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obtaining ompleteness results in modal and temporal logi [6℄. In the ontext oftheorem proving and (undeidable) proof searh, however, yli reasoning hasreeived little attention. In our opinion, this situation deserves to be remedied.Our laim is that it failitates proof searh, mainly due to its ability to delay de-isions onerning indution strategy as far as possible. Although it is too earlyfor any real onlusions on the validity of this laim, the experienes with yliproofs for the �-alulus using the EVT theorem prover [1,5℄ are enouraging.In this paper, we address the fundamental question of the relative dedu-tive power of yli proofs versus well-founded indution, the latter being theyardstik by whih other formalisations must be ompared. Our investigationis based on Park's �rst-order �-alulus [8℄, whih provides a minimal settingto study formalised indution. In this ontext, yli reasoning underpins workon model heking [13℄, ompleteness of the modal �-alulus [16℄, and, morereently, Gentzen-type proof systems for ompositional veri�ation [4,11,10℄. Weestablish e�etive translations between two Gentzen-style proof systems: one,Slo, for well-founded (loal) indution, and the other, Sglob, based on (�nitelyrepresented) !-regular proof trees using an external global indution dishargeondition ensuring the well-foundedness. We work in an extension of the ba-si �-alulus with expliit approximations [4℄ and ordinal quanti�ation [10℄(Set. 2). Indutive reasoning in both proof systems rests on this extension. Insystem Slo (Set. 3), it is supported by a single loal indution rule, an in-stantiation of the the well-known rule of well-founded indution to ordinals. Insystem Sglob (Set. 4), the global indution disharge ondition organises thebasi yles, alled repeats, into a partial indution order, assigns a progressingindution variable to eah repeat and requires eah repeat to preserve (i.e. notinrease) the variables of repeats above it in the indution order. This onditionensures that the indution assoiated with eah strongly onneted subgraph iswell-founded. For the translation from Slo to Sglob (Set. 5) it is su�ient toshow that the loal indution rule of Slo is derivable in Sglob. The translationin the other diretion (Set. 6) is more involved and generally proeeds in twostages. We �rst present a diret translation for Sglob-proofs, where the indutivestruture represented in the indution order mathes the proof tree struture.Then, we disuss an exponential time algorithm, whih unfolds arbitrary yliproofs until they are in the form required by the diret translation.We think that, by learly exhibiting the underlying strutures and their re-lationships, our present formal treatment sheds some new light on the variousapproahes to indutive reasoning. An important bene�t from using expliitapproximations is that it largely deouples our onstrutions from the atuallanguage (here, the �-alulus), thus strongly suggesting that they an supportlazy-style global indution in other ontexts suh as type theories with indutivede�nitions [9℄. Barthe et al. [2℄, for instane, points in this diretion by proposinga type system ensuring termination of reursive funtions based on approxima-tions of indutive types. Finally, an interesting pratial impliation of our resultis that (assuming size blow-ups an be prevented) it permits standard theoremprovers to be graefully interfaed with the �-alulus based EVT prover.



Set-theoreti preliminaries Let G = (A;R � A � A) be a graph. We say thatG is a forest if (a; b) 2 R and (a; ) 2 R imply b = . A tree is a forest with aunique root node r 2 A suh that there is no a 2 A with (a; r) 2 R. We all Gforest-like if (a; b) 2 R and (a; ) 2 R imply b =  or (b; ) 2 R [ R�1. A subsetC � A is strongly R-onneted if for any two x; y 2 C we have that (x; y) 2 R�.C is weakly R-onneted if R [R�1 is strongly R-onneted. We sometimes allC � A a subgraph of G and mean the subgraph (C;R \ C � C) indued by C.A strongly onneted subgraph (SCS) C � A is non-trivial if R \ C � C 6= ?.2 �-Calulus with Expliit ApproximationsLet 2 = f0; 1g be the two-point lattie and let Pred(S) = 2S be the lattie ofprediates over S ordered pointwise. For a monotone map f : Pred(S)! Pred(S)we de�ne the ordinal approximation ��f and the �xed point �f by�0f = �x:0 �f = W�< ��f for limit ordinals ��+1f = f(��f) �f = Wa ��fProposition 1. Let f : Pred(S) ! Pred(S) be a monotone map. Then1. �f is the least �xed point of f (Knaster-Tarski), and2. ��f = W�<� f(��f).We assume ountably in�nite sets of individual variables x; y; z : : : 2 VI , of pred-iate variables X;Y; Z; : : : 2 VP of eah arity n � 0, and of ordinal variables�; �; �; : : : 2 VO . Let t range over the terms of some signature �.De�nition 1. (Syntax) The syntax of �-alulus formulas � and prediates �over � is indutively de�ned by� ::= t = t0 j �0<� j :� j �1 ^ �2 j 9x:� j 9�:� j �(t)� ::= X j �X(x):� j ��X(x):�with the restrition that the arities of � and t math in �(t) and the formationof both �X(x):� and ��X(x):� is subjet to the onditions that (i) the arities ofX and x math, and (ii) all ourrenes of X in � appear under an even numberof negations (formal monotoniity).Zero-ary prediates are identi�ed with formulas. We all formulas of the form�0 < � ordinal onstraints. The sets of free and bound variables of formulasand prediates are de�ned as expeted, in partiular, fv(�X(x):�) = fv(�) �fX; xg and fv(�X�(x):�) = (fv(�) � fX; xg) [ f�g: We will identify formulasthat are equal up to renaming of bound variables. Dual onnetives are de�nedin the usual way, with �X(x):� = :�X(x)::�[:X=X ℄ and the approximated�xed point similarly. We also use bounded ordinal quanti�ers de�ned by theabbreviations 9�<�:� = 9�: �<� ^ � and 9���:� = (9�<�:�) _ �[�=�℄.Given a �-model M = (A; �) (A is the struture and � the interpretation)the semantis interprets a �-alulus formula � as an element k�kM 2 2 andan n-ary prediate � as an element k�kM 2 Pred(jAjn). We often drop M andwrite k�k� and k�k� if the struture A is lear from the ontext.



De�nition 2. (Semantis) Given a signature � and a �-model (A; �) de�nethe semantis of �-alulus formulas � and prediates � over � indutively bykt = t0k� = if ktk� = kt0k� then 1 else 0 k9�:�k� = W�k�k�[�=�℄k�0<�k� = if �(�0) < �(�) then 1 else 0 k�(t)k� = k�k�(ktk�)k:�k� = 1� k�k� kXk� = �(X)k�1 ^ �2k� = minfk�1k�; k�2k�g k�X(x):�k� = �	k9x:�k� = Wa2jAjk�k�[a=x℄ k��X(x):�k� = ��(�)	where ktk� is de�ned as usual and 	 = �P:�a:k�k�[P=X;a=x℄ in the lauses for�xed point and approximation prediates.Given a model M = (A; �), we extend the valuation � a posteriori to termst and formulas � by de�ning �(t) = ktk� and �(�) = k�k�. This allows us toompose substitutions � with environments � as in � Æ �. We say that a modelM = (A; �) satis�es a formula �, written M j= �, if k�k� = 1. A formula � isvalid if M j= � for all models M.3 Loal Indution: the System SloIn this setion we introdue the Gentzen-type proof system Slo for loal well-founded indution. It shares most de�nitions and proof rules with the systemSglob for global indution presented in the next setion.Sequents The sequents of both proof systems are of the form � `O �, where� and � are �nite multisets of formulas and O is a �nite set of ordinal variables.A sequent is well-formed if all ordinal variables ourring free in � or � areelements of O. We taitly restrit our attention to well-formed sequents. Theset of free variables of a sequent is de�ned by fv(� `O �) = fv(� [ �) [ O.Substitutions are extended to multisets of formulas by de�ning � [�℄ = f�[�℄ j� 2 �g. In sequents we often write O; � for O [ f�g.Given a �-model M = (A; �) we say that M satis�es a sequent � `O � ifM j= � for all � 2 � implies that M j=  for some  2 �. A model M falsi�esa sequent � `O � if M does not satisfy � `O �. The sequent � `O � is validif it is satis�ed in all models.Proof System The proof system is presented in two parts. Table 1 shows thebasi set of proof rules, ommon to both Slo and Sglob. They are presented intableau-style with the onlusion above the line and the premises below. Fixedpoint rule (�1-L) is the essential devie whih introdues ordinal approximations.Note the asymmetry of rules (�1-L) and (�0-R). However, one an show that thesymmetri rules (�0-L) and (�1-R) are derivable in Slo. The loal proof systemSlo is then obtained by adding to the basi proof rules the loal indution rule(Ind-L) of Table 2. The table also shows its derivable dual (Ind-R), whih mightlook more familiar to the reader.



Strutural Rules(Id) �; � `O �;�� (Weak) � `O �� 0 `O0 �0 � 0���0��O0�O(Cut) � `O ��; � `O � � `O �;� (Subst) � [�℄ `O[�℄ �[�℄� `O �Logial and Equality Rules(:-L) �;:� `O �� `O �;� (:-R) � `O :�;��; � `O �(^-L) �; �1 ^ �2 `O ��; �1; �2 `O � (^-R) � `O �1 ^ �2; �� `O �1; � � `O �2; �(9-L) �; 9x:� `O ��; � `O � x 62 fv(�;�) (9-R) � `O 9x:�;�� `O �[t=x℄; �(=-L) � [t2=x℄; t1 = t2 `O �[t2=x℄� [t1=x℄ `O �[t1=x℄ (=-R) � `O t = t;��Fixed Point Rules(�1-L) �; (�X(x):�)(t) `O ��; 9�:(��X(x):�)(t) `O � (�0-R) � `O (�X(x):�)(t); �� `O �[�X(x):�=X; t=x℄; �(��-L) �; (��X(x):�)(t) `O ��; 9�0<�:�[��0X(x):�=X; t=x℄ `O �(��-R) � `O (��X(x):�)(t); �� `O 9�0<�:�[��0X(x):�=X; t=x℄; �Ordinal Rules(9�-L) �; 9�:� `O ��; � `O;� � � 62 O (9�-R) � `O 9�:�;�� `O �[�=�℄; � � 2 O(<-L) �; �<� `O �� (<-R) � `O �0<�;�� `O �0<�00; � � `O �00<�;�Table 1. The proof rules shared by Slo and Sglob



(Ind-L) �; 9�:� `O ��; � `O;� 9�0<�:�[�0=�℄; � � 62 O(Ind-R) � `O 8�:�;��; 8�0<�:�[�0=�℄ `O;� �;� � 62 OTable 2. The loal indution rules of SloGiven a set S of proof rules an S-derivation tree D = (N ; E ;L) is a tree (N ; E)with nodes N and edges E � N �N together with a funtion L labelling eahnode of the tree with a sequent in a way that is onsistent with the appliationof the proof rules in S. We often write N(� `O �) for L(N) = � `O �.De�nition 3. An Slo-proof for a sequent � `O � is an Slo-derivation tree Dwhose root is labelled by � `O � and eah leaf of whih is labelled by an axiom.Lemma 1. The proof rules of Tables 1 and 2 are sound. In partiular, if there isa �-model (A; �) falsifying the onlusion C of a rule then there is a environment�0 suh that (A; �0) falsi�es some premise P of that rule. Moreover, we anhoose �0 suh that, for all ordinal variables � free in both P and C, we have�0(�) = �(�(�)) for rule (Subst) and �0(�) � �(�) for all other rules.The proof proeeds by a straightforward inspetion of the rules. In partiular,the soundness of the �xed point rules follows immediately from Proposition 1.The soundness of the proof system Slo is then an immediate orollary.Theorem 1. (Soundness of Slo) If D is an Slo-proof for � `O � then� `O � is valid.4 Global Indution: the System SglobThe proof system Sglob uses the proof rules from Table 1 only. However, proofs inthis system are not �nite but !-regular trees, whih we represent as �nite treeswith bak edges alled repeats. An external global indution disharge onditionthen ensures that all indutive reasoning embodied in the proof struture iswell-founded. Let us �x an arbitrary Sglob-derivation tree D = (N ; E ;L).De�nition 4. (Repeat) A repeat R = (N;M) for D is a pair of nodes of Dsuh that N is a leaf, M lies on the path from the root of D to N and L(N) =L(M). The node N is alled the repeat node and M is alled its ompanion. Wedenote by �(R) the path M � � �N in D.De�nition 5. (Pre-Proof) A pre-proof P = (D;R) is omposed of an Sglob-derivation tree D = (N ; E ;L) and a set of repeats R for D suh that eah of itsnon-axiom leaves appears in exatly one repeat of R. We all the graph G(P) =(N ; E [ R;L) the pre-proof graph of P.



The following lemma will allow us to identify strongly onneted subgraphs ofG(P) with ertain subsets of R. For two repeats R = (N;M) and R0 = (N 0;M 0)in R de�ne R ! R0 if there is a path M � � �N 0 from the ompanion node M ofR to the repeat node N 0 of R0 in the derivation tree D.Lemma 2. There is a bijetion between the non-trivial strongly onneted sub-graphs of G(P) and the strongly onneted subgraphs of (R;!).We are now ready to de�ne the basi indution disharge ondition qualifying apre-proof as a proof. This ondition is based on the notions of preservation andprogress of repeats with respet to approximant variables.De�nition 6. (Progress, Preservation) Constraint �0<� is alled derivableat N(� `O �), written N ` �0 <�, if there is a repeat-free Sglob-pre-proof for� `O �0 < �;�. Let R be a repeat with �(R) = N0 � � �Nm and Ni(�i `Oi �i)and let � be an ordinal variable. Then we say� R preserves �, if � 2 Oi for all i, and if either Nj ` �(�)<� or �(�) = �whenever rule (Subst) is applied with � at Nj , and� R progresses on �, if R preserves � and rule (Subst) is applied with some �at some Nj suh that Nj ` �(�)<�.De�nition 7. (Sglob-Proof) A pre-proof P = (D;R) is an Sglob-proof if foreah strongly onneted subgraph S � R there is an ordinal variable � suh that1. some repeat R 2 S progresses on �, and2. eah repeat R0 2 S preserves �.Theorem 2. (Soundness of Sglob) If P is an Sglob-proof for � `O � then� `O � is valid.Proof. (Sketh) By ontradition. Using Lemma 1 we onstrut an in�nite se-quene (N0; �0) � � � (Ni; �i) � � � of pairs of nodes and valuations suh that eah�i falsi�es L(Ni). By the de�nition of Sglob-proof there is an ordinal variable �suh that the sequene f�i(�)gi of ordinals dereases in�nitely often from somepoint on, ontraditing the well-foundedness of the ordinals. utDisharge Using Indution Orders The basi indution disharge meha-nism does not exhibit su�ient struture for our purpose of omparing the twosystems Slo and Sglob. For this reason we introdue an alternative indution dis-harge ondition, �rst proposed by Shöpp [10℄ and generalising the one in [4℄,whih orders the set of repeats appearing in a pre-proof. The new ondition turnsout to be equivalent to the original one.De�nition 8. (Indution Orders) A partial order (R;�) on the set of re-peats is alled an indution order for P, if it is forest-like and every stronglyonneted subgraph S � R has a �-greatest element.A labelled indution order (R;�; Æ) is an indution order (R;�) togetherwith a map Æ assigning an ordinal variable � to eah repeat R 2 R. The ordinalvariable Æ(R), also written ÆR, is alled the indution variable for R.



The restrition to forest-like partial orders in this de�nition is adopted here foronveniene. It is not neessary for soundness, but su�ient for ompleteness(see Proposition 2 below).De�nition 9. (Alternative Disharge) We say that a labelled indution or-der (R;�; Æ) disharges a pre-proof P = (D;R) if for all R 2 R1. R progresses on ÆR, and2. R preserves ÆR0 whenever R � R0.Proposition 2. For any pre-proof P = (D;R) the following are equivalent:(i) there is a labelled indution order (R;�; Æ) disharging P, and(ii) P is an Sglob-proof.5 From Loal to Global IndutionThe translation of Slo-proofs to Sglob-proofs is ahieved by showing that theloal indution rule (Ind-L) is derivable in Sglob, in the strong sense that anyappliation of (Ind-L) inside an Sglob-proof an be replaed by an equivalentSglob-derivation.Theorem 3. The loal indution rule (Ind-L) is derivable in Sglob.Proof. Consider the following derivation (omitting two appliations of the weak-ening rule): �; 9�:� `O � (9�-L)d�; � `O;� �e (Cut)�; � `O;� 9�0<�:�[�0=�℄; � �; 9�0<�:�[�0=�℄ `O;� � (9�-L,^-L)�; �0<�; �[�0=�℄ `O;�;�0 � (Subst)b�; � `O;� �This derivation is sound provided � 62 O, the side ondition of rule (Ind-L). Sinethe repeat (indiated by brakets) preserves all variables in O and progresses on�, this derivation an safely replae appliations of (Ind-L) in Sglob-proofs. ut6 From Global to Loal IndutionIn general, the translation from Sglob-proofs to Slo-proofs proeeds in two stages.If the indutive struture of the Sglob-proof mathes its tree struture, it an betranslated diretly into an Slo-proof. Otherwise, the Sglob-proof needs to beunfolded prior to this transformation. We �x an arbitrary pre-proof P = (D;R).De�nition 10. (Strutural dependeny) The strutural dependeny rela-tion �P on R is de�ned as follows: R0 �P R holds for two repeats R;R0 2 R ifthe ompanion node of R0 appears on the path �(R).



Lemma 3. Let S � R. Then S is strongly !-onneted if and only if S isweakly �P-onneted.De�nition 11. (Tree-ompatibility) An indution order (R;�) for P is tree-ompatible if R �P R0 and R0 6�P R imply R � R0 for all R;R0 2 R. AnSglob-proof P is alled tree-dishargeable if there is a tree-ompatible indutionorder disharging P.The indutive struture of a tree-dishargeable proof mathes its underlyingtree struture. The next lemma, whih an be proved using Lemma 3, givesa useful haraterisation of indution orders for P in terms of the struturaldependeny relation �P , thereby relating the struture of the proof tree withthe dependenies between repeats in an arbitrary indution order.Lemma 4. Let (R;�) be a forest-like partial order. Then (R;�) is an indutionorder for P if and only if R �P R0 implies R � R0 or R0 � R for all R;R0 2 R.Let �P be the transitive losure of �P . The following two remarks are easyorollaries of Lemma 4.Proposition 3. Let P = (D;R) be a pre-proof suh that R is injetive (as afuntion from repeat nodes to ompanions). Then �P is a tree-ompatible indu-tion order for P.Lemma 5. Let P = (D;R) be a proof disharged by the tree-ompatible indu-tion order (R;�; Æ). Then P an be transformed into a proof P 0 = (D0;R0) ofthe same sequent suh that R0 is injetive and P 0 is disharged by (R0;�P0 ; Æ0)for some labelling Æ0.6.1 Translating Tree-Dishargeable ProofsSine eah repeat R embodies an indution progressing on variable ÆR along thepath �(R) from the ompanion to the repeat node, it seems natural to insert theloal indution rule (Ind-L) at the ompanion node and use, essentially, the wholesequent as an indution hypothesis. This indution hypothesis is then onveyeddown the proof tree, exploiting progress on ÆR along �(R) to remove the boundedquanti�ation introdued by (Ind-L) and thus making the indution hypothesisavailable for loal disharge at the repeat node. The rest of this setion is devotedto proving the following theorem along these lines.Theorem 4. Let P = (D;R) be a Sglob-proof of � `O �, tree-dishargeable by(R;�; Æ). Then P an be transformed into a Slo-proof D0 of � `O �.Proof. (Sketh) We assume w.l.o.g. that (A) R is injetive and �=�P , byLemma 5, and (B) ompanions appear only as desendents of nodes where arule other than (Subst), (Cut), (^-R) and (<-R) is applied.Our onstrution reursively transforms D = (N ; E ;L) into a new derivationtree D0 = (N 0; E 0;L0) by replaing at eah node N the rule applied to produe



the set of desendents NN by a derivation DN with root bN and premises dNN =fN 0 j N 0 2 NNg (and some fresh interior nodes). The proedure keeps theset H of urrent indution hypotheses, whih is added to N(� `O �) yieldingbN(� `O �;H) in D0. For any node N 2 N de�ne the set of repeats ative at Nby RN = fR0 2 R j 9R 2 R:N 2 �(R) and R �P R0g and let ON = fÆR j R 2RNg be the orresponding set of indution variables. We note fat (C): there issome R 2 RN preserving all variables in ON . Hene, ON � O for N(� `O �).The indution hypothesis HR to be added to the urrent set of hypotheses H atthe ompanion node M(� `O �) of a repeat R = (N;M) is de�ned byHR = 9Æ<ÆR:	R[Æ=ÆR℄	R = 9�� �R:9v:V(� [ :� [ :H)[�=�R℄where f�Rg = OM � fÆRg and fvg = fv(� `O �) � OM . The free indutionhypothesis 	R paks the sequent at M together with the set H into a singleformula, existentially quanti�es all but the ative indution variables in OMand binds the (preserved) ative indution variables �R in 	R by a quanti�erof type 9� � �R. The guarded indution hypothesis HR additionally binds the(progressing) indution variable ÆR in 	R by a quanti�er of type 9��ÆR.Transformation of D to D0. Our proedure ensures that for eah node N(� `O�) in D there is a node bN(� `O �;H) suh that the following invariant holds:I(N;H) = HgN � H � HNwhere HgN = fHR j R 2 RNg and HN = HgN [ f	R j R 2 RNg. By assumption(B) the root Nr is not a ompanion so RN = ? and the invariant holds triviallyby initially setting H = ?. We now desribe the derivations DN replaing inD0 the rule appliation at N in D. Suppose we have onstruted D0 up to somenode bN(� 0 `O0 �0;H) where the invariant holds. The ases where a rule otherthan (Subst) is applied at N and none of the desendents of N is a ompanionare easy to show. We just remark that in order to maintain the invariant at thebranhing rules (Cut), (^-R) and (<-R) we possibly need weakening on H toaount for the splitting of the set of ative repeats between the two branhes.Due to assumption (B) the two remaining ases are:Case 1. The single desendent M(� `O �) of N is the ompanion of a repeatR. The invariant I(M;H) is violated for H, beause the indution hypothesisHR is missing in H. The derivation DN in Fig. 1 adds HR to bN(� 0 `O0 �0;H)yielding M(� `O �;H; HR) and thus reestablishing the invariant.At node M 0 we ut in 9ÆR:	R. After weakening away all but the latter for-mula on the left hand side, we apply the indution rule (Ind-L). This leaves uswith the sequent 	R `ON HR, whih is transformed into the desired sequentM(� `O �;H; HR) by applying a series of essentially �rst-order rules (RS1)deonstruting 	R on the left. On the right hand side, we apply a dual seriesof rules (RS2) proving Nr(� `O �;H; 	R) loally. Note that the sequent at Nrantiipates, thanks to the ut, the desired situation at the repeat node of R,sine it ontains a right hand side ourrene of the free indution hypothesis.



bN(� 0 `O0 �0;H) (rule at N)M 0(� `O �;H) (Cut)�; 9ÆR:	R `O �;H (Weak)9ÆR:	R `ON�fÆRg (Ind-L)	R `ON HR (RS1)M(� `O �;H; HR) � `O �;H; 9ÆR:	R (9�-R)Nr(� `O �;H; 	R) (RS2)�Figure 1. Derivation DN inserted at ompanion node N of a repeat RCase 2. Rule (Subst) applied at N with desendent M . We need to make surethat the substitution rule is orretly applied and that the indution hypothesesin H are (re-)generated as in the following ompressed version of derivation DN :bN(� [�℄ `O[�℄ �[�℄;H) (Regen)M 0(� [�℄ `O[�℄ �[�℄;H0[�℄) (Subst)M(� `O �;H0)where H0 = fHR j HR 2 Hg [ f	R j 	R 2 H or N ` �(ÆR) < ÆRg. We haveRM = RN , sine M is not a ompanion by assumption (B). It is then easy tosee that I(M;H0) holds. Note that, sine fv(HN ) � ON , it follows from fat (C)above that eah � 2 fv(HN ) is preserved by � at N , that is, N ` �(�) < � or�(�) = �. The derivation from bN to M 0 labelled (Regen) then inludes, for eahR 2 RN , a derivation that produes:1. 	R[�℄ from HR if N ` �(ÆR) < ÆR, exploiting progress of ÆR and preservationof �R by � at N ,2. 	R[�℄ from 	R if �(ÆR) = ÆR and 	R 2 H, using preservation of ÆR and �Rby � at N , and3. HR[�℄ from HR, also using preservation of ÆR and �R by � at N .In eah of the derivations (1)-(3) the leading bounded ordinal quanti�ers in 	Rand HR are dupliated and ommuted prior to instantiation as neessary, byapplying some easily derivable auxiliary rules.Continuing this proedure down to the leaves of D yields, for eah repeatR = (N;M), two nodes M(� `O �;H) and bN(� `O �;H0) in D0 (where bN isa leaf of D0 so far). We now show that H � H0 and 	R 2 H0, implying that thesequent at bN is provable in Slo in the same way as the one at node Nr in Fig. 1.Consider some R0 2 RM . From RM = RN and the invariant it follows that HR0is in both HM and HN . If 	R0 2 HM then we also have 	R0 2 HN , sine Rpreserves ÆR0 and so 	R0 is regenerated along �(R) (see disussion in ase (2)above). Hene, H � H0. Sine R progresses on ÆR, 	R will be generated fromHR at some point on the path �(R) and then regenerated in eah subsequentappliation of rule (Subst) along �(R). Hene, we have 	R 2 H0. This showsthat D0 an be ompleted into an Slo-proof. ut



6.2 General Case: Unfolding ProofsThe previous translation ruially depends on the tree-dishargeability of theindution order: repeats with ompanions lower in the proof tree preserve in-dution variables of repeats higher in the proof tree (�higher� and �lower� beingdetermined by �P). In general, we need to unfold the proof until it beomestree-dishargeable. This task is ahieved by Algorithm 1.1: input2: P0 = (D0;R0) whereD0 = (N0; E0;L0), rootNr {R0 injetive }3: (R0;�0; Æ0) { indution order disharging P0 }4: output5: P = (D;R) whereD = (N ; E ;L), N � N0�N { unfolded proof }6: globals7: s 2 N { sequene number to distinguish opies of nodes }8: begin9: s := 0; E := ?; R := ?10: N := f(Nr; s)g; L := f((Nr; s);L0(Nr))g11: unfold (Nr; s) ?12: end13: proedure unfold (N; k) B14: parameters15: (N; k) 2 N0�N { node of P = (node of P0, opy number) }16: B : R0 * N { opy numbers for ompanions available in P }17: if N is the repeat node of some R = (N;M) 2 R0 then18: if (R; i) 2 B for some i then { ompanion (M; i) available for (N; k) }19: R := R [ f((N; k); (M; i))g20: else { no ompanion available, ontinue unfolding through repeat }21: s := s+ 1 { get a new sequene number }22: add node (M; s) labelled L0(M) as hild of (N; k) to D23: unfold (M; s) B24: end if25: else { N is an axiom leaf or an inner node of D0 }26: if N is the ompanion of some R 2 R0 and R 62 domB then27: B := f(R; k)g [ f(R0; k0) 2 B j R �0 R0g28: end if29: for eah hild N 0 of N in D0 do { add and unfold eah hild node }30: add node (N 0; k) labelled L0(N 0) as hild of (N; k) to D31: unfold (N 0; k) B32: end for33: end if Algorithm 1: Unfolding proofs



It takes a proof P0 = (D0;R0) with injetive R0 as input and produes atree-dishargeable proof P = (D;R). Note that no generality is lost by requiringthat R0 is injetive. The nodes of P are pairs (N; k), where N is a node ofP0 and k is the opy number. The original proof tree is traversed reursively,unfolding repeats into new opies of the proof tree as neessary. The proeduremaintains a partial map B from repeats R0 to opy numbers in N to keep trakof ompanions that are available for looping bak at repeat nodes. This map isupdated whenever we enounter the ompanion of some repeat R 2 R withoutan entry in B: the entry (R; k) is added to B, while any entry for a repeat R0 notabove R with respet to �0 is removed from B (line 26-27). When examiningopy l of the repeat node N of some repeat R = (N;M) 2 R we hek whetherthere is some entry (R; k) 2 B (lines 17-18). If so, then we an safely lose theloop and add ((N; l); (M;k)) as a new repeat to R (line 19). Otherwise, if thereis no ompanion available for R, we proeed by unfolding the tree at (N; l) byadding the node (M;k) with a fresh k as a desendant of (N; l) to P (line 21-23).The labelled indution order (R;�; Æ) for P is obtained by lifting (R0;�0; Æ0)to P . Writing bR = (N;M) 2 R0 for R = ((N; k); (M; i)) 2 R, we de�neR � R0 , bR �0 R0 or ( bR =R0 and k � k0) and Æ(R) = Æ0( bR)where R = ((N; k); (M; i)) and R0 = ((N 0; k0); (M 0; i0)). Note the tie-breakingrole of the repeat sequene number in ase of idential projeted repeats.Theorem 5. Let P0 = (D0;R0) be a Sglob-proof of � `O � suh that R0 isinjetive and P0 is disharged by (R0;�0; Æ0). Then Algorithm 1 produes, intime O(2jN0j�jR0j), a proof P = (D;R) of � `O �, disharged by the tree-ompatible indution order (R;�; Æ) de�ned above.Proof. For partial orretness it is su�ient to show that1. P = (D;R) is a pre-proof,2. (R;�) is a tree-ompatible indution order for P , and3. (R;�; Æ) disharges P .It is easy to see that P is a pre-proof. As a preparation for (2) and (3) onsidera repeat R = ((N; k); (M; i)) in R. Let = ((N0; k0);B0) � � � ((Nj ; kj);Bj) � � � ((Nm; km);Bm)with (N0; k0) = (M; i) and (Nm; km) = (N; k) be the (su�x of the) sequene ofreursive alls leading to the introdution of R in P . The pair ( bR; i) is added toB0 in all 0 (line 27) and appears in all subsequent Bj (1 � j � m). Finally, therepeat R is added to R in all m (line 19). Consider a repeat R00 = (N 00;M 00) 2R0 with its ompanion M 00 = Nj ourring in j with 0 � j � m. Sine ( bR; i) isin both Bj and Bj+1 and (R00; kj) is added to Bj at in all j (line 27), we have(A) if R00 62 domBj then R00 �0 bR.



Ad (2). It is easy to hek that (R;�; Æ) is a forest-like partial order. Now supposeR0 �P R for some R;R0 2 R. Sine the ompanion of R0 appears on �(R) in Pand hene as Nj in some j it must be the ase that R0 62 domBj so we haveR0 �0 bR by (A). From the de�nition of � and Lemma 4 it follows that (R;�)is an indution order. If, moreover, R 6�P R0 then R0 6= bR, sine bR annot beunfolded on �(R). This implies that (R;�) is tree-ompatible.Ad (3). Let S0 � R0 be the set of repeats unfolded on �(R) and let S = S0[f bRg.Note that �(R) in P is the omposition of all the paths �(R00) in P0 with R00 2 S.Suppose R � R0 for some R0 2 R. Then ertainly bR �0 R0. Let R00 2 S0 withompanion M . Sine R00 is unfolded in some all j�1, we have Nj = M andR00 62 domBj . Hene, R00 �0 bR by (A) and R00 preserves Æ(R0) = Æ0(R0), implyingthat R preserves Æ(R0). Moreover, R progresses on Æ(R), sine bR progresses onÆ0( bR). This shows (3).Complexity. Suppose for a ontradition that there is a (su�x of a) sequene ofalls of the form  above suh that m > 0 and (N0; domB0) = (Nm; domBm).Note �rst that, sine the ontrol �ow of unfold does not depend on the opynumbers, there is an extension ((Nm+1; km+1);Bm+1) � � � ((N2m; k2m);B2m) of suh that (Ni; domBi) = (Ni+m; domBi+m) for all i � m (and, in fat, so on adin�nitum). Let S be the set of repeats R 2 R0 suh that Ni is the ompanionof R and R 62 domBi for some i � m. It is not di�ult to see that S is stronglyonneted in (R0;!) and thus there is a �0-greatest element eR 2 S. Suppose Niis the ompanion of eR for some i � m. Sine eR 62 domBi and eR is �0-greatestin S, it follows that eR 2 domBk for all i < k � i +m (line 27). In partiular,eR 2 domBi+m, whih ontradits domBi = domBi+m. Hene, length of any allsequene  of unfold is bounded by jj � jN0j�jR0j, yielding an upper bound ofjN j � 2jN0j�jR0j for the size of P and the time omplexity of the algorithm. ut7 ConlusionsWe have presented a translation between proofs using well-founded indution andyli proofs based on a global well-foundedness ondition. The proof systemsuse expliit ordinal approximations as suggested in [4℄. Sine our main interest inapproximants is as a proof-theoretial mehanism to deal with �xed points ratherthan proving theorems about them, it would be desirable to identify a fragment ofthe language whih ould be shown to onserve (not inrease) the expressivenessof the basi �-alulus (without expliit approximations). Simpson and Shöpphave proposed an alternative approah to approximants based diretly on theseond-order variables instead of ordinal variables [11℄ and they have proved aonservativity result for a variant of this language [12℄. Their language laks,however, the ability to �internalise� sequents into single formulas, required inour diret translation to loal proofs. Thus, it seems that our approah an notreadily be adapted to yield a similar translation in their framework.
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