On the Structure of Inductive Reasoning:
Circular and Tree-Shaped Proofs in the
p-Calculus

Christoph Sprenger'>* and Mads Dam?>**

! INRIA Sophia Antipolis, France (sprenger@sophia.inria.fr)
% Royal Institute of Technology, Kista, Sweden (mfd@imit.kth.se)

Abstract In this paper we study induction in the context of the first-
order p-calculus with explicit approximations. We present and compare
two Gentzen-style proof systems each using a different type of induction.
The first is based on finite proof trees and uses a local well-founded
induction rule, while the second is based on (finitely represented) w-
regular proof trees and uses a global induction discharge condition to
ensure externally that all inductive reasoning is well-founded. We give
effective procedures for the translation of proofs between the two systems,
thus establishing their equivalence.

1 Introduction

Induction is the fundamental finitary method available in mathematics and com-
puter science to generate and reason about finite and infinite objects. Three main
proof-theoretic approaches to explicit induction! can be identified:

1. well-founded induction,

2. Scott/Park fixed point induction (cf. [7]), and

3. cyclic proofs, based on the idea of reducing induction to a global well-
foundedness check on a locally sound inference graph.

As general approaches to inductive reasoning the former two are clearly the dom-
inant ones. However, the value of cyclic reasoning in the decidable case has been
demonstrated quite unequivocally by now. Examples are the well-established
equivalence between monadic second-order logic, temporal logics (including var-
ious p-calculi) and automata on infinite objects [14] as well as the usefulness of
automata for obtaining decidability results and efficient algorithms [15]. Similar
claims can be made concerning the usefulness of tableau-based techniques for

* Research done mainly while at Swedish Institute of Computer Science (SICS), sup-
ported by Swiss European Fellowship 83EU-065536, and completed at INRIA, sup-
ported by an ERCIM fellowship.

** Supported by the Swedish Research Council grant 621-2001-2637, "Semantics and
Proof of Programming Languages"
! As opposed to implicit induction (cf. [3]), based on Knuth-Bendix completion.

obtaining completeness results in modal and temporal logic [6]. In the context of
theorem proving and (undecidable) proof search, however, cyclic reasoning has
received little attention. In our opinion, this situation deserves to be remedied.
Our claim is that it facilitates proof search, mainly due to its ability to delay de-
cisions concerning induction strategy as far as possible. Although it is too early
for any real conclusions on the validity of this claim, the experiences with cyclic
proofs for the p-calculus using the EVT theorem prover [1,5] are encouraging.

In this paper, we address the fundamental question of the relative deduc-
tive power of cyclic proofs versus well-founded induction, the latter being the
yardstick by which other formalisations must be compared. Our investigation
is based on Park’s first-order p-calculus [8], which provides a minimal setting
to study formalised induction. In this context, cyclic reasoning underpins work
on model checking [13], completeness of the modal p-calculus [16], and, more
recently, Gentzen-type proof systems for compositional verification [4,11,10]. We
establish effective translations between two Gentzen-style proof systems: one,
Sioc, for well-founded (local) induction, and the other, Sg0p, based on (finitely
represented) w-regular proof trees using an external global induction discharge
condition ensuring the well-foundedness. We work in an extension of the ba-
sic u-calculus with explicit approximations [4] and ordinal quantification [10]
(Sect. 2). Inductive reasoning in both proof systems rests on this extension. In
system Sp. (Sect. 3), it is supported by a single local induction rule, an in-
stantiation of the the well-known rule of well-founded induction to ordinals. In
system Sgiop (Sect. 4), the global induction discharge condition organises the
basic cycles, called repeats, into a partial induction order, assigns a progressing
induction variable to each repeat and requires each repeat to preserve (i.e. not
increase) the variables of repeats above it in the induction order. This condition
ensures that the induction associated with each strongly connected subgraph is
well-founded. For the translation from Si,c t0 Sgiop (Sect. 5) it is sufficient to
show that the local induction rule of S, is derivable in Sg;05. The translation
in the other direction (Sect. 6) is more involved and generally proceeds in two
stages. We first present a direct translation for Sy.,-proofs, where the inductive
structure represented in the induction order matches the proof tree structure.
Then, we discuss an exponential time algorithm, which unfolds arbitrary cyclic
proofs until they are in the form required by the direct translation.

We think that, by clearly exhibiting the underlying structures and their re-
lationships, our present formal treatment sheds some new light on the various
approaches to inductive reasoning. An important benefit from using explicit
approximations is that it largely decouples our constructions from the actual
language (here, the p-calculus), thus strongly suggesting that they can support
lazy-style global induction in other contexts such as type theories with inductive
definitions [9]. Barthe et al. [2], for instance, points in this direction by proposing
a type system ensuring termination of recursive functions based on approxima-
tions of inductive types. Finally, an interesting practical implication of our result
is that (assuming size blow-ups can be prevented) it permits standard theorem
provers to be gracefully interfaced with the p-calculus based EVT prover.

Set-theoretic preliminaries Let G = (A,R C A x A) be a graph. We say that
G is a forest if (a,b) € R and (a,c) € R imply b = c. A tree is a forest with a
unique root node r € A such that there is no a € A with (a,r) € R. We call G
forest-like if (a,b) € R and (a,c) € R imply b= c or (b,c) € RUR™!. A subset
C C A is strongly R-connected if for any two z,y € C we have that (z,y) € R*.
C is weakly R-connected if RU R™! is strongly R-connected. We sometimes call
C C A a subgraph of G and mean the subgraph (C, RN C x C) induced by C.
A strongly connected subgraph (SCS) C' C A is non-trivial if RN C x C # @.

2 p-Calculus with Explicit Approximations

Let 2 = {0,1} be the two-point lattice and let Pred(S) = 2° be the lattice of
predicates over S ordered pointwise. For a monotone map f: Pred(S) — Pred(S5)
we define the ordinal approzimation p®f and the fized point puf by

wWf =xz.0 wrf = \/a<7 n®f for limit ordinals ~
pettf = f(u*f) wf =V,n*f
Proposition 1. Let f: Pred(S) — Pred(S) be a monotone map. Then

1. pf is the least fized point of f (Knaster-Tarski), and
2. 1% f =V o F(WF).
We assume countably infinite sets of individual variables z,y, z... € V7, of pred-

icate variables X,Y, Z,... € Vp of each arity n > 0, and of ordinal variables
LK, A, ... € Vo. Let t range over the terms of some signature X

Definition 1. (Syntax) The syntaz of p-calculus formulas ¢ and predicates ¢
over X' is inductively defined by

Gpu=t=t|kK<Kk|"¢| o1 Ado|Tz.00 | Ik.0 | D(1)
B = X | uX(2)6 | 45X (T)-0

with the restriction that the arities of & and t match in &(t) and the formation
of both uX (T).¢ and u*X(T).¢ is subject to the conditions that (i) the arities of
X and T match, and (ii) all occurrences of X in ¢ appear under an even number
of negations (formal monotonicity).

Zero-ary predicates are identified with formulas. We call formulas of the form
k' < Kk ordinal constraints. The sets of free and bound variables of formulas
and predicates are defined as expected, in particular, fv(uX(T).¢) = fv(¢) —
{X,7} and tv(pX"(T).0) = (fv(¢) — {X,7}) U {k}. We will identify formulas
that are equal up to renaming of bound variables. Dual connectives are defined
in the usual way, with vX(T).¢ = -uX(Z).—¢[-X/X] and the approximated
fixed point similarly. We also use bounded ordinal quantifiers defined by the
abbreviations e <k.¢ = Jt.t <k A ¢ and N <k.¢p = (T <K.0) V @d[K/1].

Given a Y¥-model M = (A, p) (A is the structure and p the interpretation)
the semantics interprets a p-calculus formula ¢ as an element ||¢||y € 2 and
an n-ary predicate ¢ as an element ||$||p¢ € Pred(]A|™). We often drop M and
write ||¢||, and ||®]|, if the structure A is clear from the context.

Definition 2. (Semantics) Given a signature X and o X-model (A, p) define
the semantics of p-calculus formulas ¢ and predicates @ over X inductively by

lt=tll, =iflltll, =lt'll, then 1 else O || 3x.0]|, = Vll0llps/x]
' <kll, = if p(k') < p(r) then 1 else O ||B(t)], =121l (lIll,)
I=oll, =1-ll¢l, X1, = p(X)

61 A G2l = mind]|éal,, |02l } |0 X (@).0ll, =p&

1F3z-0lle = Vaeiallollpaszl 15X (T).-0ll, = v

where ||t||, is defined as usual and ¥ = AP.Xa.||d|l,p/x,a/z) in the clauses for
fized point and approximation predicates.

Given a model M = (A, p), we extend the valuation p a posteriori to terms
t and formulas ¢ by defining p(t) = ||t||, and p(¢) = ||¢||,. This allows us to
compose substitutions # with environments p as in p o §. We say that a model
M = (A, p) satisfies a formula ¢, written M |= ¢, if ||¢]|, = 1. A formula ¢ is
valid if M = ¢ for all models M.

3 Local Induction: the System S;,.

In this section we introduce the Gentzen-type proof system S, for local well-
founded induction. It shares most definitions and proof rules with the system
Sgi0b for global induction presented in the next section.

Sequents The sequents of both proof systems are of the form I' o A, where
I' and A are finite multisets of formulas and O is a finite set of ordinal variables.
A sequent is well-formed if all ordinal variables occurring free in I" or A are
elements of O. We tacitly restrict our attention to well-formed sequents. The
set of free variables of a sequent is defined by fv(I" Fp A) = v(I" U A) U O.
Substitutions are extended to multisets of formulas by defining I'lf] = {4[f] |
¢ € I'}. In sequents we often write O, k for O U {x}.

Given a Y-model M = (A, p) we say that M satisfies a sequent I" Fp A if
M = ¢ for all ¢ € I' implies that M [9 for some ¢ € A. A model M falsifies
a sequent I' Fo A if M does not satisfy I' Fo A. The sequent I' Fp A is valid
if it is satisfied in all models.

Proof System The proof system is presented in two parts. Table 1 shows the
basic set of proof rules, common to both Sj,. and Sgo,. They are presented in
tableau-style with the conclusion above the line and the premises below. Fixed
point rule (u1-L) is the essential device which introduces ordinal approximations.
Note the asymmetry of rules (u1-L) and (uo-R). However, one can show that the
symmetric rules (po-L) and (41-R) are derivable in Sj,.. The local proof system
Sioc 18 then obtained by adding to the basic proof rules the local induction rule
(Ind-L) of Table 2. The table also shows its derivable dual (Ind-R), which might
look more familiar to the reader.

Structural Rules

Iékod A rroa TST
(Id) 7 (Weak) m AIQA
o'co
Iko A I'[0] Forey Alf]
Cut) oo A Trooa (Subst) == A
Logical and Equality Rules
I''-¢pto A I'to =g, A
S S 6, A (~-R) Téro A
g1 ANdabo A I'Fo ¢1 A ¢a, A
AL) ——— — A-R
(A-L) Iyo1,02 Fo A ()Fl—o¢>1,A I'to ¢2, A
IAz.d ko A I'kto z.9, A
3-1) 02—~ fv(I', A JR) — & =
GL) oo a “#N0A) Rl ey
F[tz/x],h:tg Fo A[tz/:c] (_ R)Fl—otZt,A

(=) = 7aT o A /]

Fixed Point Rules

I'fFo (uX(7).¢)(#), A
I'Fo ¢uX(7).0/X,t/T], A

(no-R)

L DXE.H0 ko A
I3k <k.d[p X(Z).0/X,1/Z] Fo A

I'Fo (WX (@).9)(), A
I'Fo 3n' <r.g[p~ X(z).6/X,1/7], A

(1"-R)

Ordinal Rules

koo A I'Fo In.é, A
(Ik-L) T oFor kg O (3x-R) Tro ol/u], A Le 0
!
(<-T) F,I{<I.€|—OA (<-R) ko k' <k, A

I'Fo k<K', A TI'lto r"<k,A

Table 1. The proof rules shared by S, and Sgiop

I[3koFo A

(Ind-L) T, ¢ Fo.. I <k.g[s' /K], A K

g0

I'Fo V., A

(Ind-R) s /nl ron 0.2 ©

zo

Table 2. The local induction rules of Sioe

Given a set S of proof rules an S-derivation tree D = (N, &, L) is a tree (N, €)
with nodes A" and edges £ C N x N together with a function £ labelling each
node of the tree with a sequent in a way that is consistent with the application
of the proof rules in S. We often write N(I' Fp A) for L(N) =T Fp A.

Definition 3. An Sj,.-proof for a sequent I' - A is an Sj,c-derivation tree D
whose root is labelled by I' Fo A and each leaf of which is labelled by an aziom.

Lemma 1. The proof rules of Tables 1 and 2 are sound. In particular, if there is
a X-model (A, p) falsifying the conclusion C of a Tule then there is a environment
p' such that (A, p') falsifies some premise P of that rule. Moreover, we can
choose p' such that, for all ordinal variables k free in both P and C, we have
p'(k) = p(8(r)) for rule (Subst) and p'(k) < p(k) for all other rules.

The proof proceeds by a straightforward inspection of the rules. In particular,
the soundness of the fixed point rules follows immediately from Proposition 1.
The soundness of the proof system Sj,. is then an immediate corollary.

Theorem 1. (Soundness of Si..) If D is an Sioc-proof for I' Fo A then
I'Fo A is valid.

4 Global Induction: the System S 05

The proof system Sy;op, uses the proof rules from Table 1 only. However, proofs in
this system are not finite but w-regular trees, which we represent as finite trees
with back edges called repeats. An external global induction discharge condition
then ensures that all inductive reasoning embodied in the proof structure is
well-founded. Let us fix an arbitrary Syiop-derivation tree D = (NV,E,L).

Definition 4. (Repeat) A repeat R = (N, M) for D is a pair of nodes of D
such that N is a leaf, M lies on the path from the root of D to N and L(N) =
L(M). The node N is called the repeat node and M is called its companion. We
denote by w(R) the path M --- N in D.

Definition 5. (Pre-Proof) A pre-proof P = (D, R) is composed of an Sgiob-
derivation tree D = (N,E,L) and a set of repeats R for D such that each of its
non-axiom leaves appears in ezxactly one repeat of R. We call the graph G(P) =
(NM,EUR,L) the pre-proof graph of P.

The following lemma will allow us to identify strongly connected subgraphs of
G(P) with certain subsets of R. For two repeats R = (N, M) and R' = (N', M)
in R define R — R’ if there is a path M --- N’ from the companion node M of
R to the repeat node N’ of R’ in the derivation tree D.

Lemma 2. There is a bijection between the non-trivial strongly connected sub-
graphs of G(P) and the strongly connected subgraphs of (R, —).

We are now ready to define the basic induction discharge condition qualifying a
pre-proof as a proof. This condition is based on the notions of preservation and
progress of repeats with respect to approximant variables.

Definition 6. (Progress, Preservation) Constraint k' <r is called derivable
at N(I' Fo A), written N F &' <k, if there is a repeat-free Sgion-pre-proof for
I' bp k' <k,A. Let R be a repeat with m(R) = Ny --- Ny, and N;(I; Fo, A;)
and let k be an ordinal variable. Then we say

— R preserves k, if k € O; for all i, and if either N; F (k) <k or (k) = k
whenever rule (Subst) is applied with 6 at N;, and

— R progresses on k, if R preserves k and rule (Subst) is applied with some 6
at some N; such that N; F 0(k) <k.

Definition 7. (S;op-Proof) A pre-proof P = (D,R) is an Sgiop-proof if for
each strongly connected subgraph S C R there is an ordinal variable k such that

1. some repeat R € S progresses on Kk, and
2. each repeat R' € S preserves k.

Theorem 2. (Soundness of Syo) If P is an Sgiep-proof for I' Fo A then
I'Fo A is valid.

Proof. (Sketch) By contradiction. Using Lemma 1 we construct an infinite se-
quence (Ny, po) -+ (N;,p;)--- of pairs of nodes and valuations such that each
pi falsifies £(N;). By the definition of S,ep-proof there is an ordinal variable s
such that the sequence {p;(x)}; of ordinals decreases infinitely often from some
point on, contradicting the well-foundedness of the ordinals. O

Discharge Using Induction Orders The basic induction discharge mecha-
nism does not exhibit sufficient structure for our purpose of comparing the two
systems Sjoc and Sgiop. For this reason we introduce an alternative induction dis-
charge condition, first proposed by Schopp [10] and generalising the one in [4],
which orders the set of repeats appearing in a pre-proof. The new condition turns
out to be equivalent to the original one.

Definition 8. (Induction Orders) A partial order (R,=X) on the set of re-
peats is called an induction order for P, if it is forest-like and every strongly
connected subgraph S C R has a <-greatest element.

A labelled induction order (R, <,8) is an induction order (R, =) together
with a map 6 assigning an ordinal variable k to each repeat R € R. The ordinal
variable 6(R), also written 6g, is called the induction variable for R.

The restriction to forest-like partial orders in this definition is adopted here for
convenience. It is not necessary for soundness, but sufficient for completeness
(see Proposition 2 below).

Definition 9. (Alternative Discharge) We say that a labelled induction or-
der (R, =<, 6) discharges a pre-proof P = (D, R) if for all R € R

1. R progresses on Ogr, and
2. R preserves 6r whenever R < R'.

Proposition 2. For any pre-proof P = (D, R) the following are equivalent:

(i) there is a labelled induction order (R, =,6) discharging P, and
(i1) P is an Sgiop-proof.

5 From Local to Global Induction

The translation of Sjyc-proofs to Sgiep-proofs is achieved by showing that the
local induction rule (Ind-L) is derivable in S0, in the strong sense that any
application of (Ind-L) inside an Syop-proof can be replaced by an equivalent
Sgiop-derivation.

Theorem 3. The local induction rule (Ind-L) is derivable in Sgiop.

Proof. Consider the following derivation (omitting two applications of the weak-
ening rule):

I'3Ikokp A

L3réFod (3x-L)

[T, ¢ Fox Al (Cut)
Ioto,. Ik <kl [c],A I3k <k.P[K [k Fox A (3k-L,A-L)

Ik <k, QK [K] Fo ke A
LF7 ¢ "O,n AJ

(Subst)

This derivation is sound provided s ¢ O, the side condition of rule (Ind-L). Since
the repeat (indicated by brackets) preserves all variables in O and progresses on
K, this derivation can safely replace applications of (Ind-L) in Syep-proofs. O

6 From Global to Local Induction

In general, the translation from Sg;05-proofs to Sjo.-proofs proceeds in two stages.
If the inductive structure of the Sg;05-proof matches its tree structure, it can be
translated directly into an Sj..-proof. Otherwise, the Sg.5-proof needs to be
unfolded prior to this transformation. We fix an arbitrary pre-proof P = (D, R).

Definition 10. (Structural dependency) The structural dependency rela-
tion <p on R is defined as follows: R <p R holds for two repeats R,R' € R if
the companion node of R’ appears on the path m(R).

Lemma 3. Let S C R. Then S is strongly —-connected if and only if S is
weakly <p-connected.

Definition 11. (Tree-compatibility) An induction order (R, =X) for P is tree-
compatible if R <p R’ and R' £p R imply R < R’ for all R,R' € R. An
Sgiob-proof P is called tree-dischargeable if there is a tree-compatible induction
order discharging P.

The inductive structure of a tree-dischargeable proof matches its underlying
tree structure. The next lemma, which can be proved using Lemma 3, gives
a useful characterisation of induction orders for P in terms of the structural
dependency relation <p, thereby relating the structure of the proof tree with
the dependencies between repeats in an arbitrary induction order.

Lemma 4. Let (R, <) be a forest-like partial order. Then (R, X) is an induction
order for P if and only if R <p R’ implies R< R or R" X R for all R,R' € R.

Let <p be the transitive closure of <p. The following two remarks are easy
corollaries of Lemma 4.

Proposition 3. Let P = (D, R) be a pre-proof such that R is injective (as a
function from repeat nodes to companions). Then <p is a tree-compatible induc-
tion order for P.

Lemma 5. Let P = (D, R) be a proof discharged by the tree-compatible induc-
tion order (R,=,8). Then P can be transformed into a proof P' = (D', R') of
the same sequent such that R' is injective and P’ is discharged by (R, <p:,8")
for some labelling 6'.

6.1 Translating Tree-Dischargeable Proofs

Since each repeat R embodies an induction progressing on variable dr along the
path 7(R) from the companion to the repeat node, it seems natural to insert the
local induction rule (Ind-L) at the companion node and use, essentially, the whole
sequent as an induction hypothesis. This induction hypothesis is then conveyed
down the proof tree, exploiting progress on §r along 7(R) to remove the bounded
quantification introduced by (Ind-L) and thus making the induction hypothesis
available for local discharge at the repeat node. The rest of this section is devoted
to proving the following theorem along these lines.

Theorem 4. Let P = (D, R) be a Syiop-proof of I' Fo A, tree-dischargeable by
(R, =,6). Then P can be transformed into a Sipc-proof D' of I' o A.

Proof. (Sketch) We assume w.l.o.g. that (A) R is injective and <==p, by
Lemma 5, and (B) companions appear only as descendents of nodes where a
rule other than (Subst), (Cut), (A-R) and (<-R) is applied.

Our construction recursively transforms D = (A, £, £) into a new derivation
tree D' = (N, €', L") by replacing at each node N the rule applied to produce

tlle\set of descendents Ay by a derivation Dy with root N and premises ./\//'E =
{N" | N' € Nn} (and some fresh interior nodes). The procedure keeps the
set ‘H of current induction hypotheses, which is added to N(I" o A) yielding
N(I'Fo A,H) in D'. For any node N € N define the set of repeats active at N
by Ry ={R' e R|dRe€ R.N € n(R) and R <p R’} and let Oy = {6 | R €
R} be the corresponding set of induction variables. We note fact (C): there is
some R € Ry preserving all variables in Oy . Hence, Oy C O for N(I' Fp A).

The induction hypothesis Hgr to be added to the current set of hypotheses H at
the companion node M (I" o A) of a repeat R = (N, M) is defined by

Hp = E|(5<(5R.WR[6/6R]
Up = F<ig.Iv. A(I' U =AU ~H)[t/TR]

where {ir} = On — {6r} and {v} = tv(I" Fo A) — Opr. The free induction
hypothesis Wi packs the sequent at M together with the set H into a single
formula, existentially quantifies all but the active induction variables in O,
and binds the (preserved) active induction variables g in ¥x by a quantifier
of type 3- <Tgr. The guarded induction hypothesis Hr additionally binds the
(progressing) induction variable §z in ¥g by a quantifier of type 3- <ég.

Transformation of D to D’. Our procedure ensures that for each node N(I" Fo
A) in D there is a node N(I' o A, H) such that the following invariant holds:

I(N,H) = H% CHCHy

where HY; = {Hr | R € Ry} and Hy = H% U{¥r | R € Ry }. By assumption
(B) the root N, is not a companion so Ry = @ and the invariant holds trivially
by initially setting H = &. We now describe the derivations Dy replacing in
D’ the rule application at N in D. Suppose we have constructed D’ up to some
node N(I'" b A’,’H) where the invariant holds. The cases where a rule other
than (Subst) is applied at N and none of the descendents of N is a companion
are easy to show. We just remark that in order to maintain the invariant at the
branching rules (Cut), (A-R) and (<-R) we possibly need weakening on H to
account for the splitting of the set of active repeats between the two branches.
Due to assumption (B) the two remaining cases are:

Case 1. The single descendent M(I" o A) of N is the companion of a repeat
R. The invariant I(M,H) is violated for H, because the induction hypothesis
Hpg, is missing in ‘H. The derivation Dy in Fig. 1 adds Hg to JV(F’ For A'JH)
yielding M\(F Fo A,H,Hg) and thus reestablishing the invariant.

At node M’ we cut in 36g.Wg. After weakening away all but the latter for-
mula on the left hand side, we apply the induction rule (Ind-L). This leaves us
with the sequent ¥r ko, Hpg, which is transformed into the desired sequent
M\(F Fo A,H,Hpg) by applying a series of essentially first-order rules (RS1)
deconstructing ¥r on the left. On the right hand side, we apply a dual series
of rules (RS2) proving N,.(I' Fo A, H,¥g) locally. Note that the sequent at N
anticipates, thanks to the cut, the desired situation at the repeat node of R,
since it contains a right hand side occurrence of the free induction hypothesis.

~

NI For A, H)

(rule at N)
M'(T'Fo A,H)
36p 0 Fo AH I'Fo AH, 3550 (Cut)
3’5 };i ———— (Weak) N, ;F’AHRQR (3sR)
Ru; Ri_ ON;‘SR} (Ind-L) H(I'Fo A K, 7r) (RS2)
R7Ov 7R (RS1) '

M(T ko A, Hg)

Figure 1. Derivation Dy inserted at companion node N of a repeat R

Case 2. Rule (Subst) applied at N with descendent M. We need to make sure
that the substitution rule is correctly applied and that the induction hypotheses
in H are (re-)generated as in the following compressed version of derivation Dy:

N(I'[8] Forg Al H)
M'(I'[0] Fore AlB], H'[6])
M(I'ro AH)

(Regen)
(Subst)

where H' = {Hg | Hr € H} U {¥g | ¥g € Hor N F 6(6r) < 6r}. We have
Ry = Ry, since M is not a companion by assumption (B). It is then easy to
see that I(M,H') holds. Note that, since fv(Hx) C Oy, it follows from fact (C)
above that each k € fv(Hy) is preserved by 6 at N, that is, N F 6(k) < & or
6(k) = k. The derivation from N to M’ labelled (Regen) then includes, for each
R € Ry, a derivation that produces:

1. ¥R[f] from Hy if N F 6(6r) < ér, exploiting progress of g and preservation
of g by 6 at N,

2. UR[f] from Pp if 8(6r) = 6r and ¥r € H, using preservation of ég and g
by # at N, and

3. Hglf] from Hp, also using preservation of 6 and 7g by 6 at N.

In each of the derivations (1)-(3) the leading bounded ordinal quantifiers in ¥g
and Hp are duplicated and commuted prior to instantiation as necessary, by
applying some easily derivable auxiliary rules.

Continuing this procedure down to the leaves of D yields, for each repeat
R = (N, M), two nodes M(I' Fp A,H) and N(I' Fp A,H") in D' (where N is
a leaf of D' so far). We now show that H C H' and ¥i € H', implying that the
sequent at N is provable in S, in the same way as the one at node N, in Fig. 1.
Consider some R’ € Rys. From Ry = Ry and the invariant it follows that Hp/
is in both Hj; and Hy. If Y € Hy then we also have g € Hy, since R
preserves 0r and so Wg is regenerated along m(R) (see discussion in case (2)
above). Hence, H C H'. Since R progresses on 8, ¥Yr will be generated from
Hp at some point on the path 7(R) and then regenerated in each subsequent
application of rule (Subst) along w(R). Hence, we have ¥ € H’'. This shows
that D’ can be completed into an Sj,.-proof. O

6.2 General Case: Unfolding Proofs

The previous translation crucially depends on the tree-dischargeability of the
induction order: repeats with companions lower in the proof tree preserve in-
duction variables of repeats higher in the proof tree (“higher” and “lower” being
determined by =<p). In general, we need to unfold the proof until it becomes
tree-dischargeable. This task is achieved by Algorithm 1.

input
Po = (Dy, Ro) where Dy = (Ng, Eg, Lg), Toot N, { Ry injective }
(Ro, <0,60) { induction order discharging Py }
output
P = (D,R)where D = (N,E,L), N C NyxN { unfolded proof }
globals
s € N { sequence number to distinguish copies of nodes }
begin
9 s=0E&=9g;,R:=0
10 N :={(N,,s)}; L£:={((Nr,5),Lo(N))}
11: unfold (N,,s) &
12: end

13: procedure unfold (N, k) B

14: parameters

15: (N,k) € Np xN { node of P = (node of Py, copy number) }

16: B:Rp— N { copy numbers for companions available in P }

17: if N is the repeat node of some R = (N, M) € Ry, then

18 if (R,1) € B for some i then { companion (M,4) available for (N, k) }
19: R :=RU{((N,k),(M,i))}

20: else { no companion available, continue unfolding through repeat }

21: s:=s+1 { get anew sequence number }

22: add node (M, s) labelled Lo(M) as child of (N, k) to D
23: unfold (M,s) B

24: end if

25: else { N is an axiom leaf or an inner node of Dy }
26: if N is the companion of some R € Ry and R ¢ dom B then
27: B:={(R,k)}U{(R',K')eB| R=oR'}

28: end if

29: for each child N’ of N in Dy do { add and unfold each child node }
30: add node (N', k) labelled L£o(N') as child of (N, k) to D

31: unfold (N’ k) B

32: end for

33: end if

Algorithm 1: Unfolding proofs

It takes a proof Py = (Dy, Rp) with injective Ry as input and produces a
tree-dischargeable proof P = (D, R). Note that no generality is lost by requiring
that R is injective. The nodes of P are pairs (N, k), where N is a node of
Po and k is the copy number. The original proof tree is traversed recursively,
unfolding repeats into new copies of the proof tree as necessary. The procedure
maintains a partial map B from repeats Ry to copy numbers in N to keep track
of companions that are available for looping back at repeat nodes. This map is
updated whenever we encounter the companion of some repeat R € R without
an entry in B: the entry (R, k) is added to B, while any entry for a repeat R’ not
above R with respect to =g is removed from B (line 26-27). When examining
copy [of the repeat node N of some repeat R = (N, M) € R we check whether
there is some entry (R, k) € B (lines 17-18). If so, then we can safely close the
loop and add ((N,1),(M,k)) as a new repeat to R (line 19). Otherwise, if there
is no companion available for R, we proceed by unfolding the tree at (N,[) by
adding the node (M, k) with a fresh k as a descendant of (N, 1) to P (line 21-23).

The labelled induction order (R, <, §) for P is obtained by lifting (R, <o, o)
to P. Writing R = (N, M) € Ry for R = (N, k), (M,4)) € R, we define

~

R<R o R=<yRor (R=R andk<k) and &(R)=3d0(R)

where R = ((N,k),(M,7)) and R' = ((N',k"),(M’,i")). Note the tie-breaking
role of the repeat sequence number in case of identical projected repeats.

Theorem 5. Let Py = (Do, Ro) be a Syop-proof of I' Fo A such that Ro is
injective and Py is discharged by (Ro, =0,00). Then Algorithm 1 produces, in
time O(2WolXIRol) 4 proof P = (D,R) of I' Fo A, discharged by the tree-
compatible induction order (R, =,0) defined above.

Proof. For partial correctness it is sufficient to show that

P =(D,R) is a pre-proof,
. (R, <) is a tree-compatible induction order for P, and
. (R, %,08) discharges P.

It is easy to see that P is a pre-proof. As a preparation for (2) and (3) consider
arepeat R = ((N,k),(M,7)) in R. Let

¢ = ((No, ko), Bo) -+~ ((Njs k5), Bj) - (Nms k), Brn)

with (No, ko) = (M,i) and (N, km) = (IV, k) be the (suffix of the) sequence of
recursive calls leading to the introduction of R in P. The pair (ﬁ, i) is added to
By in call ¢q (line 27) and appears in all subsequent B; (1 < j < m). Finally, the
repeat R is added to R in call ¢,, (line 19). Consider a repeat R" = (N", M") €
Ro with its companion M" = N, occurring in ¢; with 0 < j < m. Since (ﬁ,z) is
in both B; and B;j1+1 and (R",k;) is added to B; at in call ¢; (line 27), we have

(A) if R" ¢ dom B, then R” <, R.

Ad (2). Tt is easy to check that (R, <, §) is a forest-like partial order. Now suppose
R’ <p R for some R, R' € R. Since the companion of R’ appears on 7(R) in P
and hence as N; in some c; it must be the case that R ¢ dom B; so we have
R <o R by (A). From the definition of < and Lemma 4 it follows that (R, <)
is an induction order. If, moreover, R £p R’ then R * R since R cannot be
unfolded on 7(R). This implies that (R, <) is tree-compatible.

Ad (3). Let S C Ry be the set of repeats unfolded on 7(R) and let S = S'U{R}.
Note that w(R) in P is the composition of all the paths 7T(R”) in Py with R" € S.
Suppose R < R’ for some R’ € R. Then certainly R <o R. Let R" € S' with
companion M. Since R" is unfolded in some call ¢;_1, we have N; = M and
R" ¢ dom B;. Hence, R" <y R by (A) and R" preserves §(R') = 50("), implying
that R preserves §(R'). Moreover, R progresses on §(R), since R progresses on
8o(R). This shows (3).

Complezity. Suppose for a contradiction that there is a (suffix of a) sequence of
calls of the form ¢ above such that m > 0 and (Np,dom By) = (N,,,dom B,,).
Note first that, since the control flow of unfold does not depend on the copy
numbers, there is an extension ((Npm+1, km+1), Bm+1) -+ - (Nam, kam), Bam) of ¢
such that (N;,dom B;) = (N;ym,dom B, ,,) for all i < m (and, in fact, so on ad
infinitum). Let S be the set of repeats R € Ry such that N; is the companion
of R and R ¢ dom B; for some ¢ < m. It is not difficult to see that S is strongly
connected in (Ro, —) and thus there is a <g- greatest element R € S. Suppose N;
is the companion of R for some i < m. Since R ¢ dom B; and R is <o- greatest
in S, it follows that R € dom By, for all i < k < i + m (line 27). In particular,
R € dom Bitm, which contradicts dom B; = dom B, ,. Hence, length of any call
sequence ¢ of unfold is bounded by |¢| < |[Np|x |Ro|, yielding an upper bound of
|N| < 2WolxIRol for the size of P and the time complexity of the algorithm. O

7 Conclusions

We have presented a translation between proofs using well-founded induction and
cyclic proofs based on a global well-foundedness condition. The proof systems
use explicit ordinal approximations as suggested in [4]. Since our main interest in
approximants is as a proof-theoretical mechanism to deal with fixed points rather
than proving theorems about them, it would be desirable to identify a fragment of
the language which could be shown to conserve (not increase) the expressiveness
of the basic u-calculus (without explicit approximations). Simpson and Schopp
have proposed an alternative approach to approximants based directly on the
second-order variables instead of ordinal variables [11] and they have proved a
conservativity result for a variant of this language [12]. Their language lacks,
however, the ability to “internalise” sequents into single formulas, required in
our direct translation to local proofs. Thus, it seems that our approach can not
readily be adapted to yield a similar translation in their framework.

On a different line of research, we would like to investigate whether the ideas
of this paper can be transferred to the context of type theories with inductive
definitions such as the Calculus of Inductive Constructions [9]. A useful starting
point is the introduction of approximated inductive types along the lines of [2].

Acknowledgements We would like to thank Alex Simpson and Uli Schopp as
well as the members of the FDT group at SICS for fruitful discussions on the
topic. We are also grateful to Dilian Gurov, Marieke Huisman and the anonymous
referees for their helpful suggestions.

References

1. T. Arts, G. Chuganov, M. Dam, L.-4. Fredlund, D. Gurov, and T. Noll. A tool for
verifying software written in Erlang. Accepted for publication in STTT Journal,
2001.

2. G. Barthe, M. J. Frade, E. Giménez, L.. Pinto, and T. Uustalu. Type-based ter-
mination of recursive definitions. Mathematical Structures in Computer Science,
2000. to appear.

3. H. Comon. Inductionless induction. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume 1, chapter 14. Elsevier Science, 2001.

4. M. Dam and D. Gurov. u-calculus with explicit points and approximations. Journal
of Logic and Computation, 12(2):43-57, 2002. Previously appeared in Fixed Points
in Computer Science, FICS ’02.

5. L. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, 2001.

6. R. Goré. Tableau methods for modal and temporal logics. In Handbook of Tableau
Methods. Kluwer, 1999.

7. D. Kozen. Results on the propositional u-calculus. Theoretical Computer Science,
27:333-354, 1983.

8. D. Park. Finiteness is mu-ineffable. Theoretical Computer Science, 3(2):173-181,
1976.

9. C. Paulin-Mohring. Inductive definitions in the system Coq — rules and properties.
Technical Report 92-49, Laboratoire de I'Informatique du Parallélisme, ENS Lyon,
France, Dec. 1992.

10. U. Schépp. Formal verification of processes. Master’s thesis, University of Edin-
burgh, 2001.

11. U. Schépp and A. Simpson. Verifying temporal properties using explicit approx-
imants: Completeness for context-free processes. In FOSSACS 02, Grenoble,
France, volume 2303 of LNCS, pages 372-386. Springer-Verlag, 2002.

12. A. Simpson and U. Schépp. Private communication.

13. C. Stirling and D. Walker. Local model checking in the modal p-calculus. Theo-
retical Computer Science, 89:161-177, 1991.

14. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, pages 133—-191. Elsevier Science
Publishers, Amsterdam, 1990.

15. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Logic in Computer Science, LICS ’86, pages 322-331, 1986.

16. 1. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional pu-
calculus. In Logic in Computer Science, LICS ’95, pages 14-24, 1995.

