
Verification of a Transactional Memory Manager
under Hardware Failures and Restarts

Ognjen Marić and Christoph Sprenger

Institute of Information Security, Dept. of Computer Science, ETH Zurich
{omaric,sprenger}@inf.ethz.ch

Abstract. We present our formal verification of the persistent mem-
ory manager in IBM’s 4765 secure coprocessor. Its task is to achieve a
transactional semantics of memory updates in the face of restarts and
hardware failures and to provide resilience against the latter. The inclu-
sion of hardware failures is novel in this area and incurs a significant jump
in system complexity. We tackle the resulting verification challenge by
a combination of a monad-based model, an abstraction that reduces the
system’s non-determinism, and stepwise refinement. We propose novel
proof rules for handling repeated restarts and nested metadata transac-
tions. Our entire development is formalized in Isabelle/HOL.

1 Introduction

The IBM 4765 [1] cryptographic coprocessor resembles a general-purpose com-
puter, encased in a tamper-proof housing and packed onto a PCIe card. Its
security policies require that most access to the persistent storage be brokered
through the built-in bootloader, and in particular its subsystem called the Per-
sistent Memory Manager (PMM). Verification of the PMM is our driving case
study, and this paper presents the main challenges, our techniques for overcom-
ing them, and some of the lessons learned in the process.

The PMM’s API offers a rudimentary persistent storage service. It abstracts
the persistent memory into an arbitrary, but fixed number of storage slots of
different capacities. The slots are called regions, and they are addressed by their
indices. The API provides just two operations: update and fetch. The main
requirement for this API are atomic updates: given new contents for a set of
regions, an update operation updates either all of them, none of them, or fails.

The API does not support concurrency. Hence, designing and verifying such
a system appears to be easy at first. Appearances can be deceiving, however, as
we will require atomicity to hold even in the presence of:

(1) abrupt power-downs, possibly resulting in garbled writes. At power-up a
startup procedure is called (that might itself be subject to abrupt restarts).

(2) failures of persistent storage, such as spontaneous corruption (“bit rot”) or
permanent hardware failures.

Algorithms that provide atomic updates in the presence of (1) have already
been analyzed in the literature [2,3,4], but this is the first work we are aware
of that also addresses (2). Moreover, our target system does not just detect
such failures, but also aims for resilience against them, restoring corrupted data
from spare copies when possible. This necessitates full redundancy in both user
and metadata (i.e., administrative data used by the algorithm) stored in the
persistent memory. It also complicates the details of the algorithm, requiring
nested transactions in the metadata and permeating the implementation with
special cases, integrity checks, and potential recovery actions. An example of
the resulting implementation complexity is the seemingly innocuous fetch pro-
cedure, which simply retrieves the contents of a single region. Figure 1 shows its
call graph. The complexity of implementation, and thus also reasoning, caused
by the non-determinism of (2) is then further aggravated by (1), since longer
implementations induce new restart points.

To tame this complexity and enable verification, we proceed using abstraction
(or dually, refinement), building a stack of progressively more abstract models.
These gradually remove redundancy, first in the metadata, then in the user
data, and finally replace repeated restarts by a single one. Combining proofs
of refinement between neighboring models with general property preservation
results, we then transfer proofs of requirement compliance from the top of the
model stack to the concrete model of the PMM on its bottom. We have formalized
our entire development in the Isabelle/HOL theorem prover [5].1

Our contributions are twofold. First, we propose novel modeling and rea-
soning techniques for systems with restarts and failures. Our modeling limits
the asynchrony of these effects and hence simplifies the verification by reduc-
ing non-determinism. Moreover, we model restarts at the language level, which
allows us to derive structured refinement proof rules for repeated restarts and
for eliminating the nested transactions that handle the metadata redundancy.
Second, this combination of tools enabled the success of our case study, which is
substantial, industrially relevant, and more complex than related ones published
hitherto, due to the system’s resilience to hardware failures. We believe that our
approach is applicable in related areas such as smart cards and file systems.

We give an overview of the PMM API and describe its environment and the
requirements we pose on it in the next section. Section 3 describes our modeling
and reasoning framework, and Section 4 the models we create and the results
we obtain. We review the related work in Section 5, and conclude in Section 6.

2 System Overview

The task of the PMM is to provide a simple API for transactional access to
persistent memory, effectively resulting in an abstraction of the memory as a
function index → contents. The PMM (sub)system consists of three main pro-
cedures: update, fetch, and startup. The first two constitute the PMM API.

1 Accessible at http://www.infsec.ethz.ch/research/software/pmm-verif.

http://www.infsec.ethz.ch/research/software/pmm-verif

Fig. 1: Call graph for fetch

PMM view

PMM API LLI

User view Hardware

metadata

user data

instances

Fig. 2: Abstraction levels

The fetch procedure takes a single parameter, the index of the target region,
and is supposed to return the corresponding contents. The update procedure
also takes a single parameter, a map (partial function) index9 contents, and is
supposed to override the memory abstraction with the given map, updating all
the regions in the map’s domain with the given contents. However, the behavior
of the API is also conditioned on possible abrupt restarts and hardware failures.

The restarts cause the startup procedure to be run, which then performs
cleanups and integrity checks. An API call to update or fetch may thus result
in one or more (if startup is itself restarted) executions of startup. The same
procedure is also executed in case a restart happens in between API calls.

We detail the hardware failures we consider below, however their global effect
on the card is reflected in the three PMM modes of operation: Normal, Degraded,
and Fail, corresponding to normal operation, read-only mode, and complete
failure. To achieve resilience, the system stores all its data in two copies. This
includes the data of the user regions, exposed by the API, but also the metadata
stored in the extra administrative regions. Each copy of a region is called a region
instance. Figure 2 gives an overview of the system’s abstraction levels.

To signal irremediable hardware failures to the caller, the API calls use an ex-
ceptional mode of termination. Restarts lose the information about the original
call and its return value. To facilitate modeling, we will also use the exceptional
mode to signal the completion of the startup procedure. If an API call termi-
nates in the normal mode, we expect it to behave as described at the beginning
of the section. In the exceptional mode, however, we will have to loosen the
requirements. We will make this more precise in Section 2.2.

2.1 The Environment

Next, we present the environment that the PMM interacts with, and our as-
sumptions about it. The PMM controls the persistent storage, which consists
of battery-backed RAM and flash memory. However, the PMM does not access
the hardware directly, relying on lower-level firmware instead. The lower-level
interface (LLI) abstracts the memory into logical blocks of varying sizes. It can
read and write each block independently (regardless of the type of the underlying
memory), by transferring data between the persistent memory and the DRAM
(dynamic RAM). We assume both the DRAM and the CPU to be reliable.

The PMM maps each region instance to a unique memory block. The two
blocks corresponding to the two instances of the same region have equal capac-
ity. The LLI provides a convenient addressing scheme for mapping instances to
blocks, but is otherwise oblivious of the connection between blocks and regions.
Its task consists, first and foremost, of mapping the logical addresses onto the
appropriate hardware ones, and performing blockwise read and write operations.

Additionally, the LLI tries to eliminate transient failures (e.g., bus intercon-
nect problems) by repeating its reads, and checking the success of each write. It
also detects and reports two kinds of permanent (irrecoverable) failures, namely:

– Read failures, where a block becomes completely unusable (e.g., due to a
dead memory bank). We call such a block dead.

– Write failures, where a block can no longer be overwritten with new contents.
We call such a block degraded.

A block without permanent failures is called ok. Other failures are undetectable
by the LLI and the PMM must detect and try to correct them. An example is
“bit rot”, where some content can be retrieved from an instance, but it differs
from the content that was last written to it. These failures are recoverable, as
the block can still be overwritten with the correct contents, if they are available.

The environment can also trigger restarts, whereby control is transferred to
the startup procedure. Restarts may interrupt write operations, causing another
(recoverable) kind of write failure. We will further discuss restarts in Section 3.2.

2.2 The Requirements

We specify the requirements on the PMM in terms of the abstract view on the
memory it provides to API users. We express this view as elements of the type
(index → contents)⊥, where τ⊥ = τ + {⊥} and ⊥ corresponds to a failure. The
requirements concern entire API calls, including the possible runs of the startup
procedure. We call a user region instance active if it matches the view’s content.

(R1) Atomic updates. Given the current view v and an update map u, an update
results in either the view v / u (successful update, where / overrides the
function v with the map u), v (rollback), or ⊥ (failure, also if v = ⊥). A
rollback may only be performed in the case of exceptional termination.

(R2) Correctness of fetch. Fetch returns the value of the view at the given index,
or results in an exception in Fail mode or when interrupted by a restart.

(R3) Unchanged view during fetches, updates in non-Normal mode, and restarts
in between API calls, except for when the mode is changed to Fail.

(R4) Matching modes of operation and termination. API calls can terminate
exceptionally only in the case of restarts or non-Normal mode of operation.

(R5) Correctness of the mode of operation. In Normal mode, all region instances
are active. In Degraded mode, each region has at least one active instance
and there is at least one degraded block. In Fail mode, there exists a
region with no reliable and up-to-date instances.

(R6) Maximum redundancy. In all but Fail mode, any ’ok’ region instance is
active (and hence all ’ok’ instances of a region match).

3 The Framework

We embedded a framework for modeling and reasoning about imperative pro-
grams with restarts and failures in the theorem prover Isabelle/HOL [5]. Similar
to Klein et al. [6], we build a series of models at different levels of abstraction,
with each model having two-layers: an outer layer based on transition systems
and a structured inner layer based on monads.

Most of the work is done in the inner layer, where we model the API and
startup procedures in an imperative fashion. This layer also provides facilities
for modeling restarts and hardware failures. Our treatment of both of these is
possibilistic, since our requirements do not include probabilistic properties. The
inner layer also provides constructs for modeling repeated restarts, allowing us
to model entire API calls. The outer layer is a simple shell around the inner
one, with the purpose of providing a trace semantics. Its transitions are derived
directly from the definitions in the inner layer, as the union over all API calls
and restarts in idle states. Given this trace semantics, we define a refinement
infrastructure based on forward simulation akin to [7,8], allowing us to relate
the different models. We transfer the refinement proof obligations from the outer
to the inner layer, where we can prove them in a compositional manner. The
refinements guarantee that the concrete models inherit the properties expressing
our requirements, which we prove on the simpler abstract models.

3.1 Specifications and Refinement (Outer Layer)

On the outer layer, we use transition systems of the form T = (Σ,Σ0, ρ), where
Σ is the universe of states, Σ0 ⊆ Σ is the set of initial states, and ρ ⊆ Σ ×Σ is
the transition relation. A behavior of a transition system T is a finite sequence
of states in which the first element belongs to Σ0, and each pair of successive
elements is related by the transition relation ρ. We denote the set of behaviors
of T by beh(T) and the set of states appearing in some behavior by reach(T).

We extend transition systems to specifications of the form S = (T,O, obs),
where O is the universe of observations, and obs : Σ → O is an observation
function. Observations abstract away the uninteresting details of the state. For
example, we can project the state (“forgetting” some parts of it) or replace a list
by a set (in case we do not care about the ordering). A specification S’s reachable
observations and observable behaviors are defined as oreach(S) = obs(reach(T))
and obeh(S) = obs(beh(T)), where obs is applied pointwise to reachable states (as
set or behavior elements, respectively). An (internal) invariant of T (and S) is a
set of states I such that reach(T) ⊆ I. An external invariant is a set J ⊆ O such
that oreach(S) ⊆ J . Given two specifications Sa and Sc, and a mediator function
π : Oc → Oa, we say that Sc implements Sa via π if π(obeh(Sc)) ⊆ obeh(Sa).
Mediator functions allow us to relate systems with different observations.

To prove that Sc implements Sa, we use refinement based on forward simula-
tion. Sc refines Sa under the simulation relation R ⊆ Σa×Σc and the mediator
function π if three conditions hold. (Ref1) Σ0c ⊆ R(Σ0a), i.e., each concrete ini-
tial state is related via R to some abstract one. (Ref2) R; ρc ⊆ ρa; R, where the

semicolon denotes forward relational composition, i.e., any concrete transition
can be matched by an abstract one. We can visually represent this by requiring
the existence of an s′a that allows us to fill the dashed lines in the drawing below.
(Ref3) obsa(sa) = π(obsc(sc)) whenever (sa, sc) ∈ R, i.e. the observations and
the simulation relation R are consistent (the two paths from sa to oa in the
drawing below commute).

sa

sc

sa'

sc'

ρa

R R

ρc

oa

oc obsc

obsa

π

3.2 Modeling Hardware Failures and Restarts (Inner Layer)

We now turn to the inner layer. The salient features of the system we wish to
model are the imperative nature of the target algorithm and the non-determinism
in the environment stemming from hardware failures and abrupt restarts. Our
modeling of these features in HOL’s functional language is based on a non-
deterministic state monad [9], defined as nds monad(α, σ) = σ → P(α × σ).
The parameters α and σ denote the types of return values and states. We
call the monad’s elements computations. We define the sequential composi-
tion (bind, written �=) and return monad operators as usual, and provide
a non-deterministic choice construct (written [+]). We use a function to rel :
nds monad(α, σ)→ P(σ×σ) to derive outer-layer transition relations from given
computations by simply forgetting the return values.

Hardware failures can, in reality, happen asynchronously, at any time. How-
ever, the PMM can only observe them through the LLI. We thus model them
as happening synchronously (and non-deterministically), upon calls to the LLI.
Restarts are also asynchronous in reality. They transfer control to the startup
procedure. However, it is impossible to model the exact start and end times of
this transfer as well as the precise system state handed to the startup procedure,
without getting into electrical properties of circuits. All models of restarts are
thus necessarily approximations - they must choose a granularity and approxi-
mate the effect on the state. Existing structured models (such as [10,4]) choose
the granularity of a language statement, inserting non-deterministic restarts be-
tween statements. Fortunately, one observation allows us to enlarge this gran-
ularity and simplify our model: the persistent memory is accessed only during
LLI calls. Hence, restarts outside of LLI calls can only affect the volatile mem-
ory, and their effects can be (over)approximated by inserting restarts only right
before and after LLI calls, and allowing them to arbitrarily modify the volatile
memory. The effect of restarts during an LLI call is call-specific (e.g., setting a
block’s contents to an arbitrary value during a write). We thus model all restarts
as synchronous, by putting them in and around LLI calls.

Since restarts trigger a transfer of control from arbitrarily deep levels of the
call stack, we chose to model them as exceptions. We also use exceptions for error

handling. For convenience, we model restarts with a distinguished exception. We
thus transform the non-deterministic state monad into a PMM restart-exception
monad, defined as pre monad(α, ε, σv, σp) = nds monad(1 + ε+α, σv×σp). Here,
α represents (normal) return values, ε represents (regular) exceptions, 1 is the
unit type representing the restart exception. Moreover, the state is partitioned
into the volatile (σv) and persistent (σp) components. We lift bind and return

as expected and define a try/catch construct for handling regular exceptions.
We also define a tryR/catchR construct to handle the restart exception. Here,

the “handler” is normally the startup procedure. However, this construct does
not suffice to accurately model the possibility of startup being itself inter-
rupted by a restart. Hence, we need a construct for repeated restarts. As a first
step, we define the restarting (R) and non-restarting (N) projections of a com-
putation m : pre monad(α, ε, σv, σp), i.e., m⇓R of type nds monad(1, σv × σp)
and m⇓N of type nds monad(ε + α, σv × σp). Now, we inductively define the
desired repetition construct for a given handler h, written rec tryR(h), by pre-
ceding a single run of h⇓N by zero or more runs of h⇓R and lifting the result-
ing computation back to the pre monad. We then define tryR m catchR∗ h by
tryR m catchR rec tryR(h). These constructs allow us to adequately model our
API calls. For instance, the (outer layer) transition corresponding to the fetch

API call is defined as to rel(tryR fetch(ind) catchR∗ startup).

3.3 Compositional Reasoning

There are two kinds of properties we wish to prove of our monadic computations.
First, we want to establish properties of individual computations, expressed as
Hoare triples. These are denoted {|P |} m {|Q|}, where Q binds the return value
of the computation m. When we care only about non-restarting results, we use
the following variant: {|P |} m {|Q|}N = {|P |} m⇓N {|Q|}. Second, we reduce the
refinement condition (Ref2) from Section 3.1 to a monadic variant expressed as
a relational Hoare tuple between pairs of monadic computations:

{|R|} ma mc {|S|} = R ⊆ {(sa, sc) | ∀vc s′c. (vc, s
′
c) ∈ mc(sc) −→

(∃va s′a. (va, s
′
a) ∈ ma(sa) ∧ (s′a, s

′
c) ∈ S(va, vc))}

Informally, given a pair (sa, sc) ∈ R, any value-state pair that can be obtained
by running mc on sc, must be related via the post-relation S to some value-state
pair obtained by running ma on sa. Unlike in the transition system setting,
S is parametrized by return values and independent of R. Hence, this formu-
lation is more general than the condition (Ref2). Defining (s, t) ∈ eq(U)(v, w)
iff v = w and (s, t) ∈ U , we can recover (Ref2) (with the additional equality
constraint on values) by {|R|} ma mc {|eq(R)|}. Same as for triples, we define
{|R|} ma mc {|S|}N = {|R|} (ma⇓N) (mc⇓N) {|S|}.

Starting from the work described in [11], we have embedded a relational Hoare
logic [12] in Isabelle/HOL to reason compositionally about relational Hoare tu-
ples. For instance, if both ma and mc are sequential compositions, a proof rule
decomposes the Hoare tuple into two, one for each component computation.

Similar rules exist for other constructs such as try/catch. These decomposition
rules are applicable if the two related implementations share the same structure.
Usually, we apply them for as long as possible, until we are left with proving
Hoare tuples between pairs of “small” monadic operations. At this point, the
proof obligations usually become simple enough to discharge them by unfolding
the relevant definitions and using Isabelle’s proof automation. This decomposi-
tion strategy might fail, however, either because the two implementations have
different structures, or because the rules yield unprovable goals. For these cases
we have to derive two important novel rules, which we present next.

The first one relates a restart handler m with its repeated version realized
as rec tryR(m). This rule is typically used with the startup procedure, which
checks the system state and repairs inconsistencies; if it is itself restarted, we
would intuitively expect it to pick up where it left off (at least when viewed
abstractly enough). That is, a restarting run of the procedure, followed by a
non-restarting run does not yield more results than just a single, non-restarting
run. This property can be considered as a form of idempotence and is captured
in the premise of the following inductively justified proof rule:

{|Id |} (m⇓N) (m⇓R; m⇓N) {|eq(Id)|}
{|Id |} m rec tryR(m) {|eq(Id)|}N

Idem

Here, m1; m2 = (m1 �= λx.m2) is the composition (bind) that ignores m1’s
result and Id is the identity relation. The conclusion states that m itself re-
tains all the possible non-restarting behaviors of rec tryR(m). At a high enough
abstraction level, startup becomes simple enough to prove the rule’s premise
directly by unfolding the definitions.

The other important proof rule allows us to gradually enlarge the granularity
of persistent data access in our abstractions. Consider an abstract computation
ma, which uses some atomic persistent memory operation that is realized as
a series of persistent memory accesses in mc. Due to atomicity, ma has fewer
restart points, which causes the standard decomposition rule for tryR/catchR to
fail to prove goals as in the conclusion of the following proof rule:

{|R|} ma mc {|eq(S)|}N
{|R|} (ma⇓R; rec tryR(h1a)) (mc⇓R; rec tryR(h1c)) {|eq(T)|}N

{|T |} (tryR h2a catchR∗ (h1a; h2a)) (tryR h2c catchR∗ (h1c ; h2c)) {|eq(S)|}N
{|R|} (tryR ma catchR∗ (h1a; h2a)) (tryR mc catchR

∗ (h1c ; h2c)) {|eq(S)|}N
Gran

The first premise requires a refinement between non-restarting computations
of ma and mc. The second premise is the key to our rule. Intuitively, it states
that, in case of a restart, h1c completes the (non-atomic) operation of mc and
matches the behavior of the abstract counterpart. The third premise is similar
to the conclusion, but concerns h2a and h2c . We can prove it either using the
standard proof rule for tryR/catchR, or by reapplying the rule Gran on this
premise if h2c uses the same non-atomic operation as mc. The last two premises
are connected via an intermediate relation T .

This rule works in synergy with the Idem rule: if we prove the idempotence
of h1c , we can simplify the second premise of Gran by dropping the rec tryR

constructs. The restarting behavior of h1a is then no longer constrained by the
premises of Gran, allowing us to remove restarts from h1a completely. This sim-
plifies the abstract model and facilitates the idempotence proof for the entire
restart handler. We will employ the rule Gran to eliminate the nested transac-
tions managing the metadata redundancy (see Section 4.3).

3.4 Properties and their Preservation

We formalize the system requirements either as external invariants or as observa-
tion-based Hoare triples, i.e., triples of the form {|obs−1(P)|}m {|λv. obs−1(Q(v))|}
for sets of observations P andQ(v). Preservation of external invariants holds triv-
ially: if Sc implements Sa via π, then oreach(Sa) ⊆ J implies π(oreach(Sc)) ⊆ J
(or, equivalently, oreach(Sc) ⊆ π−1(J)). We also show that observation-based
Hoare triples are preserved under implementation. Hence, we can prove the re-
quirements on the most abstract (and thus simplest) model possible and transfer
them onto the concrete model. We give an example in Section 4.4.

Two implicit system requirements are termination and deadlock freedom,
where the latter means that no branch of a (non-deterministic) computation
yields an empty set of results. We informally argue that these properties hold.
The primitives used in our concrete model neither deadlock nor use nonterminat-
ing constructs, and the results compose since HOL is a logic of total functions.

4 The Models

This section gives an overview of our development. We first present the abstract
model, followed by an overview of the concrete implementation. Then we describe
the series of models and refinements connecting these two. Finally, we sketch our
formalizations and proofs of the requirements from Section 2.2.

4.1 The Abstract Model

This model directly represents the abstract memory view exposed by the API,
as introduced in Section 2. Its persistent state component is realized by the
following record type.

record abs_mem =

memory : index → contents

reg_health : index → log_health

global_health : log_health

The memory field models the abstract memory. For each region (i.e., index), the
reg health field tracks its health, which is either ’ok’, ’degraded’, or ’dead’,
depending on whether any permanent failures have happened to it. Similarly,
global health records failures that are not directly related to individual regions.

It serves to capture those behaviors of concrete models, where card failure or
degradation occur during the handling of metadata.

The volatile state component consists of the card mode. The observation
function obs6 is the identity on all the fields except for memory, which it maps
to an observation view : (index → contents)⊥, thus formalizing the abstract
memory view. The view is ⊥ if there is a ’dead’ region, in which case the card
goes into Fail mode and the memory contents become inaccessible to the user.

Even at this level of abstraction, the procedures are not entirely trivial, since
they need to capture the variety of possibilities present in the concrete models.
To get a flavor of what they look like, consider the definition of fetch:

fetch6(ind) ≡ do {

fail_if_fail_mode; do {

cnt ← read_success(ind);

degrade [+] skip;

throw_mode_error(EC(cnt));

return(cnt)

} [+] fail [+] restart_mangle_sp

}

where we use Haskell-like do notation for bind. Here, fail if fail mode checks
that we are not in Fail mode; read success reads the contents of the selected
region if possible; degrade and fail respectively degrade and fail one or more
regions and set the card mode appropriately; throw mode error checks the card
mode and potentially throws the appropriate (possibly value-carrying) exception;
and restart mangle sp restarts, lowering the health of zero or more regions.

Still, the definitions are simple enough to keep the proofs performed on this
model reasonably easy. This includes the idempotence of the startup procedure,
which, by the restart reduction rule Idem from Section 3.3, allows us to remove
the rec tryR construct from the (outer-layer) transitions.

4.2 The Concrete Model

The concrete model contains our implementation of the PMM algorithms. It
is based on informal descriptions provided by IBM researchers, and discussions
with their PMM developers. Currently, it exists only in terms of Isabelle/HOL
definitions. That is, it is neither extracted from a program executable on the
coprocessor, nor do we synthesize code for it. We thus verify the PMM algorithms
rather than a concrete system. However, our implementation is roughly at the
same level of abstraction as what one might see in, e.g., C++ code, in that almost
all the statements could be mapped 1-1 to C++ statements (save for unfolding
monadic maps and folds and equality checks on lists). It consists of about 700
lines of (Isabelle) code. While we had some freedom in the implementation, the
algorithm itself was fixed (and already deployed in the IBM 4765). Its verification
is therefore essentially post-hoc, making our task more challenging. We now give
a brief overview of the algorithm and its data structures.

The concrete model uses two administrative regions to store metadata. The
first is used for checking data integrity. It stores the checksums of all logical

0,2 2 20,2 0,20,2 0,20,2 2 2 2 2

Pre-commit Commit Rollforward

Primary Secondary

PTR
0
1
2

= Synchronization = Last write

Fig. 3: A sample PMM update operation (regions 0 and 2)

blocks, including its own instances. These checksums are realized with hash
functions, and the region is thus named the hash region. In our model, we assume
the hash function to be perfect, that is, injective. The second is the pending-
transactions register (PTR), used by the startup procedure to “break ties”
between instances of user regions, as will be explained shortly.

The centerpiece of the system is the update algorithm. Figure 3 sketches a
sample execution, where we write new contents to the regions 0 and 2. Each
image shows the state of the memory at a different update step. We divide the
process into three stages: pre-commit, commit, and roll-forward.

The two instances of each region are referred to as primary and secondary. In
the pre-commit stage, the new content is sequentially written to the secondary
instances of each target region. Then, during the commit stage, we record the set
of updated regions’ indices (the domain of our update map) in the PTR. This
will give precedence to the corresponding secondary instances in the startup

procedure, in case the system is abruptly restarted. The final stage is the roll-
forward stage, where we progressively synchronize the two instances of every
freshly-written region, by successively overwriting the contents of the primary
instances with the contents of the secondary ones. In each iteration, once the
instances are synchronized, we remove the region index from the PTR.

Missing from the diagram are updates to the hash region. Every single step
shown actually entails three block writes. First, we write the new content to
the target instance, and then update the two corresponding hashes, first in the
secondary hash region instance, and then in the primary one.

Also missing is the treatment of restarts and hardware failures. These compli-
cate matters greatly, as a number of special cases arise, especially if the failures
occur in instances of the administrative regions. For reasons of space, we will
only look at restarts here, giving a short account of the startup procedure.

This procedure brings the system into a maximally redundant state. It first
synchronizes the instances of the hash region. Both directions of synchroniza-
tion are possible, depending on the exact scenario. They correspond to a “mini”
roll-back or roll-forward, and result in either a failure or a single value in both
instances. We can thus view writes to the hash region as implicit nested trans-
actions within our system. Synchronization is then also performed in the PTR,
forming another layer of transactions on top (since writes to the PTR also in-
volve writes to the hash region). At this point we have unambiguous metadata.
The procedure next iterates through all of the user regions, again performing
checks and synchronizations as necessary. To determine the direction of the syn-

r
w
r
w w

r
w

Legend: ok / degraded / dead

(A) (B) (C) (D)

Hash
PTR

abs0 abs1 abs2/3 abs4 abs5/6

r / w Log. reliable / writable

Sync direction

r.
.
.
.

.

.

.

.

Fig. 4: Model abstractions

chronization, it needs to figure out which of the two instances is current. The
criterion is as follows: if the hashes of both instances match, both are current.
Otherwise, we examine the PTR. If it contains the region’s index, only the sec-
ondary instance is current, otherwise only the primary one is current. If the
synchronization completes successfully, the index is removed from the PTR.

The global effect of a restart on an update thus depends on the stage where it
occurs: during pre-commit, the state is rolled back; during roll-forward, the up-
date is applied; and during commit, either is possible, as the nested transactions
(to the PTR and the hash region) can still be rolled either back or forward.

4.3 Abstractions

We now sketch the refinement between the abstract and the concrete models,
explaining the intermediate models and their relations. We build five such mod-
els, in a bottom-up fashion. At first, we tried the more conventional top-down
approach; but this made finding the right abstractions of our fixed target hard,
as the many different failure and restart behaviors would often only creep up
low in the stack, breaking the models higher up. Going bottom-up exposed them
more quickly, and allowed us to gradually build usable abstractions.

Figure 4 gives a schematic view of our abstractions in four main steps. We (A)
extract the metadata from the memory in a preparatory step; (B) successively
remove the redundancy it contains by merging the different instances, giving us
unambiguous metadata; (C) interpret the metadata in a more abstract way; (D)
merge the pairs of user regions’ instances. Here are some additional details of
this process. To simplify the presentation we elide most details about the blocks’
health status from the figure and the description below.

abs0: Concrete model. As described in Section 4.2.
abs1: Extract hash and PTR regions. An auxiliary step. Hash and PTR

instances are pulled out of the memory, leaving only the user regions there.
abs2/3: Eliminate metadata redundancy. We make the nested metadata

transactions described in Section 4.2 atomic, using the proof rule Gran in-
troduced in Section 3.3. We achieve this by successively collapsing the pairs

of hash and PTR region instances into a single instance. This eliminates the
complexity of keeping the metadata copies in sync and provides us with un-
ambiguous metadata. The simulation relation states that an abstract admin-
istrative (hash or PTR) region coincides with a concrete instance whenever
that instance is not ’dead’ and its integrity is intact, i.e., its computed hash
matches the one stored in the hash region.

abs4: Abstract the administrative and status information. We abstract
the hash and PTR regions into a combination of per-instance reliability and
writability flags, and a per-region arrow field. A region instance is reliable
if neither it nor the hash region is ’dead’ and its integrity is intact (i.e.,
its computed hash equals its stored hash). It is writable if both it and the
hash region are ’ok’. The arrow indicates the possible directions of instance
synchronization for each region. A region instance is current (as defined in
Section 4.2 in terms of the administrative regions) exactly if the arrow is
bi-directional or points away from the instance.

abs5/6: Eliminate user regions’ redundancy. Abstract model. The per-
sistent state becomes the one described in Section 4.1. It is obtained by col-
lapsing the two user region instances into one. Each abs5 region matches all
of its reliable and current abs4 region instances. If no such instance exists,
the region’s contents are arbitrary and its health status is ’dead’. Otherwise,
the status is either ’ok’ (if both instances are writable), or ’degraded’ (if
at least one is unwritable). In abs5, update operations are still performed
sequentially and region-wise. We turn these into one-shot atomic updates in
abs6 and replace repeated by single restarts as sketched in Section 4.1.

Our models’ observation functions are identities except that, in those mod-
els obtained by collapsing instances, the observation of the resulting collapsed
field becomes ⊥ when no reliable and current instances are available. Thus, the
concrete observation function obs0 is the identity and the abstract observation
function obs6 is as described in Section 4.1. To relate our specifications, we
also need mediator functions that are consistent with the simulation relations.
Since the inverses of the simulation relations sketched above are functional or
almost functional, each mediator function is basically a facsimile of its associ-
ated (inverse) simulation relation, again up to the possible mapping to ⊥. Their
composition π maps the concrete observations to the abstract ones.

4.4 Establishing the Requirements

Next, we give a brief overview of how we have formalized the requirements from
Section 2.2 and verified in Isabelle/HOL that the concrete model satisfies them.

Requirements (R1-R4) describe properties of individual API calls, which we
express and prove as observation-based Hoare triples on abs6. We state and prove
requirements (R5) and (R6) as external invariants of abs4, since these refer to
individual region instances. Our refinement proofs and property preservation
theorems then enable us to transfer these properties onto the concrete model.
We will sketch this on the example of our main requirement, (R1).

On the abstract model, we can state this property using the following two
sets of observations, where Inl and Inr are the left and right constructors of the
sum type, corresponding to exceptional and normal termination respectively.

view_in(S) = {(sv, sp) | view(sp) ∈ S}

view_post_upd(v, u, r) = case r of

Inl _ ⇒ view_in({v C u, v, ⊥})
| Inr _ ⇒ view_in({v C u})

The following two Hoare triples then express (R1) on the abstract and concrete
models respectively. We prove the first one directly and use our preservation
theorems to derive the second one from the refinement results (Section 4.3).

{|obs6
−1(view_in({v})) |}

tryR update6(u) catchR startup6

{|λr. obs6
−1(view_post_upd(v, u, r)) |}N

{|obs0
−1(π−1(view_in({v}))) ∩ reach(S c) |}

tryR update0(u) catchR* startup0

{|λr. obs0
−1(π−1(view_post_upd(v, u, r))) |}N

The latter triple constrains the behavior of the update API call of the concrete
model. It states that, if the call is performed in any reachable concrete state
which maps (via π ◦ obs0) to an abstract memory view v, the resulting state
will map to a view in upd post(v, u, r). Notice that the property on the concrete
model encompasses an arbitrary number of restarts and calls to startup.

5 Related Work

Two transaction mechanisms similar to the one described here have been stud-
ied before in the literature, both of them targeting smart cards. One is due to
Sabatier and Lartigue [2], who use the B method for development and verifica-
tion. As usual in B, the system is modeled as an (unstructured) transition system,
which makes modeling restarts easy. Their main proof technique is refinement.
From the final model, they derive a C implementation by hand, without a formal
link to the B development. Our first attempt also followed a similar modeling
approach, using an Event-B inspired framework in Isabelle/HOL. However, the
considerations of hardware failures render our system more complex than theirs.
Since restarts force a small event granularity, the models quickly became un-
manageable, due to the large number of events and their unstructured nature.

Another transaction mechanism was proposed by Hartel et al. [3,4]. They
combine Z notation and SPIN [3] (resp. JML in [4]) to analyze a C implementa-
tion, but the unclear relationship between the different formalisms and the lack
of machine-checked proofs obscure the resulting guarantees.

Andronick [10] discusses a general verification methodology for reasoning
about C programs under restarts, but aimed at transaction mechanisms. Her
approach is the one most similar to ours, in that restarts are modeled as excep-
tions in a structured input language, while allowing for an arbitrary number of

successive restarts to be analyzed. Verification is performed directly on C source
code, by leveraging the Why/Caduceus tool. However, her model of restarts does
not include any effects on the state and the paper describes only a toy case study.
It also mentions a larger one, but without providing any details.

The PMM could also be viewed as a highly primitive file system. In response
to Hoare’s Grand Verification Challenge, Joshi and Holzman [13] propose ver-
ifying a file system as a “mini challenge”, identifying restarts and hardware
failures as major hurdles in overcoming it. Despite some progress, the challenge
still stands open. While the PMM is a far cry from a full-blown POSIX file
system, we may claim to have completed a micro challenge with its verification.

6 Conclusion

We have presented our verification of an industrially deployed persistent memory
manager. The main challenges to the PMM’s correctness (and thus its verifica-
tion) stem from the rampant non-determinism caused by the combination of
possible restarts and hardware failures. The latter have not been considered in
the relevant literature before, and they greatly increase the system complexity,
forcing us to develop a verification approach which could scale appropriately.

Its key points are as follows. We use a structured (rather than event-based)
model. This helped us keep the models understandable, eased discussions with
IBM researchers, and enabled compositional reasoning. Modeling restarts syn-
chronously significantly reduced the number of cases we had to consider in the
proofs. We identify the concepts of idempotence and nested transactions, and
provide two related proof rules, allowing us to tackle the system complexity piece
by piece. We believe that our approach is applicable to a class of related systems
such as smart cards and file systems (e.g., the ’mini’ challenge from [13]).

All our Isabelle/HOL theories amount to around 39,000 lines. These are com-
posed of the modeling and reasoning infrastructure (∼12,000 lines), the models
(ranging from ∼700 for the concrete to ∼200 lines for the abstract model), the
refinement proofs (∼11,000 lines), and the invariant proofs (∼9,000 lines). We ap-
proximate our development effort at somewhere between 1 and 1.5 person years.
The choice of Isabelle/HOL was a mixed bag. HOL’s expressiveness was crucial
for representing our system’s unorthodox features. While Isabelle’s connection
to external provers helped a great deal, we still had to implement several custom
tactics in order to obtain a sufficient degree of automation.

Our development lacks an executable implementation. However, we believe
that deriving one from our concrete model would only require a modest effort,
leveraging modern Isabelle tools for C code. Unfortunately, non-technical barri-
ers would likely prevent a deployment of an implementation on actual devices,
thus disincentivizing us from pursuing this further.

Our work leaves open some interesting research questions. Error resilience is
partly reflected in our requirements, but our formalization does not quantify it,
offering no way to compare it in two systems. One possibility to address this
would be to switch to a probabilistic model. Furthermore, how should one scale

the verification to a full-blown file system? We believe that currently the only
feasible method would be a development from scratch and with verification in
mind, as in [6]. Even so, this would still require further advances in modeling and
reasoning techniques. In particular, it would be interesting to see how to facilitate
proofs of idempotence, as well as proving and composing (nested) transactions.

Acknowledgements This work was supported by the Zurich Information Secu-
rity Center and IBM Open Collaborative Research funding. We thank T. Viseg-
rady of IBM Research Zurich for our collaboration, and D. Basin, A. Lochbihler,
B. T. Nguyen, and G. Petric Maretić for their careful proof-reading.

References

1. Arnold, T.W., Buscaglia, C., Chan, F., Condorelli, V., Dayka, J., Santiago-
Fernandez, W., Hadzic, N., Hocker, M.D., Jordan, M., Morris, T., Werner, K.:
IBM 4765 cryptographic coprocessor. IBM Journal of Research and Development
56(1.2) (2012) 10:1–10:13

2. Sabatier, D., Lartigue, P.: The use of the B formal method for the design and
the validation of the transaction mechanism for smart card applications. Formal
Methods in System Design (2000) 245–272

3. Hartel, P., Butler, M., de Jong, E., Longley, M.: Transacted memory for smart
cards. In: FME 2001: Formal Methods for Increasing Software Productivity,
Springer (2001) 478–499

4. Poll, E., Hartel, P., de Jong, E.: A Java reference model of transacted memory for
smart cards. In: Proceedings of the 5th conference on Smart Card Research and
Advanced Application Conference (CARDIS’02). (2002) 1–14

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer-Verlag (2002)

6. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Sympo-
sium on Operating Systems Principles (SOSP). (2009) 207–220

7. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2) (1991) 253–284

8. Sprenger, C., Basin, D.: Refining key establishment. In: Proceedings of Computer
Security Foundations Symposium (CSF), 2012 IEEE. 230–246

9. Moggi, E.: Notions of computation and monads. Information and Computation
93(1) (July 1991) 55–92

10. Andronick, J.: Formally proved anti-tearing properties of embedded C code. In:
2nd International Symposium on Leveraging Applications of Formal Methods, Ver-
ification and Validation (ISoLA 2006). (November 2006) 129–136

11. Sprenger, C., Basin, D.: A monad-based modeling and verification toolbox with
application to security protocols. In: Theorem Proving in Higher Order Logics.
LNCS. Springer Berlin Heidelberg 302–318

12. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proc. Principles of Programming Languages (POPL), ACM
(2004) 14–25

13. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing 19(2) (June 2007) 269–272

	Verification of a Transactional Memory Manager under Hardware Failures and Restarts

