij

≥Oij
σj(κij+1). We alsohave κij+1 = κij+1

= λj+1, be
ause τ is normal. We set kj = 0 if σ(λj+1) = λjand kj = 1 otherwise. It is then not di�
ult to see that r is a run of B2 on rπ,whi
h is a

epting sin
e τ is progressive.�⇐� Suppose r is an a

epting run of B2 on rπ of the form (3) above, let
rp
π = R0R1 · · · and let ij be the position of repeat Rj = (Nij+1, Nij

, σj) on π forea
h j ≥ 0. We 
onstru
t an in�nite sequen
e τ of the shape 2 above by setting
k = i0 and

(κij
, κ′ij

) = (λj , σj(λj+1))

(κl, κ
′
l) = (λj+1, λj+1) for ij + 1 ≤ l ≤ ij+1 − 1for j ≥ 0. By the de�nition of B2 we know that σj(λj+1)≤Oij

λj for all j ≥ 0.Be
ause Ol ⊆ Ol+1 whenever (Nl, Nl+1) is a tree edge, it is then easy to see that
τ is a normal tra
e following πk, whi
h is progressive sin
e r is a

epting.It remains to justify the 
omplexity 
laim. The standard way to 
he
k thein
lusion L(B1) ⊆ L(B2) is to 
omplement B2 into B2 and 
he
k the produ
t
B1 × B2 for emptiness. A pre-proof P with n = |N | nodes 
an have at most nrepeats. The number |Vo| of ordinal variables in P is bounded by m = n + r,where r is the number of free ordinal variables of the root sequent. This yields
O(n) states for B1 and O(m2) states for B2. Complementing a Bü
hi automatonwith n states 
an be done in time 2O(n log n) [10℄. Hen
e, the 
omplementation of
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B2 takes time 2O(m2 log m), whi
h does not in
rease by 
omputing the produ
t with
B1 and the subsequent linear time emptiness 
he
k. �5. Restri
ted Forms of Synta
ti
 Dis
hargeIn this se
tion we present twomore restri
tive synta
ti
 dis
harge 
onditions andrelate them to our new 
onditions as well as with those proposed in the literature.Let us 
onsider an arbitrary but �xed pre-proof P = (D,R).5.1. Dis
harge Based on Strongly Conne
ted Sets of RepeatsDe�nition 5.1. Let R = (M,N, σ) be a repeat su
h that M(Γ′ ⊢O′ ∆′) and
N(Γ ⊢O ∆), and let κ ∈ |O′| be an ordinal variable. Then we say(1) R preserves κ if σ(κ)≤O κ, and(2) R progresses on κ if σ(κ)<O κ.A set of repeats S ⊆ R is 
alled strongly 
onne
ted if (S,→ ∩ (S × S)), thesubgraph of (R,→) indu
ed by S, is strongly 
onne
ted. Equivalently, one 
ansay that there is a path π traversing exa
tly the repeats in S in�nitely often.De�nition 5.2. (s
DC) A pre-proof P = (D,R) satis�es 
ondition (s
DC) if forea
h strongly 
onne
ted S ⊆ R there is an ordinal variable κ su
h that(1) some repeat R ∈ S progresses on κ, and(2) ea
h repeat R′ ∈ S preserves κ.This 
ondition is similar to the one des
ribed by Fredlund [6℄. S
höpp andSimpson [12℄ use essentially the same 
ondition as well, although their proof systemis based on a di�erent notion of approximation without ordinal variables.Condition (s
DC) 
an be reformulated automata-theoreti
ally by repla
ing thetrivial Bü
hi a

eptan
e 
ondition of the path automaton B1 of De�nition 4.10 by anon-trivial Streett a

eptan
e 
ondition. A Streett automatonA = (Σ, Q,Q0, δ,Ω)has the same 
omponents as Bü
hi automaton ex
ept that the a

eptan
e 
ondi-tion is repla
ed by the Streett a

eptan
e 
ondition Ω = {(Li, Ui) | 1 ≤ i ≤ n}
onsisting of a set of pairs of states. An in�nite word σ is a

epted by A if thereis a run r ∈ Qω su
h that, for all i, if r visits Li in�nitely often then it also visits
Ui in�nitely often. To 
apture 
ondition (s
DC) we de�ne the Streett automaton
S = (Σ, Q,Q0, δ,Ω), where Σ = Q = Q0 = R and δ = {(R,R,R′) | R → R′}. Thea

eptan
e 
ondition is Ω = {(Lκ, Uκ) | κ ∈ Vo}, where Vo is the set of ordinalvariables o

urring free in P and

Lκ = {R ∈ R | R progresses on κ}
Uκ = {R ∈ R | R does not preserve κ}Proposition 5.3. A pre-proof P satis�es 
ondition (s
DC) if and only if L(S)is empty. The latter 
ondition 
an be 
he
ked in time O(m3), where m = n + ris the sum of the number of nodes n of P and the number of ordinal variables ro

urring free in the root sequent of P.
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ult to see from the de�nitions. The 
omplexityof 
he
king the emptiness of a Streett automaton is O((n + k)2 min(n, k)), where
n is the number of states and k is the number of a

epting pairs [5℄. The resultfollows, sin
e in our 
ase m is an upper bound of both the number of repeats andthe number of ordinal variables in P . �For a 
omparison of 
ondition (s
DC) with our previous 
ondition (aDC), wede�ne

B−
2 = (R, Q−

2 , Q
0
2 ∩Q

−
2 , δ2 ∩Q

−
2 ×R×Q−

2 , F2 ∩Q
−
2 )to be the Bü
hi automaton obtained from B2 = (R, Q2, Q

0
2, δ2, F2) by restri
tingthe sets of states and transitions to the set Q−

2 = {(ι, j, κ) ∈ Q2 | ι = κ}. Condition(aDC-) then requires that L(B1) ⊆ L(B−
2 ).Proposition 5.4. A pre-proof P satis�es 
ondition (s
DC) if and only if it sat-is�es 
ondition (aDC-).Proof. �⇒� Suppose P satis�es (s
DC) and let r1 = R0 · · ·Ri · · · be an a

eptingrun of B1 on r1. We show that r1 is a

epted by B2. Let S be the set of repeatso

urring in�nitely often in r2. Sin
e S is strongly 
onne
ted, there is an ordinalvariable κ su
h that some R ∈ S progresses on κ and all R′ ∈ S preserve κ.Sin
e G(P) is �nite there is a position k su
h that all Rj with j ≥ k belong to

S. De�ne r2 = ♦k(κ, ik, κ)(κ, ik+1, κ) · · · , where, for ea
h j ≥ k, we set ij = 1 if
Rj progresses on κ and ij = 0 otherwise. Then r2 is a run of B−

2 on r1, whi
his a

epting, sin
e there are in�nitely many j ≥ k su
h that Rj = R. Thus, Psatis�es 
ondition (aDC-).�⇐� Suppose P satis�es (aDC-) and let S ⊆ R be strongly 
onne
ted. Thenthere is an a

epting run r1 = R0R1 · · · of B1 on r1 su
h that {Ri | i ≥ 0} = S. By(aDC-) there is an a

epting run r2 = (κ, i0, κ)(κ, i1, κ) · · · of B−
2 on r1, implyingthat 
ondition (s
DC) holds for S and ordinal variable κ. �Corollary 5.5. If a pre-proof P satis�es (s
DC) then it satis�es 
ondition (tDC).Proof. By Theorem 4.15, sin
e L(B−

2 ) ⊆ L(B2). �The following example shows that the 
onverse of Corollary 5.5 does not holdin general.Example 5.6. Let φ = µX(x).∃z.X(z). The derivation in Figure 7 shows a pre-proof P for the sequent φ(x), φ(y) ⊢. We write φκ for µκX(x).∃z.X(z). We havenamed the nodes for referen
e and omitted some intermediate nodes for a more
ompa
t presentation.This pre-proof has one repeat R = (N2, N4, σ) with σ = [x′/y, κ′/ι′, κ/ι, ι′/κ].Re
all that we identify formulas up to renaming of bound variables. There is ain�nite normal tra
e τω , where
τ = (N2, (ι, ι))(N3, (ι, ι))(N4, (ι, ι

′))(N2, (κ, κ))(N3, (κ, κ))(N4, (κ, κ)),following the the su�x (N2N3N4)
ω of the only in�nite path of P . The tra
e

τ is progressive, sin
e ι′ <O4
ι at node N4. Hen
e, P satis�es 
ondition (tDC)
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N0[φ(x), φ(y) ⊢] (µ1-L, ∃O-L)

N1[φ
ι(x), φκ(y) ⊢ι,κ] (µκ-L, ∃<

O-L)N2[∃x′.φι′(x′), φκ(y) ⊢ι′<ι,κ] (µκ-L, ∃<
O-L)

N3[∃x′.φι′(x′), ∃y′.φκ′

(y′) ⊢ι′<ι,κ′<κ] (∃I -L)
N4[φ

ι′(x′), ∃y′.φκ′

(y′) ⊢ι′<ι,κ′<κ]Figure 7. Pre-proof distinguishing (tDC) from (s
DC)and is thus a proof for φ(x), φ(y) ⊢. On the other hand, repeat R does notpreserve any ordinal variable a

ording to De�nition 5.1. Hen
e, P fails to satisfy
ondition (s
DC).5.2. Dis
harge Using Indu
tion OrdersWe introdu
e an alternative dis
harge 
ondition based on ordering the repeatsof a pre-proof. Here, we restri
t our attention to simple pre-proofs P = (D,R),where for ea
h repeat (M,N, σ) ∈ R there is a path from M to N in D.De�nition 5.7. Let R = (M,N, σ) and R′ = (M ′, N ′, σ′) be two repeats in R.The stru
tural dependen
y relation ≤P on repeats is de�ned by R ≤P R′ if the
ompanion M of R lies on the path πR′ = M ′ · · ·N ′ from the 
ompanion M ′ tothe repeat node N ′ of R′. Let ≍P = ≤P ∪ ≤−1
P be the symmetri
 
losure of ≤P .The following two lemmas establish some useful 
onne
tions between the rela-tions ≍P , → and strong 
onne
tedness.Lemma 5.8. R ≍P R′ if and only if R → R′ and R′ → R if and only if {R,R′}is strongly 
onne
ted.Proof. Immediate from De�nitions 4.9 and 5.7. �Lemma 5.9. Let S ⊆ R be strongly 
onne
ted and let R,R′ ∈ S. Then there isa ≍P-
hain of repeats in S from R to R′, that is, there is a sequen
e R0R1 · · ·Rnof repeats in S su
h that R = R0, R′ = Rn and Ri ≍P Ri+1 for 0 ≤ i < n.Proof. Suppose R = (M,N, σ) and R′ = (M ′, N ′, σ′) belong to the strongly 
on-ne
ted set S ⊆ R. It is su�
ient to prove the 
on
lusion under the additionalassumption R → R′. The general statement then follows by a routine indu
tion.We �rst establish the following auxiliary property:(P) if R → R′ then either R ≍P R′ or there exists R′′ ∈ S su
h that R → R′′,

R′ ≤P R′′ and the 
ompanion M ′′ of R′′ is a proper an
estor of M ′ in thederivation tree.To see this, suppose that R → R′, but not R ≍P R′. Sin
e P is assumed to besimple, the 
ompanion M ′ lies on the path from M to N ′, but not on the path
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onne
ted set S, there is apath from R′ to R in (R,→), or equivalently, from M ′ ba
k to M in P . Hen
e,there must be some R′′ ∈ S su
h that R′ → R′′ and whose 
ompanion node M ′′lies above M ′ in the derivation tree. This implies that R → R′′ and R′ ≤P R′′.Now suppose R→ R′. We show the existen
e of a ≍P -
hain from R to R′ in Sby indu
tion on the length l(R,R′) = m of the path π from M to M ′ in P . Thisis trivial for m = 0. For m > 0 we derive from property (P) that either R ≍P R′,in whi
h 
ase we are done, or there is some R′′ ∈ S su
h that R→ R′′, R′′ ≍P R′and l(R,R′′) < m. In the latter 
ase, it follows from the indu
tion hypothesis thatthere is a ≍P-
hain from R to R′′ in S , whi
h we 
omplete into a ≍P -
hain from
R to R′ using R′′ ≍P R′. �An indu
tion order partially orders the repeats of a pre-proof. Repeats arerequired to be 
omparable under 
ertain 
onditions.De�nition 5.10. (Indu
tion Orders) A partial order (R,�) on the set ofrepeats is 
alled an indu
tion order for P , if either R � R′ or R′ � R whenever(1) R′′ � R and R′′ � R′ for some R′′ (� is forest-like), or(2) R ≍P R′ (� respe
ts ≍P)A labelled indu
tion order (R,�, δ) is an indu
tion order (R,�) together with amap δ assigning an ordinal variable δR to ea
h repeat R ∈ R.Under the mild restri
tion that ea
h 
ompanion belongs to a unique repeat,the transitive 
losure of the stru
tural dependen
y relation is an important spe
ial
ase of an indu
tion order.Proposition 5.11. Let P = (D,R) be a pre-proof with unique 
ompanions, thatis, no pair of distin
t repeats share the same 
ompanion. Then the transitive
losure of ≤P is an indu
tion order for P.Proof. The relation ≤P is re�exive and, by the uniqueness of 
ompanions, anti-symmetri
. Hen
e, its transitive 
losure is a partial order. It is forest-like, sin
e
P is a tree, and it respe
ts ≍P , sin
e it 
ontains ≤P . �De�nition 5.12. (ioDC) Let P = (D,R) be a simple pre-proof. We say that alabelled indu
tion order (R,�, δ) dis
harges P if for all R ∈ R(1) R progresses on δR, and(2) R preserves δR′ whenever R � R′.Pre-proof P satis�es 
ondition (ioDC) if there is a labelled indu
tion order dis-
harging P .Sin
e any partial order that linearly orders the repeats of ea
h strongly 
on-ne
ted 
omponent of P is an indu
tion order, 
ondition (ioDC) subsumes theoriginal dis
harge 
ondition (DC) proposed by Dam and Gurov [4℄. For forest-like indu
tion orders 
ondition (ioDC) is equivalent to the 
ondition given byS
höpp [11℄ as the following lemma will show. However, by relying on the stru
-tural dependen
y relation our new de�nition of indu
tion order is more lo
al inthe sense that it avoids the quanti�
ation over all strongly 
onne
ted subsets of



24 TITLE WILL BE SET BY THE PUBLISHERrepeats of a pre-proof. This makes it easier to 
he
k whether a given partial orderon the set of repeats is an indu
tion order.Lemma 5.13. A forest-like partial order (R,�) is an indu
tion order if and onlyif ea
h strongly 
onne
ted S ⊆ R has a �-greatest element.Proof. �⇒� Suppose that (R,�) is an indu
tion order. Let S ⊆ R be strongly
onne
ted. In order to see that S has a �-greatest element, it is su�
ient to showthat any two R,R′ ∈ S have an upper bound in S, that is, R � R̂ and R′ � R̂ forsome R̂ ∈ S. Suppose R,R′ ∈ S. By Lemma 5.9 there is a sequen
e R0R1 · · ·Rnof repeats in S su
h that R = R0, R′ = Rn and Ri ≍P Ri+1 for 0 ≤ i < n. As
(R,�) respe
ts ≍P we also have Ri � Ri+1 or Ri+1 � Ri for 0 ≤ i < n. Usingthe fa
t that (R,�) is forest-like a routine indu
tion on n shows that there is anupper bound R̂ of R and R′ in S.�⇐� Suppose that ea
h strongly 
onne
ted S ⊆ R has a �-greatest element andlet R and R′ be two repeats with R ≍P R′. Then R � R′ or R′ � R as required,sin
e S = {R,R′} is strongly 
onne
ted by Lemma 5.8. �The next result shows that for simple pre-proofs dis
harge based on indu
tionorders is equivalent to dis
harge based on strongly 
onne
ted sets of repeats.Theorem 5.14. Let P = (D,R) be a simple pre-proof. Then P satis�es 
ondition(ioDC) if and only if it satis�es 
ondition (s
DC).Proof. �⇒� Suppose P = (D,R) satis�es (ioDC) witnessing the labelled indu
tionorder (R,�, δ) and let S ⊆ R be strongly 
onne
ted. Then S has a �-greatestelement R by Lemma 5.13. By the de�nition of dis
harge R progresses on δR andall R′ ∈ S preserve δR. Hen
e, P satis�es 
ondition (s
DC).�⇐� Suppose P = (D,R) satis�es (s
DC). We iteratively 
onstru
t a labelledindu
tion order (R,�, δ) as follows. We start with the set S0 partitioning R intoits strongly 
onne
ted 
omponents. At step i we pi
k Si ∈ Si and then an Ri ∈ Sisu
h that Ri progresses on some ordinal variable κi and all R ∈ Si preserve κi.Sin
e P satis�es (s
DC), su
h Ri and κi exist. Then we set Si+1 = (Si−{Si})∪D,where D is obtained as the partitioning of Si − {Ri} into its strongly 
onne
ted
omponents. This pro
ess terminates after n = |R| iterations, sin
e at ea
h step irepeat Ri is removed from ⋃

Si.We de�ne δ by δ(Ri) = κi and Ri � Rj if Si ⊆ Sj . By the hierar
hi
al natureof the 
onstru
tion (R,�) is 
ertainly a forest-like partial order and, moreover, forea
h strongly 
onne
ted S ⊆ R there is a unique Sk su
h that Rk ∈ S ⊆ Sk. Thisimplies that Si ⊆ Sk for any Ri ∈ S and thus Rk is �-greatest in S. Hen
e, (R,�)is an indu
tion order for P by Lemma 5.13. Note that any repeat R progresses on
δR by 
onstru
tion. Also, for any Ri with Ri � Rj , we have Ri ∈ Si ⊆ Sj , so Ripreserves δRj

. Thus, (R,�, δ) dis
harges P . �
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lusionsWe have studied a Gentzen-style proof system for the µ-
al
ulus whi
h is basedon 
ir
ular proofs. In parti
ular, we have investigated several dis
harge 
onditionswhi
h externally justify the well-foundedness of indu
tive reasoning embodied inthese proofs. Starting from the natural semanti
 
ondition proposed by Dam andGurov [4℄, we have, based on the notion of tra
es, given a synta
ti
al 
onditionwhi
h 
hara
terises the semanti
 one for any given pre-proof. While this 
onditionis purely synta
ti
al, it is still not suitable for implementation as its de�nitiondire
tly refers to in�nite obje
ts. Therefore, we have also elaborated an algorithmi
formulation in terms of a language in
lusion between two Bü
hi automata.Next, for a detailed 
omparison with previously known dis
harge 
onditions,we have fo
used our attention on two simpler dis
harge 
riteria. In parti
ular, wehave 
onsidered two levels of restri
tions with respe
t to our general 
ondition:(1) Restri
t to normal tra
es that tra
k the behaviour of a single ordinal vari-able, disallowing its renaming at repeats; this leads to 
ondition (s
DC),similar to those in [6, 12℄, requiring that we �nd, for ea
h strongly 
on-ne
ted subgraph, an ordinal variable and a repeat that progresses on thisvariable while the other repeats preserve it. This 
ondition 
an be formu-lated as an emptiness problem of a Streett automaton.(2) Additionally restri
t the form of pre-proofs to simple ones, where ea
hrepeat node is rea
hable in the proof tree from its 
ompanion node; thisallowed us to organise the repeats of a pre-proof into a partial order, 
alledindu
tion order, and formulate a new 
ondition, 
alled (ioDC), whi
h im-poses progress and preservation 
onditions on ea
h repeat a

ording to itsposition in the indu
tion order. This 
ondition is 
lose to those in [4, 11℄,but avoids a quanti�
ation over strongly 
onne
ted subsets of repeats.Our 
omparison showed that 
ondition (s
DC) and (ioDC) are equivalent for sim-ple pre-proofs and 
ondition (s
DC) is in general stri
tly stronger than our tra
e-based 
ondition on a �xed pre-proof. However, an important open question 
on-
erns the proof-theoreti
al strength of the di�erent 
onditions. More pre
isely, itis 
urrently un
lear to us whether there are sequents that 
an be proved usingthe tra
e-based 
ondition, but for whi
h no proof exists if we restri
t ourselves tousing a simpler dis
harge 
riterion. We are in
lined to think that this is not the
ase. But, while it might not be too di�
ult to show that any pre-proof 
an beunfolded into a simple one (with a potentially exponential blow-up due to the lossof sharing), the proof that we 
an dispense with renaming of ordinal variables atrepeats seems more involved.We would like to add some remarks regarding the pra
ti
al appli
ation of ourresults. First, the exponential 
omplexity of the general automata-based dis
harge
ondition (aDC) seems to dis
ourage its use in favour of the more tra
table 
ondi-tion (s
DC) based on strongly 
onne
ted 
omponents. We do not 
urrently knowwhether there is a polynomial algorithm for the general 
ondition, a question that
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ond, the general 
ondition is weaker and thus qual-i�es more pre-proofs as proofs, whi
h 
an be an advantage in automati
 proofsear
h. However, it is un
lear whether this di�eren
e frequently shows up in pra
-tise. Some experimentation is needed in order to 
larify these issues. Third, in atool implementation it is desirable to 
he
k dis
harge 
onditions in
rementally inorder to dete
t failure to dis
harge as soon as possible. Although the automata-based 
onditions (aDC) and (aDC-) 
an be used to this e�e
t on the partially
onstru
ted proof stru
ture, the need to 
omplement the se
ond automaton ea
htime a new repeat is added does not support in
remental 
he
king very well. Thereformulation of 
ondition (s
DC) as an emptiness problem of a Streett automatonis 
ertainly easier to adapt for in
remental veri�
ation.Finally, it is important to observe that the dependen
y of our results on the
µ-
al
ulus itself is very limited. The µ-
al
ulus was 
hosen here as a suitableminimal 
ontext in whi
h to study global indu
tion, but all that our indu
tionme
hanisms rely on is that the obje
t language in
ludes a form of indu
tive de�ni-tion, whi
h 
an be augmented by a 
orresponding notion of approximation. Giventhese ingredients it should, in prin
iple, be possible to turn almost any dedu
tivesystem using lo
al indu
tion rules into one based on global indu
tion by repla
-ing the lo
al indu
tion rules by appropriate versions of �xed point and ordinalrules. Some examples that merit a 
loser inspe
tion are the in
lusion of regularlanguages, indu
tive type theories and Hoare logi
s for re
ursive pro
edures. In arelated paper [13℄, we investigate the relation between a proof system based on alo
al well-founded indu
tion rule on the ordinals and one based on global indu
-tion as studied here. We establish their equivalen
e by giving proof translationsin ea
h dire
tion.We would like to thank Dilian Gurov, Lars-åke Fredlund and Alex Simpson for interestingand fruitful dis
ussions on the subje
t of this paper. We are also grateful to the twoanonymous referees for their very detailed and 
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