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2 TITLE WILL BE SET BY THE PUBLISHERsearh, in partiular the handling of �xed point formulas. The standard approah,Park's �xed point indution rule (f. [7℄), is not suitable for proof searh in pra-tise. An alternative is to admit yli proof strutures (f. [2,4,8,14℄) and look forsound indution disharge onditions, external global riteria that ensure the well-foundedness of the indutive reasoning. In this setting, proof trees are ompletedinto proof graphs by adding bak edges (alled repeats) from non-axiom leafs tonodes of whih they are substitution instanes. This type of proof is favourable toproof searh as it allows one to delay deisions onerning indution strategies aslong as possible.In this paper, we study indution disharge onditions in the ontext of aGentzen-style proof system for the �rst-order µ-alulus and present a new synta-ti ondition, whih is weaker than previously published ones in the sense that itquali�es more proof strutures as valid proofs. Our proof system is a variant of pre-vious systems [4,6,11,12℄. In partiular, it shares with [4,6,11℄ the tehnique, �rstproposed for the modal µ-alulus by Dam and Gurov [4℄, of introduing expliitapproximation ordinal variables and ordering onstraints between them into theproof system. Disharge onditions then rely on these ordering onstraints. In thepresene of a Cut rule, the use of approximation ordinals onsiderably simpli�esearlier treatments (f. [3℄). Dam and Gurov proposed a simple semanti dishargeondition, whih essentially requires that no in�nite path in the proof struture anbe assigned a oherent in�nite sequene of valuations. This ondition expresses ina natural way the requirement of well-foundedness of all indutive reasoning, butdue to its semanti nature it is not suitable for the purpose of pratial proof. Weshow that it is equivalent to our pratially more useful syntati ondition, whileprevious syntati onditions [4, 6, 11℄ turn out to be stritly more restritive.Our new ondition relies on the notion of traes, whih are non-inreasing hains(w.r.t. the ordering onstraints) of ordinal variables assoiated with a path of aproof struture. They an be seen as a uniform generalisation of the µ- and
ν-traes desribed by Niwi«ski and Walukiewiz [8℄ to systems with a Cut ruleand expliit approximants. We identify progress in a trae with positions wherea strit derease with respet to the onstraints ours. The equivalene withthe semanti ondition is then established by showing that a trae progressingat in�nitely many positions implies well-foundedness on the semanti side and,onversely, the absene of suh a trae gives rise to non-wellfoundedness. Basedon the observation that every trae an be transformed into a normal trae whereprogress is made only at repeat nodes, we are able to give a ompat automata-theoreti haraterisation of our trae-based disharge ondition in terms of aninlusion of the languages reognised by two Bühi automata. This formulationmay serve as the basis of an implementation in a proof tool suh as the ErlangVeri�ation Tool. Being weaker than previously known onditions, the automata-based riterion might be able to detet proofs where the others fail to do so, whihis an advantage for semi-automati proof searh.For a detailed omparison of our new ondition with previously published work,we then turn our attention to two simpler disharge onditions. Common to bothof these is that they are based on progress and preservation properties of single



TITLE WILL BE SET BY THE PUBLISHER 3ordinal variables at the repeats of the proof struture. The �rst ondition requiresthat in eah strongly onneted subgraph of the proof struture there is a repeatprogressing on some ordinal variable, while all other repeats preserve that variable.We show how this ondition, whih is similar to one proposed by Fredlund [6℄(and [12℄, though in a somewhat di�erent setting), orresponds to a simpli�ed, butstritly stronger version of our automata-based ondition. Seondly, we restritour attention to the speial ase of simple proof strutures, where repeats loopbak to anestral nodes (i.e. they point to a node on the path from the root to thedisharged leaf) and introdue a new alternative notion of disharge where repeatsare organised in a partial order, alled indution order. Progress and preservationproperties imposed on eah repeat then depend on its position in this order. Forsimple proof strutures this ondition generalises the one originally proposed byDam and Gurov [4℄ and is equivalent to both the previous one as well as to theondition presented by Shöpp [11℄. While drawing its inspiration from the latter,it is more loal in the sense that it avoids a quanti�ation over strongly onnetedsubgraphs.The outline of the rest of the paper is as follows. The next setion introduesthe µ-alulus with expliit approximations. Setion 3 presents the proof system,using the semanti indution disharge ondition in the basi notion of proof. InSetion 4 we �rst introdue our trae-based disharge ondition and establish itsequivalene with the semanti one. Based on the notion of normal traes we thenpropose an automata-theoreti haraterisation of this ondition. Restrited formsof syntati disharge are disussed in Setion 5 and ompared to previous work.Setion 6 onludes the paper with a disussion of the results and an outlook onfuture work.2. µ-Calulus with Expliit Approximations2.1. Fixed pointsWe �rst brie�y reall some basi fats from �xed point theory. Suppose A is anarbitrary set. Let 2 = {0, 1} be the two-point lattie and let Pred(A) = 2
A be thelattie of prediates over A ordered pointwise.De�nition 2.1. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). Theordinal approximation µαΨ of the �xed point µΨ is de�ned by

µ0Ψ = λx.0
µα+1Ψ = Ψ(µαΨ)
µγΨ =

∨

α<γ µ
αΨ for a limit ordinal γTheorem 2.2. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). Then(1) µΨ =

∨

α µ
αΨ is the least �xed point of Ψ (Knaster-Tarski)(2) µαΨ =

∨

β<α Ψ(µβΨ)



4 TITLE WILL BE SET BY THE PUBLISHER2.2. SyntaxWe assume ountably in�nite sets of individual variables x, y, z, . . . ∈ VI , pred-iate variables Xn, Y n, Zn, . . . ∈ V n
P of eah arity n ≥ 0, and ordinal variables

ι, κ, λ, . . . ∈ VO. We write v, v′, . . . for variables of any of the aforementioned types.Let t, t′, . . . range over the terms of some �rst-order signature Σ. We write t for avetor t1, . . . , tn of terms, let |t| denote its length n and {t} the set {t1, . . . , tn}.De�nition 2.3. The syntax of µ-alulus formulas φ and n-ary abstrations Φnover signature Σ is indutively de�ned by
φ ::= t = t′ | ¬φ | φ1 ∨ φ2 | ∃x.φ | ∃κ.φ | ∃κ′<κ.φ | Φn(t)
Φn ::= Xn | µXn(x).φ | µκXn(x).φwith the restrition that |x| = n in �xed point abstrations µXn(x).φ and approx-imation abstrations µκXn(x).φ, and |t| = n in appliations Φn(t). Furthermore,�xed point and approximation abstration formation are subjet to the usual for-mal monotoniity ondition requiring that eah ourrene of Xn in φ appears inthe sope of an even number of negation symbols.We will heneforth omit the arity annotations from prediate variables andassume that arities math as required by the previous de�nition. The sets of freevariables of formulas and abstrations are de�ned as expeted. In partiular, wehave

fv(∃κ′<κ.φ) = (fv(φ) − {κ′}) ∪ {κ}
fv(Φ(t)) = fv(Φ) ∪ fv(t)
fv(µX(x).φ) = fv(φ) − {X,x}
fv(µκX(x).φ) = (fv(φ) − {X,x}) ∪ {κ}This is extended to sets of formulas ∆ by de�ning fv(∆) =

⋃

{fv(φ) | φ ∈ ∆}.We identify formulas and abstrations that di�er only by a renaming of theirbound variables. Dual onnetives are de�ned from the primitive ones in the usualway. The greatest �xed point νX(x).φ and the greatest �xed point approximation
νκX(x).φ are de�ned by

νX(x).φ = ¬µX(x).¬φ[¬X/X ]
νκX(x).φ = ¬µκX(x).¬φ[¬X/X ]We assume that substitutions σ, σ′, . . .map term variables to terms, prediate vari-ables to abstrations of the same arity and ordinal variables to ordinal variables.We write φσ or σ(φ) to denote the formula obtained from φ by substituting eahourrene of a variable v by σ(v), renaming bound variables as neessary to avoidapture of free variables.2.3. SemantisLet Σ be a �rst-order signature. A Σ-model M = (A, ρ) onsists of a Σ-struture A interpreting the symbols in Σ and an A-environment ρ interpreting



TITLE WILL BE SET BY THE PUBLISHER 5eah variable in its respetive domain. We write |A| for the support set of the stru-ture A. The semantis interprets a µ-alulus formula φ as an element ‖φ‖M ∈ 2and a n-ary abstration Φ as an element ‖Φ‖M ∈ Pred(|A|n). We usually drop
M and write ‖φ‖ρ and ‖Φ‖ρ if the struture A is lear from the ontext. Thesemantis ‖t‖ρ ∈ |A| of a term t is de�ned as usual.De�nition 2.4. (Semantis) Given a signature Σ and a Σ-model (A, ρ) thesemantis of µ-alulus formulas φ and abstrations Φ over Σ is indutively de�nedby

‖t = t′‖ρ = if ‖t‖ρ = ‖t′‖ρ then 1 else 0
‖¬φ‖ρ = 1 − ‖φ‖ρ

‖φ1 ∨ φ2‖ρ = max{‖φ1‖ρ, ‖φ2‖ρ}
‖∃x.φ‖ρ =

∨

a∈|A|‖φ‖ρ[a/x]

‖∃κ.φ‖ρ =
∨

β‖φ‖ρ[β/κ]

‖∃κ′<κ.φ‖ρ =
∨

β<ρ(κ)‖φ‖ρ[β/κ′]

‖Φ(t)‖ρ = ‖Φ‖ρ(‖t‖ρ)
‖X‖ρ = ρ(X)
‖µX(x).φ‖ρ = µΨ

‖µκX(x).φ‖ρ = µρ(κ)Ψwhere Ψ = λP.λa.‖φ‖ρ[P/X,a/x] in the lauses for �xed point and approximationabstrations.A model M = (A, ρ) satis�es a formula φ, written M |= φ if ‖φ‖ρ = 1. Theformula φ is alled valid, written |= φ, if it is satis�ed in all Σ-models. Given a
Σ-model M = (A, ρ) we extend ρ a posteriori to terms t and formulas φ otherthan variables by de�ning ρ(t) = ‖t‖ρ and ρ(φ) = ‖φ‖ρ. This allows us to omposesubstitutions σ and environments ρ as in ρ ◦ σ.3. The Proof SystemThe proof system we present in this setion is an adaptation to the �rst-ordersetting of the one proposed by Shöpp [11℄ for the modal µ-alulus. The maindi�erene with the original proposal [4℄ is the addition of ordinal quanti�ation.We would like to stress, however, that all results of this paper remain valid forsystems without ordinal quanti�ation as well as for modal variants.3.1. Ordinal ConstraintsOur proof system uses expliit ordinal approximations of �xed point formulas.Constraints between ordinal variables will be reorded in strit partial orders O =
(|O|, <O), where |O| is a �nite set of ordinal variables from VO and <O is abinary, irre�exive and transitive relation on |O|. We refer to O as a set of ordinalonstraints. We write ι ≤O κ if either ι <O κ or κ ∈ |O| and ι = κ (syntati



6 TITLE WILL BE SET BY THE PUBLISHERidentity). If O and O′ are two strit partial orders we write O ⊆ O′ to mean that
|O| ⊆ |O′| and <O ⊆ <O′. In sequents, we will write O, κ for (|O| ∪ {κ}, <O)and O, κ′ < κ for O′ = (|O| ∪ {κ′, κ}, <O′), where <O′ is the transitive losureof <O ∪{(κ′, κ)}. It is worth noting that the latter notation will only be used inase O′ is indeed a strit partial order. Given a model M = (A, ρ) we say that ρrespets O, if ρ(ι) < ρ(κ) whenever ι <O κ.3.2. Sequents and Proof RulesThe sequents of the proof system are of the form Γ ⊢O ∆, where Γ and ∆ are�nite sets of formulas and O = (|O|, <O) is a set of ordinal onstraints. A sequentis well-formed if all ordinal variables ourring free in Γ or ∆ are elements of |O|.We restrit our attention to well-formed sequents without further mention. Theset of free variables of a sequent is de�ned by fv(Γ ⊢O ∆) = fv(Γ∪∆)∪|O|. Givena Σ-model M = (A, ρ) we say that M satis�es a sequent Γ ⊢O ∆ whenever ρrespets O and M |= φ for all φ ∈ Γ then M |= ψ for some ψ ∈ ∆. A model Mfalsi�es a sequent Γ ⊢O ∆ if M does not satisfy Γ ⊢O ∆ . The sequent Γ ⊢O ∆is valid if it is satis�ed in all models and invalid otherwise. The purpose of theproof system is to establish the validity of sequents.The rules of our proof system are displayed in Tables 1 and 2. They are pre-sented in tableau style with the onlusion above the line and the premises below.Table 1 shows standard rules of �rst-order logi with equality. The �xed pointrules of Table 2 are a diret appliation of Theorem 2.2. Note the asymmetry ofthe rules (µ1-L) and (µ0-R). It is not di�ult to show, one the notion of proofhas been introdued (see De�nition 3.5), the derivability of the sequents

• Γ, (µX(x).φ)(t) ⊢O φ[µX(x).φ/X, t/x],∆, and
• Γ, ∃κ.(µκX(x).φ)(t) ⊢O (µX(x).φ)(t),∆whih is su�ient to derive the symmetri rules (µ0-L) and (µ1-R), respetively.However, rule (µ0-R) is not derivable using (µ0-L), (µ1-L) and (µ1-R), essentiallybeause (µ0-R) is the only proof rule foring µ-formulas to be interpreted as �xedpoints. To see this we use a non-standard interpretation of �xed points1. Inter-pret µX(x).φ as µωX(x).φ, and interpret ordinal variables as ranging over �niteordinals. This interpretation validates all proof rules inluding (µ0-L), (µ1-L) and(µ1-R), but not (µ0-R), whih is seen by onsidering any model struture and �xedpoint formula with losure ordinal ω + 1.Rules (∃O-L) and (∃<

O-L) both introdue a fresh ordinal variable while the latterrule additionally generates a new ordinal onstraint. Their right hand side versions,(∃O-R) and (∃<
O-R), respetively require an ordinal variable and a onstraint as awitness. Rule (OrdStr), originally proposed by Shöpp [11℄, allows us to strengthenordinal onstraints in a ontrolled way. More preisely, we may add new ordinalvariables and onstraints to the order O of a sequent Γ ⊢O ∆ as long as nonew variable goes below a variable in |O|. This rule is sometimes helpful to �nd1This argument is ontributed by one of the anonymous referees.



TITLE WILL BE SET BY THE PUBLISHER 7Strutural Rules(Id) Γ, φ ⊢O φ,∆

·
(Cut) Γ ⊢O ∆

Γ, φ ⊢O ∆ Γ ⊢O φ,∆(W-L) Γ, φ ⊢O ∆

Γ ⊢O ∆
(W-R) Γ ⊢O φ,∆

Γ ⊢O ∆Logial and Equality Rules(¬-L) Γ,¬φ ⊢O ∆

Γ ⊢O φ,∆
(¬-R) Γ ⊢O ¬φ,∆

Γ, φ ⊢O ∆(∨-L) Γ, φ1 ∨ φ2 ⊢O ∆

Γ, φ1 ⊢O ∆ Γ, φ2 ⊢O ∆
(∨-R) Γ ⊢O φ1 ∨ φ2,∆

Γ ⊢O φ1, φ2,∆(∃I -L) Γ, ∃x.φ ⊢O ∆

Γ, φ ⊢O ∆
x 6∈ fv(Γ ∪ ∆) (∃I -R) Γ ⊢O ∃x.φ,∆

Γ ⊢O φ[t/x],∆(=-L) Γ[t2/x], t1 = t2 ⊢O ∆[t2/x]

Γ[t1/x] ⊢O ∆[t1/x]
(=-R) Γ ⊢O t = t,∆

·Table 1. Proof Rules of First-Order Logi with Equalityrepeats (see De�nition 3.1 below) and seems to be required to prove some simplevalid sequents suh as Γ, ∃κ.φ ⊢O ∃κ.∃κ′<κ.φ[κ′/κ],∆.3.3. Pre-Proofs, Runs and ProofsA derivation tree D = (N , E ,L) is a tree (N , E) with nodes N and edges E ⊆
N ×N together with a funtion L labelling eah node of the tree with a sequentin a way that is onsistent with the appliation of the proof rules. We will oftenwrite N(Γ ⊢O ∆) for L(N) = Γ ⊢O ∆. The proof strutures of our system areessentially �nite graphs, whih are generated from a derivation tree by adding abak edge from eah non-axiom leaf to a node of whih it is a repetition (up tosome substitution). Let us �x an arbitrary derivation tree D = (N , E ,L).De�nition 3.1. (Repeat) Let M(Γ ⊢O ∆) and N(Γ′ ⊢O′ ∆′) be nodes of D.Then the triple (M,N, σ) is alled a repeat of D, if N is a leaf of D and σ is asubstitution suh that(1) φ ∈ Γ implies σ(φ) ∈ Γ′, and



8 TITLE WILL BE SET BY THE PUBLISHERFixed Point Rules(µ1-L) Γ, (µX(x).φ)(t) ⊢O ∆

Γ, ∃κ.(µκX(x).φ)(t) ⊢O ∆
(µ0-R) Γ ⊢O (µX(x).φ)(t),∆

Γ ⊢O φ[µX(x).φ/X, t/x],∆(µκ-L) Γ, (µκX(x).φ)(t) ⊢O ∆

Γ, ∃κ′<κ.φ[µκ′X(x).φ/X, t/x] ⊢O ∆(µκ-R) Γ ⊢O (µκX(x).φ)(t),∆

Γ ⊢O ∃κ′<κ.φ[µκ′X(x).φ/X, t/x],∆Ordinal Rules(∃O-L) Γ, ∃κ.φ ⊢O ∆

Γ, φ ⊢O,κ ∆
κ 6∈ |O| (∃O-R) Γ ⊢O ∃κ.φ,∆

Γ ⊢O φ[ι/κ],∆
ι ∈ |O|(∃<

O-L) Γ, ∃κ′<κ.φ ⊢O ∆

Γ, φ ⊢O,κ′<κ ∆
κ′ 66∈ |O| (∃<

O-R) Γ ⊢O ∃κ′<κ.φ,∆

Γ ⊢O φ[ι/κ′],∆
ι<O κ(OrdStr) Γ ⊢O ∆

Γ ⊢O′ ∆
O ⊆ O′ and ι<O′ κ, κ ∈ |O| ⇒ ι ∈ |O|Table 2. Fixed Point and Ordinal Proof Rules(2) ψ ∈ ∆ implies σ(ψ) ∈ ∆′, and(3) κ ∈ |O| implies σ(κ) ∈ |O′|, and(4) ι<O κ implies σ(ι)<O′ σ(κ).The node N is alled repeat node and M its ompanion node.It is worth remarking that we do not require ompanions to be anestors oftheir orresponding repeat nodes in D.De�nition 3.2. (Pre-Proof) A pre-proof P = (D,R) for a sequent Γ ⊢O ∆onsists of a derivation tree D = (N , E ,L) with root node labelled by Γ ⊢O ∆and a set of repeats R for D suh that eah non-axiom leaf appears in exatlyone repeat of R. The pre-proof graph of P is de�ned by G(P) = (N , E ′,L), where

E ′ = E ∪ {(N,M) | ∃σ.(M,N, σ) ∈ R}.By a path of P we mean a path in G(P). A path π is alled rooted if its �rstnode π(0) is the root of D. We write πi for the ith su�x of π, that is, the pathobtained by dropping the �rst i nodes of π. This yields the empty sequene in



TITLE WILL BE SET BY THE PUBLISHER 9ase that i is greater or equal to the length of π. We say that π traverses a repeat
R = (M,N, σ) if π(i) = N and π(i+ 1) = M for some position i.Example 3.3. (Lexiographi Order) In order to illustrate the preeding def-initions, we now present a proof in our system showing that the lexiographiordering of two well-founded relations is again well-founded. We assume that oursignature inludes the unary funtion symbols π1 and π2 (to be interpreted as theleft and right projetions of a pair). In this example, we write t1 as a shorthandfor π1(t) and t2 for π2(t).Well-foundedness an be de�ned in terms of the notion of aessibility of anelement x with respet to a binary relation X :

Acc(X,x) = (µZ(z).∀y.¬X(y, z) ∨ Z(y))(x)
Wf(X) = ∀x.Acc(X,x)The least �xed point in the de�nition of aessibility fores the absene of in�nitelydesending X-hains from a given element x of the domain. A binary relation Xis well-founded if all elements of the domain are aessible with respet to X . Thelexiographi ordering of two binary relations X and Y is de�ned by

Lex(X,Y )(u,w) = X(u1, w1) ∨ (u1 = w1 ∧ Y (u2, w2))With these de�nitions the sequent we would like to prove valid is
Γ0 ⊢ Wf(Lex(X,Y )) (1)where Γ0 = Wf(X),Wf(Y ). Before presenting a proof of this sequent, we needto introdue some derived rules and abbreviations. The derivation uses the rules(∧-L), (∀I -L) and (∀I -R) for onjuntion and universal quanti�ation:(∧-L) Γ, φ1 ∧ φ2 ⊢O ∆

Γ, φ1, φ2 ⊢O ∆
(∀I -L) Γ, ∀x.φ ⊢O ∆

Γ, φ[t/x] ⊢O ∆
(∀I -R) Γ ⊢O ∀x.φ,∆

Γ ⊢O φ,∆
CThe side ondition C of rule (∀I -R) requires that x 6∈ fv(Γ ∪ ∆). These rules areeasily derived from their duals (∨-R), (∃I -R) and (∃I -L), respetively. We alsointrodue the following abbreviations:

Acc
κ(X,x) = (µκZ(z).∀y.¬X(y, z) ∨ Z(y))(x)

A(X,Y, z) = Acc(Lex(X,Y ), z)Figure 1 shows a derivation tree for sequent (1) whih is ontinued in Figures 2and 3. For brevity, we use a minimalisti notation for ordinal onstraints. We writefor instane Γ ⊢κ
λ′<λ ∆ for the sequent Γ ⊢O ∆, where O = ({κ, λ, λ′}, {(λ′, λ)}).This should not give rise to any onfusion. We use the label (FO) to denote anunspei�ed series of �rst-order logi rule appliations.Let us now look at the derivation in some detail. At the root node N0 weremove the universal quanti�er appearing in the de�nition of Wf on the right



10 TITLE WILL BE SET BY THE PUBLISHER
N0[Γ0 ⊢ Wf(Lex(X, Y ))] (∀I-R)

N1[Γ0 ⊢ A(X,Y, w)] (RS1)
N∗

2 [Γ0, Acc
κ(X, w1) ⊢κ A(X,Y, w)] (RS1)

N∗∗

3 [Γ0, Acc
κ(X, w1), Acc

λ(Y, w2) ⊢κ,λ A(X, Y,w)] (µ0-R, FO)
N4[Γ0, Acc

κ(X, w1), Acc
λ(Y, w2), Lex(X, Y )(u, w) ⊢κ,λ A(X, Y, u)] (FO)

DL DRFigure 1. Derivation tree D for lexiographi order example
N5[Γ0, Acc

κ(X, w1), X(u1, w1) ⊢κ,λ A(X, Y, u)] (RS2)
N6[Γ0,¬X(u1, w1) ∨ Acc

κ′

(X, u1), X(u1, w1) ⊢λ
κ′<κ A(X, Y, u)] (FO)

N∗

7 [Γ0, Acc
κ′

(X, u1) ⊢λ
κ′<κ A(X,Y, u)] N8[X(u1, w1) ⊢λ

κ′<κ X(u1, w1)]Figure 2. Derivation DL

N9[Γ0, Acc
κ(X, w1), Acc

λ(Y, w2), u1 = w1, Y (u2, w2) ⊢κ,λ A(X, Y, u)] (=-L)
N10[Γ0, Acc

κ(X, u1), Acc
λ(Y,w2), Y (u2, w2) ⊢κ,λ A(X, Y, u)] (RS2)

N11[Γ0, Acc
κ(X, u1),¬Y (u2, w2) ∨ Acc

λ′

(Y, u2), Y (u2, w2) ⊢κ
λ′<λ A(X, Y, u)]

N∗∗

12 [Γ0, Acc
κ(X, u1), Acc

λ′

(Y, u2) ⊢κ
λ′<λ A(X, Y, u)] N13[Y (u2, w2) ⊢κ

λ′<λ Y (u2, w2)]Figure 3. Derivation DRhand side of the turnstile. Then we apply rule sequene (RS1)=(∀I -L, µ1-L, ∃O-L) twie to approximate Acc(X,w1) to Acc
κ(X,w1) at node N1 and Acc(Y,w2) to

Acc
λ(Y,w2) at N2, introduing the fresh ordinal variables κ and λ, respetively.At node N3 the formula A(X,Y,w) is unfolded using rule (µ0-R) followed byappliations of �rst-order logi rules. Next, at N4 we apply a series of booleanrules to Lex(X,Y )(u,w), produing nodes N5 in Figure 2 and N9 in Figure 3,orresponding to the two ases in the de�nition of the lexiographi ordering.From N5 to N7 we unfold and instantiate the approximation Acc

κ(X,w1) usingrule sequene (RS2)=(µκ-L, ∃<
O-L, ∀I -L) and �rst-order logi rules. This yieldsa new ordinal onstraint κ′ < κ and approximation Acc

κ′

(X,u1) as well as theaxiom node N7. In DR, after rewriting the equation at node N11, we apply thesame sequene of rules as in DL to Acc
λ(Y,w2), resulting in the ordinal onstraint

λ′ < λ and the approximation Acc
λ′

(Y, u2) at node N12 and the axiom at N13.



TITLE WILL BE SET BY THE PUBLISHER 11Finally, we extend the derivation tree D with two repeats L and R (indiatedin the �gures by ∗ and ∗∗) as follows:
L = (N2, N7, σL) where σL = [u/w, κ′/κ]
R = (N3, N12, σR) where σR = [u/w, λ′/λ]This yields the pre-proof P = (D, {L,R}).Not every pre-proof is a proof of the validity of its root sequent. The simplestexample of a pre-proof that is not a proof is given by the derivation that infersthe sequent ⊢ µX.X from itself using rule (µ0-R). This two-node pre-proof learlyuses irular reasoning and should therefore be rejeted as a proof.We now give a simple semanti indution disharge ondition ensuring that allindutive reasoning embodied in a pre-proof is well-founded.De�nition 3.4. (Run) Let P = (D,R) be a pre-proof, A a Σ-struture andsuppose Π = (N0, ρ0) · · · (Ni, ρi) · · · is a (�nite or in�nite) sequene of pairs ofnodes of D and A-environments. Suppose that Ni(Γi ⊢Oi

∆i). Then Π is alled arun of the pre-proof P if(1) N0 is the root of P , and(2) ρi respets Oi for all i, and(3) for all suessive pairs (Ni, Ni+1) of nodes, either(a) (Ni, Ni+1) ∈ E and ρi+1 agrees with ρi on all free variables ommonto Ni and Ni+1, or(b) (Ni+1, Ni, σ) ∈ R and ρi+1 = ρi ◦ σ.Note that π = N0 · · ·Ni · · · is a rooted path of P . We say that the run Π followsthe path π.De�nition 3.5. (Proof) A pre-proof P for Γ ⊢O ∆ satis�es disharge ondition(rDC) if all runs of P are �nite, in whih ase P is alled a proof for Γ ⊢O ∆.Intuitively, the �niteness of runs in a proof rests on the well-foundedness of theunderlying interpretation of the ordinal variables and thus prevents unsound iru-lar reasoning. Note that the �niteness of runs is independent of the interpretationof non-ordinal variables. This intuition will be made expliit in Setion 4.Example 3.6. Consider again the pre-proof P from Example 3.3. Let πL =
N2 · · ·N7 and πR = N3N4N9 · · ·N12 be the simple yles orresponding to repeats
L and R, respetively. Suppose there is an in�nite run r following a path traversingthe left loop inde�nitely from some point on, that is, a path ending in πω

L. ByDe�nition 3.4 the interpretation of κ remains onstant along πL, sine κ is free inall of these sequents. Now suppose r(i) = (N7, ρi) and r(i+ 1) = (N2, ρi+1). Thisstep traverses the repeat L. In this ase De�nition 3.4 requires that ρi+1(κ) =
(ρi◦σL)(κ) = ρi(κ

′). But sine ρi respets κ′ < κ atN7, we have ρi(κ
′) < ρi(κ) andhene ρi+1(κ) < ρi(κ). Sine the run r was assumed to be in�nite and traverse Lin�nitely often, the interpretation of κ must derease at in�nitely many positions.This ontradits the well-foundedness of the ordinals. Hene, suh a run does not



12 TITLE WILL BE SET BY THE PUBLISHERexist. A similar argument shows that there is no in�nite run following a pathending in πω
R, sine this implies that the interpretation of λ dereases inde�nitely.By observing that the interpretation of κ remains onstant along πR and whentraversing repeat R, we see that there is no in�nite run following any path travers-ing eah of the loops πL and πR in�nitely often. Thus, P is a proof. We onludethis example by remarking that the syntati disharge onditions introdued inSetions 4 and 5 provide a muh more onvenient method to determine whether apre-proof is a proof.3.4. SoundnessLemma 3.7. (Loal soundness) The proof rules of Tables 1 and 2 are sound.In partiular, if there is a Σ-model (A, ρ) falsifying the onlusion C of a rule thenthere is an A-environment ρ′ suh that (A, ρ′) falsi�es some premise P of thatrule. Moreover, ρ and ρ′ agree on all free variables ommon to C and P .Proof. By inspetion of the proof rules. For the �xed point rules the laim followsimmediately from Theorem 2.2. The ases of the ordinal rules are straightforwardexept for rule (OrdStr), whih we disuss now. Suppose some model (A, ρ) falsi�esthe sequent Γ ⊢O ∆ in the onlusion. The sequent in the premise is Γ ⊢O′ ∆ with

O ⊆ O′. Sine <O′ is a �nite strit partial order, we an de�ne the environment
ρ′ by well-founded indution on <O′ as follows

ρ′(v) =

{

max{ρ′(ι) | ι<O′ v} + 1 if v ∈ |O′| − |O|
ρ(v) otherwiseIt is su�ient to hek that ρ′ respets O′ and thus falsi�es the premise sequent

Γ ⊢O′ ∆. Consider some onstraint ι<O′ κ. If κ ∈ |O| then also ι ∈ |O| by the sideondition of the rule. Hene, ρ′(ι) < ρ′(κ) is inherited from O. If κ ∈ |O′| − |O|then we have ρ′(ι) < ρ′(ι) + 1 ≤ ρ′(κ) by the de�nition of ρ′. �Lemma 3.8. Let (M,N, σ) be a repeat and let (A, ρ) be a model falsifying L(N).Then (A, ρ ◦ σ) falsi�es L(M).Proof. By the de�nition of a repeat. �Theorem 3.9. (Soundness) If there is a proof for Γ ⊢O ∆, then Γ ⊢O ∆ isvalid.Proof. Let P = (D,R) be a proof for Γ ⊢O ∆ and suppose for a ontraditionthat some model (A, ρ0) falsi�es Γ ⊢O ∆. We iteratively onstrut an in�nite run
Π. The onstrution starts with Π0 = (N0, ρ0), where N0 is the root node of P .Clearly, ρ0 respets O0 sine (A, ρ0) falsi�es L(N0). Hene, Π0 is a �nite run.Assume that we have already onstruted the �nite run Πi = (N0, ρ0) · · · (Ni, ρi)for some i ≥ 0 suh that (A, ρi) is a model falsifying L(Ni). Note that L(Ni) annot be an axiom. We show that Πi an be extended to a run Πi+1 = Πi(Ni+1, ρi+1)suh that (A, ρi+1) is a model falsifying L(Ni+1) = Γi+1 ⊢Oi+1

∆i+1 (and hene
ρi+1 respets Oi+1). We distinguish two ases. If Ni is a non-leaf node then there



TITLE WILL BE SET BY THE PUBLISHER 13is by Lemma 3.7 a suessor node M of Ni and an A-environment ρ suh that
(A, ρ) falsi�es L(M) and ρ agrees with ρi on all free variables ommon to L(Ni)and L(M). Then the sequene Πi+1 obtained by setting Ni+1 = M and ρi+1 = ρis again a run. If Ni is a repeat node then there is a repeat (M,Ni, σ) ∈ R andwe set Ni+1 = M and ρi+1 = ρi ◦ σ. By Lemma 3.8 (A, ρi+1) falsi�es L(Ni+1),so Πi+1 is a run. The limit Π of the sequene Π0,Π1, . . . is an in�nite run of P ,ontraditing the assumption that P is a proof. �4. Syntati Disharge ConditionsAs ondition (rDC) aptures the well-foundedness of the reasoning in a pre-proof in a very natural way, it serves as our referene disharge ondition. Dueto its semanti nature it is, however, hardly usable in pratial proofs and wetherefore introdue two alternative, purely syntatial, disharge onditions andshow that they haraterise ondition (rDC). For the remainder of this setion we�x an arbitrary pre-proof P = (D,R) with D = (N , E ,L).4.1. Traes and ProgressA trae of P is a path of P labelled by ordinal onstraints that are linked toyield a non-inreasing hain of ordinal dependenies.De�nition 4.1. (Trae) Let τ = (N0, (κ0, κ

′
0)) · · · (Ni, (κi, κ

′
i)) · · · be a (�nite orin�nite) sequene of pairs onsisting of a node of D and a pair of ordinal variablesof VO. Suppose that Ni(Γi ⊢Oi

∆i). Then τ is a trae of P if(1) κ′i ≤Oi
κi for all i, and(2) for all suessive pairs (Ni, Ni+1) of nodes, either(a) (Ni, Ni+1) ∈ E and κ′i = κi+1, or(b) (Ni+1, Ni, σ) ∈ R and κ′i = σ(κi+1).We say that the trae τ = (N0, (κ0, κ

′
0)) · · · (Ni, (κi, κ

′
i)) · · · follows the path π =

N0 · · ·Ni · · · .De�nition 4.2. (Progress) Let τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · · and sup-pose L(Ni) = Γi ⊢Oi

∆i. Then
• τ progresses at position i if κ′i <Oi

κi, and
• τ is progressive if there are in�nitely many positions where τ progresses,and
• a path π in G(P) is progressive if there is a progressive trae τ following asu�x πi of π.Example 4.3. Figure 4 represents the trae

τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ)),
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σ1 σ2

α α

β

α

γ

κ

λ

δ

ε β

γ

β

Figure 4. Example of a traewhere R1 = (N0, N1, σ1) and R2 = (N3, N4, σ2) are repeats with σ1(α) = ǫ and
σ2(κ) = γ. The trae follows the path N0N1N2N3N4 and progresses at positions
0, 1 and 2.4.2. The Trae-Based Disharge ConditionDe�nition 4.4. (tDC) A pre-proof P satis�es disharge ondition (tDC) if allin�nite paths of P are progressive.Theorem 4.5. A pre-proof P is a proof if and only if it satis�es ondition (tDC).Proof. It is su�ient to show for any in�nite rooted path π in P that there is noin�nite run following π if and only if there is a progressive trae following somesu�x of π. Let π = N0 · · ·Ni · · · be an in�nite path in P and let Oj denote thepartial order appearing in sequent L(Nj).�⇒� By ontraposition. Suppose that there is no progressive trae followinga su�x of π. We will onstrut an in�nite run Π following π. De�ne the height
hi(κ) of ordinal variable κ in the order Oi indutively as follows:

hi(κ) =

{

0 if κ is minimal in Oi

max{hi(ι) | ι<Oi
κ} + 1 otherwiseWe obviously have hi(ι) < hi(κ) whenever ι <Oi

κ. The height h(τ) of a non-progressive trae τ = (M0, (κ0, κ
′
0)) · · · (Mi, (κi, κ

′
i)) · · · is then de�ned by

h(τ) =
∑

j

(hj(κj) − hj(κ
′
j))

h(τ) is �nite, beause τ is non-progressive. Now we de�ne d(i, κ) = max(H(i, κ)),where
H(i, κ) = {h(τ) | τ is a trae following πi with τ(0) = (Ni, (κi, κ

′
i)) and κi = κ}In order to see that d is well-de�ned note that no non-progressive trae following

πi an have more than m = n · k2 progressing positions, where n = |N | is thenumber of nodes of P and k is the number of distint ordinal variables in P . Anytrae τ with more than m progressing positions must repeat some pair τ(j) =
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τ(k) = (N, (κ, κ′)) with j < k, N(Γ ⊢O ∆) and κ′ <O κ. This implies that
τ ′ = (τ(j)τ(j+1) · · · τ(k−1))ω is a progressive trae following πi+j , ontraditingour assumption that no suh trae exists. Hene, H(i, κ) is bounded bym·l, where
l = max{hj(κ

′) | j ≥ i and κ′ ∈ Oj}, showing that d is well-de�ned.Next, we show that d satis�es the following properties:(i) d(i, κ) < d(i, λ) whenever κ<Oi
λ,(ii) d(i+ 1, κ) ≤ d(i, κ) whenever (Ni, Ni+1) ∈ E and κ ∈ |Oi|, and(iii) d(i+ 1, κ) ≤ d(i, σ(κ)) whenever (Ni+1, Ni, σ) ∈ R and κ ∈ |Oi+1|.To see (i) assume that τ = (Ni, (κ, κ

′))τ ′ is a trae following πi suh that h(τ) =
d(i, κ). Then τ ′′ = (Ni, (λ, κ

′))τ ′ is a trae following πi with h(τ ′′) > h(τ),hene d(i, λ) ≥ h(τ ′′) > d(i, κ). For (ii) suppose (Ni, Ni+1) ∈ E is an edge of
D, κ ∈ |Oi| and τ = (Ni+1, (κ, κ

′))τ ′ is a trae following πi+1 suh that h(τ) =
d(i+1, κ). Then τ ′′ = (Ni, (κ, κ))τ is a trae following πi with h(τ ′′) = h(τ), thus
d(i, κ) ≥ h(τ ′′) = d(i + 1, κ). For (iii) suppose (Ni+1, Ni, σ) is a repeat in R andthat τ = (Ni+1, (κ, κ

′))τ ′ is a trae following πi+1 suh that h(τ) = d(i + 1, κ).Then τ ′′ = (Ni, (σ(κ), σ(κ)))τ is a trae following πi with h(τ ′′) = h(τ), thus
d(i, σ(κ)) ≥ h(τ ′′) = d(i+ 1, κ).We are now in a position to onstrut an in�nite run Π = (N0, ρ0) · · · (Ni, ρi) · · ·following π. The onstrution will satisfy the invariants(J1) ρi(κ) ≥ d(i, κ) for all κ ∈ |Oi|(J2) ρi respets Oiat eah position i ∈ N. We start by setting ρ0(κ) = d(0, κ) for eah κ ∈ |O0|,whih trivially satis�es (J1). ρ0 also satis�es (J2) by (i) above.Now suppose we have already onstruted (N0, ρ0) · · · (Ni, ρi) suh that (J1)and (J2) hold for i. We de�ne ρi+1 and show that it satis�es invariants (J1) and(J2). We distinguish two ases:Case 1. (Ni, Ni+1) is an edge of D. We proeed by a ase analysis on the on therule applied at Ni. Common to all ases is that we de�ne ρi+1(v) = ρi(v) for eah
v ∈ fv(L(Ni)) (and, in partiular, for κ ∈ |Oi|). This implies(a) ρi+1(κ) ≥ d(i+ 1, κ) for all κ ∈ |Oi|, and(b) ρi+1(ι) < ρi+1(κ) whenever ι <Oi

κby the indution hypothesis and (ii). Sine we have Oi ⊆ Oi+1, this establishes(J1) and (J2) for all rules exept (∃O-L), (∃<
O-L) and (OrdStr). For the latter rulesit remains to de�ne ρi+1 on any freshly introdued ordinal variables and to hekinvariants (J1) and (J2) for the additional ases onerning the fresh variables:(∃O-L): We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variableintrodued by the rule. (J1) is satis�ed by onstrution and (J2) is satis�edvauously, sine there are no ases involving ι.(∃<

O-L): We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variableintrodued by the rule. (J1) is satis�ed by onstrution. For (J2) let
κ ∈ |Oi| suh that ι <Oi+1

κ. By (i) we have d(i + 1, ι) < d(i + 1, κ) andby (a) d(i+ 1, κ) ≤ ρi+1(κ), so ρi+1(ι) < ρi+1(κ) as required.



16 TITLE WILL BE SET BY THE PUBLISHER(OrdStr): Let m = max{ρi(λ) | λ ∈ |Oi|} and ρi+1(κ) = d(i+ 1, κ)+m+ 1for κ ∈ |Oi+1| − |Oi|. Invariant (J1) is learly satis�ed by onstrution. Itremains to verify (J2). Suppose that ι <Oi+1
κ. Sine the side onditionof the rule guarantees that ι ∈ |Oi| whenever ι <Oi+1

κ and κ ∈ |Oi|,there are two ases not already overed by (a) and (b). In the �rst ase,where ι, κ ∈ |Oi+1| − |Oi|, the result follows from (i). For the seond ase,where ι ∈ |Oi| and κ ∈ |Oi+1| − |Oi|, we have ρi+1(ι) ≤ m < ρi+1(κ) bythe de�nitions of m and ρi+1.Case 2. (Ni+1, Ni, σ) is a repeat in R. We set ρi+1 = ρi ◦ σ. By indutionhypothesis we have ρi(σ(κ)) ≥ d(i, σ(κ)) and by (iii) d(i, σ(κ)) ≥ d(i+1, κ), hene(J1) holds. For (J2) suppose that ι <Oi+1
κ. Then σ(ι) <Oi

σ(κ) by the de�nitionof a repeat, thus we get ρi+1(ι) = ρi(σ(ι)) < ρi(σ(κ)) = ρi+1(κ) from the indutionhypothesis.Continuing this onstrution ad in�nitum yields an in�nite run Π following π.�⇐� For the opposite diretion suppose there is a progressive trae
τ = (Ni, (κi, κ

′
i))(Ni+1, (κi+1, κ

′
i+1)) · · ·following the su�x πi of π. For a ontradition suppose further that there is anin�nite run Π = (N0, ρ0) · · · (Ni, ρi) · · · following π. Let j ≥ i. Then we have

ρj(κj) ≥ ρj(κ
′
j), sine ρj respets Oj . We also have ρj(κ

′
j) = ρj+1(κj+1) bythe de�nition of a run, sine κ′j = κj+1 whenever (Nj , Nj+1) ∈ E is a tree edgeand κ′j = σ(κj+1) whenever (Nj+1, Nj , σ) ∈ R is a repeat of P . Thus, there isan in�nite hain ρi(κi) ≥ ρi+1(κi+1) ≥ · · · of ordinals, whih stritly dereasesat in�nitely many positions, sine τ is progressive. This ontradits the well-foundedness of the ordinals. �4.3. Automata-Theoreti CharaterisationWhile the trae-based disharge ondition is syntati, it is � as it stands � stillnot suitable for pratial appliation in a proof tool, sine it is de�ned in terms ofin�nite objets. In order to obtain an implementable ondition, we now turn toan automata-theoreti reformulation of the trae-based disharge ondition.Tehnially, this new ondition will be realised using Bühi automata for whihwe introdue the following onventions. A Bühi automaton A = (A,Q,Q0, δ, F )is omposed of an alphabet A, a �nite set of states Q, a set of initial states Q0 ⊆ Q,a transition relation δ ⊆ Q×A×Q and a set of aepting states F ⊆ Q. An in�niteword σ ∈ Aω is aepted by A if there is a run r ∈ Qω over σ visiting F in�nitelyoften. We denote by L(A) the language aepted by A. For more details we referthe reader to Thomas' handbook hapter [15℄.Essentially, the automata-theoreti haraterisation looks for the existene ofspei� traes, whih progress only at repeat nodes.



TITLE WILL BE SET BY THE PUBLISHER 17De�nition 4.6. (Normal trae) A trae τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · ·is alled normal if, for all i, node Ni is a repeat node whenever τ progresses atposition i. ♦

σ1 σ2
α α
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Figure 5. Example of a normal traeExample 4.7. Figure 5 shows the the trae
τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ)),of the previous Example 4.3 using ontinuous lines. Replaing the ontinuous linewith the dashed lines between positions 1 and 3 yields the normal variant
τ ′ = (N0, (δ, ε))(N1, (α, α))(N2, (α, α))(N3, (α, γ))(N4, (κ, κ)),of τ , where progress of τ at positions 1 and 2 is deferred to the repeat node atposition 3 in τ ′.Lemma 4.8. Every trae τ an be transformed into a normal trae τ ′ suh that

τ is progressive if and only if τ ′ is progressive.Proof. (Sketh) Sine Oi ⊆ Oi+1 whenever (Ni, Ni+1) ∈ E , progress an be de-ferred to repeat nodes in the manner suggested by Example 4.7. As progress isonly deferred to the next repeat but never lost, progressiveness is preserved bythis transformation. �By Lemma 4.8 we may without loss of generality for ondition (tDC) restritour attention to the normal traes of P . Based on this observation we onstruttwo Bühi automata, B1 and B2, over the alphabet R of repeats.The path automaton B1: reognises those sequenes of repeats that aretraversed by paths of P .The progress automaton B2: reognises sequenes of repeats that are po-tentially onneted through a normal trae; potentially, beause this au-tomaton traks ordinal variable dependenies as in a normal trae, butompletely ignores whether the sequene of repeats it aepts may be tra-versed by some path of P .The language inlusion L(B1) ⊆ L(B2) then holds preisely if there is a normaltrae along eah in�nite path of P . Some auxiliary de�nitions prepare the formalde�nition of these two automata.



18 TITLE WILL BE SET BY THE PUBLISHERDe�nition 4.9. The relation →⊆ R×R on the set of repeats of P is de�ned by
R→ R′ if there is a path in the derivation tree D of P from the ompanion nodeof R to the repeat node of R′.We also de�ne Vo =

⋃

{|O| | N(Γ ⊢O ∆) ∈ N}, the set of free ordinal variablesof P , and let rπ be the sequene of repeats traversed by a path π of P .De�nition 4.10. The path automaton of P is the Bühi automaton
B1 = (R, Q1, Q

0
1, δ1, F1)where Q1 = Q0

1 = F1 = R and the transition relation δ1 ⊆ Q1 ×R×Q1 is de�nedby δ1 = {(R,R,R′) | R → R′}.The following haraterisation of the language aepted by B1 follows immedi-ately from the de�nitions.Lemma 4.11. L(B1) = {rπ | π an in�nite path of P}.De�nition 4.12. The progress automaton of P is the Bühi automaton
B2 = (R, Q2, Q

0
2, δ2, F2)where Q2 = Q0

2 = (Vo × 2× Vo)∪ {♦}, F2 = Vo ×{1}× Vo and δ2 ⊆ Q2 ×R×Q2is de�ned by δ2 = δ′2 ∪ ({♦} ×R×Q2) with
δ′2 = {((ι, a, κ), (M,N, σ), (κ, b, λ)) | σ(κ)≤ON

ι and a = 0 ⇔ σ(κ) = ι}Note the presene of the state ♦ and the transitions from this state to anyother state (inluding itself). Its role is to ensure that the language aepted by
B2 is losed under pre�xing with �nite words over R, re�eting the requirement inondition (tDC) that eah in�nite rooted path π has a trae following some su�xof π. Let us now illustrate these de�nitions with an example.

R11(δ,   , α) j(α,  , κ)

α α α κ

ε

δ

γ

σ1 σ2

Figure 6. Example transition of automaton B2Example 4.13. The upper part of Figure 6 shows a simpli�ed version of thenormal trae from Example 4.7. Sine σ1(α) <O0
δ this trae gives rise to atransition (δ, 1, α)

R1→ (α, j, κ) of automaton B2 for eah j ∈ 2.



TITLE WILL BE SET BY THE PUBLISHER 19De�nition 4.14. (aDC) A pre-proof P satis�es ondition (aDC) if
L(B1) ⊆ L(B2).Theorem 4.15. A pre-proof P satis�es ondition (tDC) if and only if P satis�esondition (aDC). The latter ondition an be heked in time 2O(m2 log m), where

m = n + r is the sum of the number of nodes n of P and the number of ordinalvariables r ourring free in the root sequent of P.Proof. By Lemmas 4.8 and 4.11, it is su�ient to show for all in�nite paths π thatthere is a progressive normal trae τ following a su�x of π if and only if there isan aepting run r of B2 on rπ. Aordingly, let π = N0N1 · · · be an in�nite pathof P with Ni(Γi ⊢Oi
∆i).�⇒� Consider a progressive normal trae
τ = (Nk, (κk, κ

′
k))(Nk+1, (κk+1, κ

′
k+1) · · · (2)following πk for some k ≥ 0. Let i0, i1, . . . be the positions where a repeat nodeappears on τ and let Rj = (Nij+1, Nij

, σj) for j ≥ 0 be the orresponding repeats.We onstrut the in�nite sequene
r = ♦p(λ0, k0, λ1)(λ1, k1, λ2) · · · (3)where p is the number of repeat nodes appearing before position k on π and

λj = κij
for j ≥ 0. Sine τ is a trae, we have λj = κij

≥Oij
σj(κij+1). We alsohave κij+1 = κij+1

= λj+1, beause τ is normal. We set kj = 0 if σ(λj+1) = λjand kj = 1 otherwise. It is then not di�ult to see that r is a run of B2 on rπ,whih is aepting sine τ is progressive.�⇐� Suppose r is an aepting run of B2 on rπ of the form (3) above, let
rp
π = R0R1 · · · and let ij be the position of repeat Rj = (Nij+1, Nij

, σj) on π foreah j ≥ 0. We onstrut an in�nite sequene τ of the shape 2 above by setting
k = i0 and

(κij
, κ′ij

) = (λj , σj(λj+1))

(κl, κ
′
l) = (λj+1, λj+1) for ij + 1 ≤ l ≤ ij+1 − 1for j ≥ 0. By the de�nition of B2 we know that σj(λj+1)≤Oij

λj for all j ≥ 0.Beause Ol ⊆ Ol+1 whenever (Nl, Nl+1) is a tree edge, it is then easy to see that
τ is a normal trae following πk, whih is progressive sine r is aepting.It remains to justify the omplexity laim. The standard way to hek theinlusion L(B1) ⊆ L(B2) is to omplement B2 into B2 and hek the produt
B1 × B2 for emptiness. A pre-proof P with n = |N | nodes an have at most nrepeats. The number |Vo| of ordinal variables in P is bounded by m = n + r,where r is the number of free ordinal variables of the root sequent. This yields
O(n) states for B1 and O(m2) states for B2. Complementing a Bühi automatonwith n states an be done in time 2O(n log n) [10℄. Hene, the omplementation of
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B2 takes time 2O(m2 log m), whih does not inrease by omputing the produt with
B1 and the subsequent linear time emptiness hek. �5. Restrited Forms of Syntati DishargeIn this setion we present twomore restritive syntati disharge onditions andrelate them to our new onditions as well as with those proposed in the literature.Let us onsider an arbitrary but �xed pre-proof P = (D,R).5.1. Disharge Based on Strongly Conneted Sets of RepeatsDe�nition 5.1. Let R = (M,N, σ) be a repeat suh that M(Γ′ ⊢O′ ∆′) and
N(Γ ⊢O ∆), and let κ ∈ |O′| be an ordinal variable. Then we say(1) R preserves κ if σ(κ)≤O κ, and(2) R progresses on κ if σ(κ)<O κ.A set of repeats S ⊆ R is alled strongly onneted if (S,→ ∩ (S × S)), thesubgraph of (R,→) indued by S, is strongly onneted. Equivalently, one ansay that there is a path π traversing exatly the repeats in S in�nitely often.De�nition 5.2. (sDC) A pre-proof P = (D,R) satis�es ondition (sDC) if foreah strongly onneted S ⊆ R there is an ordinal variable κ suh that(1) some repeat R ∈ S progresses on κ, and(2) eah repeat R′ ∈ S preserves κ.This ondition is similar to the one desribed by Fredlund [6℄. Shöpp andSimpson [12℄ use essentially the same ondition as well, although their proof systemis based on a di�erent notion of approximation without ordinal variables.Condition (sDC) an be reformulated automata-theoretially by replaing thetrivial Bühi aeptane ondition of the path automaton B1 of De�nition 4.10 by anon-trivial Streett aeptane ondition. A Streett automatonA = (Σ, Q,Q0, δ,Ω)has the same omponents as Bühi automaton exept that the aeptane ondi-tion is replaed by the Streett aeptane ondition Ω = {(Li, Ui) | 1 ≤ i ≤ n}onsisting of a set of pairs of states. An in�nite word σ is aepted by A if thereis a run r ∈ Qω suh that, for all i, if r visits Li in�nitely often then it also visits
Ui in�nitely often. To apture ondition (sDC) we de�ne the Streett automaton
S = (Σ, Q,Q0, δ,Ω), where Σ = Q = Q0 = R and δ = {(R,R,R′) | R → R′}. Theaeptane ondition is Ω = {(Lκ, Uκ) | κ ∈ Vo}, where Vo is the set of ordinalvariables ourring free in P and

Lκ = {R ∈ R | R progresses on κ}
Uκ = {R ∈ R | R does not preserve κ}Proposition 5.3. A pre-proof P satis�es ondition (sDC) if and only if L(S)is empty. The latter ondition an be heked in time O(m3), where m = n + ris the sum of the number of nodes n of P and the number of ordinal variables rourring free in the root sequent of P.



TITLE WILL BE SET BY THE PUBLISHER 21Proof. The �rst part is not di�ult to see from the de�nitions. The omplexityof heking the emptiness of a Streett automaton is O((n + k)2 min(n, k)), where
n is the number of states and k is the number of aepting pairs [5℄. The resultfollows, sine in our ase m is an upper bound of both the number of repeats andthe number of ordinal variables in P . �For a omparison of ondition (sDC) with our previous ondition (aDC), wede�ne

B−
2 = (R, Q−

2 , Q
0
2 ∩Q

−
2 , δ2 ∩Q

−
2 ×R×Q−

2 , F2 ∩Q
−
2 )to be the Bühi automaton obtained from B2 = (R, Q2, Q

0
2, δ2, F2) by restritingthe sets of states and transitions to the set Q−

2 = {(ι, j, κ) ∈ Q2 | ι = κ}. Condition(aDC-) then requires that L(B1) ⊆ L(B−
2 ).Proposition 5.4. A pre-proof P satis�es ondition (sDC) if and only if it sat-is�es ondition (aDC-).Proof. �⇒� Suppose P satis�es (sDC) and let r1 = R0 · · ·Ri · · · be an aeptingrun of B1 on r1. We show that r1 is aepted by B2. Let S be the set of repeatsourring in�nitely often in r2. Sine S is strongly onneted, there is an ordinalvariable κ suh that some R ∈ S progresses on κ and all R′ ∈ S preserve κ.Sine G(P) is �nite there is a position k suh that all Rj with j ≥ k belong to

S. De�ne r2 = ♦k(κ, ik, κ)(κ, ik+1, κ) · · · , where, for eah j ≥ k, we set ij = 1 if
Rj progresses on κ and ij = 0 otherwise. Then r2 is a run of B−

2 on r1, whihis aepting, sine there are in�nitely many j ≥ k suh that Rj = R. Thus, Psatis�es ondition (aDC-).�⇐� Suppose P satis�es (aDC-) and let S ⊆ R be strongly onneted. Thenthere is an aepting run r1 = R0R1 · · · of B1 on r1 suh that {Ri | i ≥ 0} = S. By(aDC-) there is an aepting run r2 = (κ, i0, κ)(κ, i1, κ) · · · of B−
2 on r1, implyingthat ondition (sDC) holds for S and ordinal variable κ. �Corollary 5.5. If a pre-proof P satis�es (sDC) then it satis�es ondition (tDC).Proof. By Theorem 4.15, sine L(B−

2 ) ⊆ L(B2). �The following example shows that the onverse of Corollary 5.5 does not holdin general.Example 5.6. Let φ = µX(x).∃z.X(z). The derivation in Figure 7 shows a pre-proof P for the sequent φ(x), φ(y) ⊢. We write φκ for µκX(x).∃z.X(z). We havenamed the nodes for referene and omitted some intermediate nodes for a moreompat presentation.This pre-proof has one repeat R = (N2, N4, σ) with σ = [x′/y, κ′/ι′, κ/ι, ι′/κ].Reall that we identify formulas up to renaming of bound variables. There is ain�nite normal trae τω , where
τ = (N2, (ι, ι))(N3, (ι, ι))(N4, (ι, ι

′))(N2, (κ, κ))(N3, (κ, κ))(N4, (κ, κ)),following the the su�x (N2N3N4)
ω of the only in�nite path of P . The trae

τ is progressive, sine ι′ <O4
ι at node N4. Hene, P satis�es ondition (tDC)
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N0[φ(x), φ(y) ⊢] (µ1-L, ∃O-L)

N1[φ
ι(x), φκ(y) ⊢ι,κ] (µκ-L, ∃<

O-L)N2[∃x′.φι′(x′), φκ(y) ⊢ι′<ι,κ] (µκ-L, ∃<
O-L)

N3[∃x′.φι′(x′), ∃y′.φκ′

(y′) ⊢ι′<ι,κ′<κ] (∃I -L)
N4[φ

ι′(x′), ∃y′.φκ′

(y′) ⊢ι′<ι,κ′<κ]Figure 7. Pre-proof distinguishing (tDC) from (sDC)and is thus a proof for φ(x), φ(y) ⊢. On the other hand, repeat R does notpreserve any ordinal variable aording to De�nition 5.1. Hene, P fails to satisfyondition (sDC).5.2. Disharge Using Indution OrdersWe introdue an alternative disharge ondition based on ordering the repeatsof a pre-proof. Here, we restrit our attention to simple pre-proofs P = (D,R),where for eah repeat (M,N, σ) ∈ R there is a path from M to N in D.De�nition 5.7. Let R = (M,N, σ) and R′ = (M ′, N ′, σ′) be two repeats in R.The strutural dependeny relation ≤P on repeats is de�ned by R ≤P R′ if theompanion M of R lies on the path πR′ = M ′ · · ·N ′ from the ompanion M ′ tothe repeat node N ′ of R′. Let ≍P = ≤P ∪ ≤−1
P be the symmetri losure of ≤P .The following two lemmas establish some useful onnetions between the rela-tions ≍P , → and strong onnetedness.Lemma 5.8. R ≍P R′ if and only if R → R′ and R′ → R if and only if {R,R′}is strongly onneted.Proof. Immediate from De�nitions 4.9 and 5.7. �Lemma 5.9. Let S ⊆ R be strongly onneted and let R,R′ ∈ S. Then there isa ≍P-hain of repeats in S from R to R′, that is, there is a sequene R0R1 · · ·Rnof repeats in S suh that R = R0, R′ = Rn and Ri ≍P Ri+1 for 0 ≤ i < n.Proof. Suppose R = (M,N, σ) and R′ = (M ′, N ′, σ′) belong to the strongly on-neted set S ⊆ R. It is su�ient to prove the onlusion under the additionalassumption R → R′. The general statement then follows by a routine indution.We �rst establish the following auxiliary property:(P) if R → R′ then either R ≍P R′ or there exists R′′ ∈ S suh that R → R′′,

R′ ≤P R′′ and the ompanion M ′′ of R′′ is a proper anestor of M ′ in thederivation tree.To see this, suppose that R → R′, but not R ≍P R′. Sine P is assumed to besimple, the ompanion M ′ lies on the path from M to N ′, but not on the path



TITLE WILL BE SET BY THE PUBLISHER 23from M to N . As R and R′ are in the same strongly onneted set S, there is apath from R′ to R in (R,→), or equivalently, from M ′ bak to M in P . Hene,there must be some R′′ ∈ S suh that R′ → R′′ and whose ompanion node M ′′lies above M ′ in the derivation tree. This implies that R → R′′ and R′ ≤P R′′.Now suppose R→ R′. We show the existene of a ≍P -hain from R to R′ in Sby indution on the length l(R,R′) = m of the path π from M to M ′ in P . Thisis trivial for m = 0. For m > 0 we derive from property (P) that either R ≍P R′,in whih ase we are done, or there is some R′′ ∈ S suh that R→ R′′, R′′ ≍P R′and l(R,R′′) < m. In the latter ase, it follows from the indution hypothesis thatthere is a ≍P-hain from R to R′′ in S , whih we omplete into a ≍P -hain from
R to R′ using R′′ ≍P R′. �An indution order partially orders the repeats of a pre-proof. Repeats arerequired to be omparable under ertain onditions.De�nition 5.10. (Indution Orders) A partial order (R,�) on the set ofrepeats is alled an indution order for P , if either R � R′ or R′ � R whenever(1) R′′ � R and R′′ � R′ for some R′′ (� is forest-like), or(2) R ≍P R′ (� respets ≍P)A labelled indution order (R,�, δ) is an indution order (R,�) together with amap δ assigning an ordinal variable δR to eah repeat R ∈ R.Under the mild restrition that eah ompanion belongs to a unique repeat,the transitive losure of the strutural dependeny relation is an important speialase of an indution order.Proposition 5.11. Let P = (D,R) be a pre-proof with unique ompanions, thatis, no pair of distint repeats share the same ompanion. Then the transitivelosure of ≤P is an indution order for P.Proof. The relation ≤P is re�exive and, by the uniqueness of ompanions, anti-symmetri. Hene, its transitive losure is a partial order. It is forest-like, sine
P is a tree, and it respets ≍P , sine it ontains ≤P . �De�nition 5.12. (ioDC) Let P = (D,R) be a simple pre-proof. We say that alabelled indution order (R,�, δ) disharges P if for all R ∈ R(1) R progresses on δR, and(2) R preserves δR′ whenever R � R′.Pre-proof P satis�es ondition (ioDC) if there is a labelled indution order dis-harging P .Sine any partial order that linearly orders the repeats of eah strongly on-neted omponent of P is an indution order, ondition (ioDC) subsumes theoriginal disharge ondition (DC) proposed by Dam and Gurov [4℄. For forest-like indution orders ondition (ioDC) is equivalent to the ondition given byShöpp [11℄ as the following lemma will show. However, by relying on the stru-tural dependeny relation our new de�nition of indution order is more loal inthe sense that it avoids the quanti�ation over all strongly onneted subsets of



24 TITLE WILL BE SET BY THE PUBLISHERrepeats of a pre-proof. This makes it easier to hek whether a given partial orderon the set of repeats is an indution order.Lemma 5.13. A forest-like partial order (R,�) is an indution order if and onlyif eah strongly onneted S ⊆ R has a �-greatest element.Proof. �⇒� Suppose that (R,�) is an indution order. Let S ⊆ R be stronglyonneted. In order to see that S has a �-greatest element, it is su�ient to showthat any two R,R′ ∈ S have an upper bound in S, that is, R � R̂ and R′ � R̂ forsome R̂ ∈ S. Suppose R,R′ ∈ S. By Lemma 5.9 there is a sequene R0R1 · · ·Rnof repeats in S suh that R = R0, R′ = Rn and Ri ≍P Ri+1 for 0 ≤ i < n. As
(R,�) respets ≍P we also have Ri � Ri+1 or Ri+1 � Ri for 0 ≤ i < n. Usingthe fat that (R,�) is forest-like a routine indution on n shows that there is anupper bound R̂ of R and R′ in S.�⇐� Suppose that eah strongly onneted S ⊆ R has a �-greatest element andlet R and R′ be two repeats with R ≍P R′. Then R � R′ or R′ � R as required,sine S = {R,R′} is strongly onneted by Lemma 5.8. �The next result shows that for simple pre-proofs disharge based on indutionorders is equivalent to disharge based on strongly onneted sets of repeats.Theorem 5.14. Let P = (D,R) be a simple pre-proof. Then P satis�es ondition(ioDC) if and only if it satis�es ondition (sDC).Proof. �⇒� Suppose P = (D,R) satis�es (ioDC) witnessing the labelled indutionorder (R,�, δ) and let S ⊆ R be strongly onneted. Then S has a �-greatestelement R by Lemma 5.13. By the de�nition of disharge R progresses on δR andall R′ ∈ S preserve δR. Hene, P satis�es ondition (sDC).�⇐� Suppose P = (D,R) satis�es (sDC). We iteratively onstrut a labelledindution order (R,�, δ) as follows. We start with the set S0 partitioning R intoits strongly onneted omponents. At step i we pik Si ∈ Si and then an Ri ∈ Sisuh that Ri progresses on some ordinal variable κi and all R ∈ Si preserve κi.Sine P satis�es (sDC), suh Ri and κi exist. Then we set Si+1 = (Si−{Si})∪D,where D is obtained as the partitioning of Si − {Ri} into its strongly onnetedomponents. This proess terminates after n = |R| iterations, sine at eah step irepeat Ri is removed from ⋃

Si.We de�ne δ by δ(Ri) = κi and Ri � Rj if Si ⊆ Sj . By the hierarhial natureof the onstrution (R,�) is ertainly a forest-like partial order and, moreover, foreah strongly onneted S ⊆ R there is a unique Sk suh that Rk ∈ S ⊆ Sk. Thisimplies that Si ⊆ Sk for any Ri ∈ S and thus Rk is �-greatest in S. Hene, (R,�)is an indution order for P by Lemma 5.13. Note that any repeat R progresses on
δR by onstrution. Also, for any Ri with Ri � Rj , we have Ri ∈ Si ⊆ Sj , so Ripreserves δRj

. Thus, (R,�, δ) disharges P . �



TITLE WILL BE SET BY THE PUBLISHER 256. ConlusionsWe have studied a Gentzen-style proof system for the µ-alulus whih is basedon irular proofs. In partiular, we have investigated several disharge onditionswhih externally justify the well-foundedness of indutive reasoning embodied inthese proofs. Starting from the natural semanti ondition proposed by Dam andGurov [4℄, we have, based on the notion of traes, given a syntatial onditionwhih haraterises the semanti one for any given pre-proof. While this onditionis purely syntatial, it is still not suitable for implementation as its de�nitiondiretly refers to in�nite objets. Therefore, we have also elaborated an algorithmiformulation in terms of a language inlusion between two Bühi automata.Next, for a detailed omparison with previously known disharge onditions,we have foused our attention on two simpler disharge riteria. In partiular, wehave onsidered two levels of restritions with respet to our general ondition:(1) Restrit to normal traes that trak the behaviour of a single ordinal vari-able, disallowing its renaming at repeats; this leads to ondition (sDC),similar to those in [6, 12℄, requiring that we �nd, for eah strongly on-neted subgraph, an ordinal variable and a repeat that progresses on thisvariable while the other repeats preserve it. This ondition an be formu-lated as an emptiness problem of a Streett automaton.(2) Additionally restrit the form of pre-proofs to simple ones, where eahrepeat node is reahable in the proof tree from its ompanion node; thisallowed us to organise the repeats of a pre-proof into a partial order, alledindution order, and formulate a new ondition, alled (ioDC), whih im-poses progress and preservation onditions on eah repeat aording to itsposition in the indution order. This ondition is lose to those in [4, 11℄,but avoids a quanti�ation over strongly onneted subsets of repeats.Our omparison showed that ondition (sDC) and (ioDC) are equivalent for sim-ple pre-proofs and ondition (sDC) is in general stritly stronger than our trae-based ondition on a �xed pre-proof. However, an important open question on-erns the proof-theoretial strength of the di�erent onditions. More preisely, itis urrently unlear to us whether there are sequents that an be proved usingthe trae-based ondition, but for whih no proof exists if we restrit ourselves tousing a simpler disharge riterion. We are inlined to think that this is not thease. But, while it might not be too di�ult to show that any pre-proof an beunfolded into a simple one (with a potentially exponential blow-up due to the lossof sharing), the proof that we an dispense with renaming of ordinal variables atrepeats seems more involved.We would like to add some remarks regarding the pratial appliation of ourresults. First, the exponential omplexity of the general automata-based dishargeondition (aDC) seems to disourage its use in favour of the more tratable ondi-tion (sDC) based on strongly onneted omponents. We do not urrently knowwhether there is a polynomial algorithm for the general ondition, a question that



26 TITLE WILL BE SET BY THE PUBLISHERis left for future work. Seond, the general ondition is weaker and thus qual-i�es more pre-proofs as proofs, whih an be an advantage in automati proofsearh. However, it is unlear whether this di�erene frequently shows up in pra-tise. Some experimentation is needed in order to larify these issues. Third, in atool implementation it is desirable to hek disharge onditions inrementally inorder to detet failure to disharge as soon as possible. Although the automata-based onditions (aDC) and (aDC-) an be used to this e�et on the partiallyonstruted proof struture, the need to omplement the seond automaton eahtime a new repeat is added does not support inremental heking very well. Thereformulation of ondition (sDC) as an emptiness problem of a Streett automatonis ertainly easier to adapt for inremental veri�ation.Finally, it is important to observe that the dependeny of our results on the
µ-alulus itself is very limited. The µ-alulus was hosen here as a suitableminimal ontext in whih to study global indution, but all that our indutionmehanisms rely on is that the objet language inludes a form of indutive de�ni-tion, whih an be augmented by a orresponding notion of approximation. Giventhese ingredients it should, in priniple, be possible to turn almost any dedutivesystem using loal indution rules into one based on global indution by repla-ing the loal indution rules by appropriate versions of �xed point and ordinalrules. Some examples that merit a loser inspetion are the inlusion of regularlanguages, indutive type theories and Hoare logis for reursive proedures. In arelated paper [13℄, we investigate the relation between a proof system based on aloal well-founded indution rule on the ordinals and one based on global indu-tion as studied here. We establish their equivalene by giving proof translationsin eah diretion.We would like to thank Dilian Gurov, Lars-åke Fredlund and Alex Simpson for interestingand fruitful disussions on the subjet of this paper. We are also grateful to the twoanonymous referees for their very detailed and onstrutive omments.Referenes[1℄ T. Arts, M. Dam, L. Fredlund, and D. Gurov. System desription: Veri�ation of distributedErlang programs. In Pro. CADE'98, volume 1421 of Leture Notes in Arti�ial Intelligene,pages 38�41, 1998.[2℄ J. Brad�eld and C. Stirling. Loal model heking for in�nite state spaes. TheoretialComputer Siene, 96:157�174, 1992.[3℄ M. Dam. Proving properties of dynami proess networks. Information and Computation,140:95�114, 1998.[4℄ M. Dam and D. Gurov. µ-alulus with expliit points and approximations. Journal of Logiand Computation, 12(2):43�57, 2002. Previously appeared in Fixed Points in ComputerSiene, FICS 2000.[5℄ E. A. Emerson and C. L. Lei. Modalities for model heking: branhing time strikes bak.Siene of Computer Programming, 8:275�306, 1987.[6℄ L. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis, Royal Instituteof Tehnology, Stokholm, Sweden, 2001.
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