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hnology, Kista, Sweden (mfd�imit.kth.se)Abstra
t In this paper we study indu
tion in the 
ontext of the �rst-order �-
al
ulus with expli
it approximations. We present and 
omparetwo Gentzen-style proof systems ea
h using a di�erent type of indu
tion.The �rst is based on �nite proof trees and uses a lo
al well-foundedindu
tion rule, while the se
ond is based on (�nitely represented) !-regular proof trees and uses a global indu
tion dis
harge 
ondition toensure externally that all indu
tive reasoning is well-founded. We givee�e
tive pro
edures for the translation of proofs between the two systems,thus establishing their equivalen
e.1 Introdu
tionIndu
tion is the fundamental �nitary method available in mathemati
s and 
om-puter s
ien
e to generate and reason about �nite and in�nite obje
ts. Three mainproof-theoreti
 approa
hes to expli
it indu
tion1 
an be identi�ed:1. well-founded indu
tion,2. S
ott/Park �xed point indu
tion (
f. [7℄), and3. 
y
li
 proofs, based on the idea of redu
ing indu
tion to a global well-foundedness 
he
k on a lo
ally sound inferen
e graph.As general approa
hes to indu
tive reasoning the former two are 
learly the dom-inant ones. However, the value of 
y
li
 reasoning in the de
idable 
ase has beendemonstrated quite unequivo
ally by now. Examples are the well-establishedequivalen
e between monadi
 se
ond-order logi
, temporal logi
s (in
luding var-ious �-
al
uli) and automata on in�nite obje
ts [14℄ as well as the usefulness ofautomata for obtaining de
idability results and e�
ient algorithms [15℄. Similar
laims 
an be made 
on
erning the usefulness of tableau-based te
hniques for? Resear
h done mainly while at Swedish Institute of Computer S
ien
e (SICS), sup-ported by Swiss European Fellowship 83EU-065536, and 
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h Coun
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it indu
tion (
f. [3℄), based on Knuth-Bendix 
ompletion.



obtaining 
ompleteness results in modal and temporal logi
 [6℄. In the 
ontext oftheorem proving and (unde
idable) proof sear
h, however, 
y
li
 reasoning hasre
eived little attention. In our opinion, this situation deserves to be remedied.Our 
laim is that it fa
ilitates proof sear
h, mainly due to its ability to delay de-
isions 
on
erning indu
tion strategy as far as possible. Although it is too earlyfor any real 
on
lusions on the validity of this 
laim, the experien
es with 
y
li
proofs for the �-
al
ulus using the EVT theorem prover [1,5℄ are en
ouraging.In this paper, we address the fundamental question of the relative dedu
-tive power of 
y
li
 proofs versus well-founded indu
tion, the latter being theyardsti
k by whi
h other formalisations must be 
ompared. Our investigationis based on Park's �rst-order �-
al
ulus [8℄, whi
h provides a minimal settingto study formalised indu
tion. In this 
ontext, 
y
li
 reasoning underpins workon model 
he
king [13℄, 
ompleteness of the modal �-
al
ulus [16℄, and, morere
ently, Gentzen-type proof systems for 
ompositional veri�
ation [4,11,10℄. Weestablish e�e
tive translations between two Gentzen-style proof systems: one,Slo
, for well-founded (lo
al) indu
tion, and the other, Sglob, based on (�nitelyrepresented) !-regular proof trees using an external global indu
tion dis
harge
ondition ensuring the well-foundedness. We work in an extension of the ba-si
 �-
al
ulus with expli
it approximations [4℄ and ordinal quanti�
ation [10℄(Se
t. 2). Indu
tive reasoning in both proof systems rests on this extension. Insystem Slo
 (Se
t. 3), it is supported by a single lo
al indu
tion rule, an in-stantiation of the the well-known rule of well-founded indu
tion to ordinals. Insystem Sglob (Se
t. 4), the global indu
tion dis
harge 
ondition organises thebasi
 
y
les, 
alled repeats, into a partial indu
tion order, assigns a progressingindu
tion variable to ea
h repeat and requires ea
h repeat to preserve (i.e. notin
rease) the variables of repeats above it in the indu
tion order. This 
onditionensures that the indu
tion asso
iated with ea
h strongly 
onne
ted subgraph iswell-founded. For the translation from Slo
 to Sglob (Se
t. 5) it is su�
ient toshow that the lo
al indu
tion rule of Slo
 is derivable in Sglob. The translationin the other dire
tion (Se
t. 6) is more involved and generally pro
eeds in twostages. We �rst present a dire
t translation for Sglob-proofs, where the indu
tivestru
ture represented in the indu
tion order mat
hes the proof tree stru
ture.Then, we dis
uss an exponential time algorithm, whi
h unfolds arbitrary 
y
li
proofs until they are in the form required by the dire
t translation.We think that, by 
learly exhibiting the underlying stru
tures and their re-lationships, our present formal treatment sheds some new light on the variousapproa
hes to indu
tive reasoning. An important bene�t from using expli
itapproximations is that it largely de
ouples our 
onstru
tions from the a
tuallanguage (here, the �-
al
ulus), thus strongly suggesting that they 
an supportlazy-style global indu
tion in other 
ontexts su
h as type theories with indu
tivede�nitions [9℄. Barthe et al. [2℄, for instan
e, points in this dire
tion by proposinga type system ensuring termination of re
ursive fun
tions based on approxima-tions of indu
tive types. Finally, an interesting pra
ti
al impli
ation of our resultis that (assuming size blow-ups 
an be prevented) it permits standard theoremprovers to be gra
efully interfa
ed with the �-
al
ulus based EVT prover.



Set-theoreti
 preliminaries Let G = (A;R � A � A) be a graph. We say thatG is a forest if (a; b) 2 R and (a; 
) 2 R imply b = 
. A tree is a forest with aunique root node r 2 A su
h that there is no a 2 A with (a; r) 2 R. We 
all Gforest-like if (a; b) 2 R and (a; 
) 2 R imply b = 
 or (b; 
) 2 R [ R�1. A subsetC � A is strongly R-
onne
ted if for any two x; y 2 C we have that (x; y) 2 R�.C is weakly R-
onne
ted if R [R�1 is strongly R-
onne
ted. We sometimes 
allC � A a subgraph of G and mean the subgraph (C;R \ C � C) indu
ed by C.A strongly 
onne
ted subgraph (SCS) C � A is non-trivial if R \ C � C 6= ?.2 �-Cal
ulus with Expli
it ApproximationsLet 2 = f0; 1g be the two-point latti
e and let Pred(S) = 2S be the latti
e ofpredi
ates over S ordered pointwise. For a monotone map f : Pred(S)! Pred(S)we de�ne the ordinal approximation ��f and the �xed point �f by�0f = �x:0 �
f = W�<
 ��f for limit ordinals 
��+1f = f(��f) �f = Wa ��fProposition 1. Let f : Pred(S) ! Pred(S) be a monotone map. Then1. �f is the least �xed point of f (Knaster-Tarski), and2. ��f = W�<� f(��f).We assume 
ountably in�nite sets of individual variables x; y; z : : : 2 VI , of pred-i
ate variables X;Y; Z; : : : 2 VP of ea
h arity n � 0, and of ordinal variables�; �; �; : : : 2 VO . Let t range over the terms of some signature �.De�nition 1. (Syntax) The syntax of �-
al
ulus formulas � and predi
ates �over � is indu
tively de�ned by� ::= t = t0 j �0<� j :� j �1 ^ �2 j 9x:� j 9�:� j �(t)� ::= X j �X(x):� j ��X(x):�with the restri
tion that the arities of � and t mat
h in �(t) and the formationof both �X(x):� and ��X(x):� is subje
t to the 
onditions that (i) the arities ofX and x mat
h, and (ii) all o

urren
es of X in � appear under an even numberof negations (formal monotoni
ity).Zero-ary predi
ates are identi�ed with formulas. We 
all formulas of the form�0 < � ordinal 
onstraints. The sets of free and bound variables of formulasand predi
ates are de�ned as expe
ted, in parti
ular, fv(�X(x):�) = fv(�) �fX; xg and fv(�X�(x):�) = (fv(�) � fX; xg) [ f�g: We will identify formulasthat are equal up to renaming of bound variables. Dual 
onne
tives are de�nedin the usual way, with �X(x):� = :�X(x)::�[:X=X ℄ and the approximated�xed point similarly. We also use bounded ordinal quanti�ers de�ned by theabbreviations 9�<�:� = 9�: �<� ^ � and 9���:� = (9�<�:�) _ �[�=�℄.Given a �-model M = (A; �) (A is the stru
ture and � the interpretation)the semanti
s interprets a �-
al
ulus formula � as an element k�kM 2 2 andan n-ary predi
ate � as an element k�kM 2 Pred(jAjn). We often drop M andwrite k�k� and k�k� if the stru
ture A is 
lear from the 
ontext.



De�nition 2. (Semanti
s) Given a signature � and a �-model (A; �) de�nethe semanti
s of �-
al
ulus formulas � and predi
ates � over � indu
tively bykt = t0k� = if ktk� = kt0k� then 1 else 0 k9�:�k� = W�k�k�[�=�℄k�0<�k� = if �(�0) < �(�) then 1 else 0 k�(t)k� = k�k�(ktk�)k:�k� = 1� k�k� kXk� = �(X)k�1 ^ �2k� = minfk�1k�; k�2k�g k�X(x):�k� = �	k9x:�k� = Wa2jAjk�k�[a=x℄ k��X(x):�k� = ��(�)	where ktk� is de�ned as usual and 	 = �P:�a:k�k�[P=X;a=x℄ in the 
lauses for�xed point and approximation predi
ates.Given a model M = (A; �), we extend the valuation � a posteriori to termst and formulas � by de�ning �(t) = ktk� and �(�) = k�k�. This allows us to
ompose substitutions � with environments � as in � Æ �. We say that a modelM = (A; �) satis�es a formula �, written M j= �, if k�k� = 1. A formula � isvalid if M j= � for all models M.3 Lo
al Indu
tion: the System Slo
In this se
tion we introdu
e the Gentzen-type proof system Slo
 for lo
al well-founded indu
tion. It shares most de�nitions and proof rules with the systemSglob for global indu
tion presented in the next se
tion.Sequents The sequents of both proof systems are of the form � `O �, where� and � are �nite multisets of formulas and O is a �nite set of ordinal variables.A sequent is well-formed if all ordinal variables o

urring free in � or � areelements of O. We ta
itly restri
t our attention to well-formed sequents. Theset of free variables of a sequent is de�ned by fv(� `O �) = fv(� [ �) [ O.Substitutions are extended to multisets of formulas by de�ning � [�℄ = f�[�℄ j� 2 �g. In sequents we often write O; � for O [ f�g.Given a �-model M = (A; �) we say that M satis�es a sequent � `O � ifM j= � for all � 2 � implies that M j=  for some  2 �. A model M falsi�esa sequent � `O � if M does not satisfy � `O �. The sequent � `O � is validif it is satis�ed in all models.Proof System The proof system is presented in two parts. Table 1 shows thebasi
 set of proof rules, 
ommon to both Slo
 and Sglob. They are presented intableau-style with the 
on
lusion above the line and the premises below. Fixedpoint rule (�1-L) is the essential devi
e whi
h introdu
es ordinal approximations.Note the asymmetry of rules (�1-L) and (�0-R). However, one 
an show that thesymmetri
 rules (�0-L) and (�1-R) are derivable in Slo
. The lo
al proof systemSlo
 is then obtained by adding to the basi
 proof rules the lo
al indu
tion rule(Ind-L) of Table 2. The table also shows its derivable dual (Ind-R), whi
h mightlook more familiar to the reader.



Stru
tural Rules(Id) �; � `O �;�� (Weak) � `O �� 0 `O0 �0 � 0���0��O0�O(Cut) � `O ��; � `O � � `O �;� (Subst) � [�℄ `O[�℄ �[�℄� `O �Logi
al and Equality Rules(:-L) �;:� `O �� `O �;� (:-R) � `O :�;��; � `O �(^-L) �; �1 ^ �2 `O ��; �1; �2 `O � (^-R) � `O �1 ^ �2; �� `O �1; � � `O �2; �(9-L) �; 9x:� `O ��; � `O � x 62 fv(�;�) (9-R) � `O 9x:�;�� `O �[t=x℄; �(=-L) � [t2=x℄; t1 = t2 `O �[t2=x℄� [t1=x℄ `O �[t1=x℄ (=-R) � `O t = t;��Fixed Point Rules(�1-L) �; (�X(x):�)(t) `O ��; 9�:(��X(x):�)(t) `O � (�0-R) � `O (�X(x):�)(t); �� `O �[�X(x):�=X; t=x℄; �(��-L) �; (��X(x):�)(t) `O ��; 9�0<�:�[��0X(x):�=X; t=x℄ `O �(��-R) � `O (��X(x):�)(t); �� `O 9�0<�:�[��0X(x):�=X; t=x℄; �Ordinal Rules(9�-L) �; 9�:� `O ��; � `O;� � � 62 O (9�-R) � `O 9�:�;�� `O �[�=�℄; � � 2 O(<-L) �; �<� `O �� (<-R) � `O �0<�;�� `O �0<�00; � � `O �00<�;�Table 1. The proof rules shared by Slo
 and Sglob



(Ind-L) �; 9�:� `O ��; � `O;� 9�0<�:�[�0=�℄; � � 62 O(Ind-R) � `O 8�:�;��; 8�0<�:�[�0=�℄ `O;� �;� � 62 OTable 2. The lo
al indu
tion rules of Slo
Given a set S of proof rules an S-derivation tree D = (N ; E ;L) is a tree (N ; E)with nodes N and edges E � N �N together with a fun
tion L labelling ea
hnode of the tree with a sequent in a way that is 
onsistent with the appli
ationof the proof rules in S. We often write N(� `O �) for L(N) = � `O �.De�nition 3. An Slo
-proof for a sequent � `O � is an Slo
-derivation tree Dwhose root is labelled by � `O � and ea
h leaf of whi
h is labelled by an axiom.Lemma 1. The proof rules of Tables 1 and 2 are sound. In parti
ular, if there isa �-model (A; �) falsifying the 
on
lusion C of a rule then there is a environment�0 su
h that (A; �0) falsi�es some premise P of that rule. Moreover, we 
an
hoose �0 su
h that, for all ordinal variables � free in both P and C, we have�0(�) = �(�(�)) for rule (Subst) and �0(�) � �(�) for all other rules.The proof pro
eeds by a straightforward inspe
tion of the rules. In parti
ular,the soundness of the �xed point rules follows immediately from Proposition 1.The soundness of the proof system Slo
 is then an immediate 
orollary.Theorem 1. (Soundness of Slo
) If D is an Slo
-proof for � `O � then� `O � is valid.4 Global Indu
tion: the System SglobThe proof system Sglob uses the proof rules from Table 1 only. However, proofs inthis system are not �nite but !-regular trees, whi
h we represent as �nite treeswith ba
k edges 
alled repeats. An external global indu
tion dis
harge 
onditionthen ensures that all indu
tive reasoning embodied in the proof stru
ture iswell-founded. Let us �x an arbitrary Sglob-derivation tree D = (N ; E ;L).De�nition 4. (Repeat) A repeat R = (N;M) for D is a pair of nodes of Dsu
h that N is a leaf, M lies on the path from the root of D to N and L(N) =L(M). The node N is 
alled the repeat node and M is 
alled its 
ompanion. Wedenote by �(R) the path M � � �N in D.De�nition 5. (Pre-Proof) A pre-proof P = (D;R) is 
omposed of an Sglob-derivation tree D = (N ; E ;L) and a set of repeats R for D su
h that ea
h of itsnon-axiom leaves appears in exa
tly one repeat of R. We 
all the graph G(P) =(N ; E [ R;L) the pre-proof graph of P.



The following lemma will allow us to identify strongly 
onne
ted subgraphs ofG(P) with 
ertain subsets of R. For two repeats R = (N;M) and R0 = (N 0;M 0)in R de�ne R ! R0 if there is a path M � � �N 0 from the 
ompanion node M ofR to the repeat node N 0 of R0 in the derivation tree D.Lemma 2. There is a bije
tion between the non-trivial strongly 
onne
ted sub-graphs of G(P) and the strongly 
onne
ted subgraphs of (R;!).We are now ready to de�ne the basi
 indu
tion dis
harge 
ondition qualifying apre-proof as a proof. This 
ondition is based on the notions of preservation andprogress of repeats with respe
t to approximant variables.De�nition 6. (Progress, Preservation) Constraint �0<� is 
alled derivableat N(� `O �), written N ` �0 <�, if there is a repeat-free Sglob-pre-proof for� `O �0 < �;�. Let R be a repeat with �(R) = N0 � � �Nm and Ni(�i `Oi �i)and let � be an ordinal variable. Then we say� R preserves �, if � 2 Oi for all i, and if either Nj ` �(�)<� or �(�) = �whenever rule (Subst) is applied with � at Nj , and� R progresses on �, if R preserves � and rule (Subst) is applied with some �at some Nj su
h that Nj ` �(�)<�.De�nition 7. (Sglob-Proof) A pre-proof P = (D;R) is an Sglob-proof if forea
h strongly 
onne
ted subgraph S � R there is an ordinal variable � su
h that1. some repeat R 2 S progresses on �, and2. ea
h repeat R0 2 S preserves �.Theorem 2. (Soundness of Sglob) If P is an Sglob-proof for � `O � then� `O � is valid.Proof. (Sket
h) By 
ontradi
tion. Using Lemma 1 we 
onstru
t an in�nite se-quen
e (N0; �0) � � � (Ni; �i) � � � of pairs of nodes and valuations su
h that ea
h�i falsi�es L(Ni). By the de�nition of Sglob-proof there is an ordinal variable �su
h that the sequen
e f�i(�)gi of ordinals de
reases in�nitely often from somepoint on, 
ontradi
ting the well-foundedness of the ordinals. utDis
harge Using Indu
tion Orders The basi
 indu
tion dis
harge me
ha-nism does not exhibit su�
ient stru
ture for our purpose of 
omparing the twosystems Slo
 and Sglob. For this reason we introdu
e an alternative indu
tion dis-
harge 
ondition, �rst proposed by S
höpp [10℄ and generalising the one in [4℄,whi
h orders the set of repeats appearing in a pre-proof. The new 
ondition turnsout to be equivalent to the original one.De�nition 8. (Indu
tion Orders) A partial order (R;�) on the set of re-peats is 
alled an indu
tion order for P, if it is forest-like and every strongly
onne
ted subgraph S � R has a �-greatest element.A labelled indu
tion order (R;�; Æ) is an indu
tion order (R;�) togetherwith a map Æ assigning an ordinal variable � to ea
h repeat R 2 R. The ordinalvariable Æ(R), also written ÆR, is 
alled the indu
tion variable for R.



The restri
tion to forest-like partial orders in this de�nition is adopted here for
onvenien
e. It is not ne
essary for soundness, but su�
ient for 
ompleteness(see Proposition 2 below).De�nition 9. (Alternative Dis
harge) We say that a labelled indu
tion or-der (R;�; Æ) dis
harges a pre-proof P = (D;R) if for all R 2 R1. R progresses on ÆR, and2. R preserves ÆR0 whenever R � R0.Proposition 2. For any pre-proof P = (D;R) the following are equivalent:(i) there is a labelled indu
tion order (R;�; Æ) dis
harging P, and(ii) P is an Sglob-proof.5 From Lo
al to Global Indu
tionThe translation of Slo
-proofs to Sglob-proofs is a
hieved by showing that thelo
al indu
tion rule (Ind-L) is derivable in Sglob, in the strong sense that anyappli
ation of (Ind-L) inside an Sglob-proof 
an be repla
ed by an equivalentSglob-derivation.Theorem 3. The lo
al indu
tion rule (Ind-L) is derivable in Sglob.Proof. Consider the following derivation (omitting two appli
ations of the weak-ening rule): �; 9�:� `O � (9�-L)d�; � `O;� �e (Cut)�; � `O;� 9�0<�:�[�0=�℄; � �; 9�0<�:�[�0=�℄ `O;� � (9�-L,^-L)�; �0<�; �[�0=�℄ `O;�;�0 � (Subst)b�; � `O;� �
This derivation is sound provided � 62 O, the side 
ondition of rule (Ind-L). Sin
ethe repeat (indi
ated by bra
kets) preserves all variables in O and progresses on�, this derivation 
an safely repla
e appli
ations of (Ind-L) in Sglob-proofs. ut6 From Global to Lo
al Indu
tionIn general, the translation from Sglob-proofs to Slo
-proofs pro
eeds in two stages.If the indu
tive stru
ture of the Sglob-proof mat
hes its tree stru
ture, it 
an betranslated dire
tly into an Slo
-proof. Otherwise, the Sglob-proof needs to beunfolded prior to this transformation. We �x an arbitrary pre-proof P = (D;R).De�nition 10. (Stru
tural dependen
y) The stru
tural dependen
y rela-tion �P on R is de�ned as follows: R0 �P R holds for two repeats R;R0 2 R ifthe 
ompanion node of R0 appears on the path �(R).



Lemma 3. Let S � R. Then S is strongly !-
onne
ted if and only if S isweakly �P-
onne
ted.De�nition 11. (Tree-
ompatibility) An indu
tion order (R;�) for P is tree-
ompatible if R �P R0 and R0 6�P R imply R � R0 for all R;R0 2 R. AnSglob-proof P is 
alled tree-dis
hargeable if there is a tree-
ompatible indu
tionorder dis
harging P.The indu
tive stru
ture of a tree-dis
hargeable proof mat
hes its underlyingtree stru
ture. The next lemma, whi
h 
an be proved using Lemma 3, givesa useful 
hara
terisation of indu
tion orders for P in terms of the stru
turaldependen
y relation �P , thereby relating the stru
ture of the proof tree withthe dependen
ies between repeats in an arbitrary indu
tion order.Lemma 4. Let (R;�) be a forest-like partial order. Then (R;�) is an indu
tionorder for P if and only if R �P R0 implies R � R0 or R0 � R for all R;R0 2 R.Let �P be the transitive 
losure of �P . The following two remarks are easy
orollaries of Lemma 4.Proposition 3. Let P = (D;R) be a pre-proof su
h that R is inje
tive (as afun
tion from repeat nodes to 
ompanions). Then �P is a tree-
ompatible indu
-tion order for P.Lemma 5. Let P = (D;R) be a proof dis
harged by the tree-
ompatible indu
-tion order (R;�; Æ). Then P 
an be transformed into a proof P 0 = (D0;R0) ofthe same sequent su
h that R0 is inje
tive and P 0 is dis
harged by (R0;�P0 ; Æ0)for some labelling Æ0.6.1 Translating Tree-Dis
hargeable ProofsSin
e ea
h repeat R embodies an indu
tion progressing on variable ÆR along thepath �(R) from the 
ompanion to the repeat node, it seems natural to insert thelo
al indu
tion rule (Ind-L) at the 
ompanion node and use, essentially, the wholesequent as an indu
tion hypothesis. This indu
tion hypothesis is then 
onveyeddown the proof tree, exploiting progress on ÆR along �(R) to remove the boundedquanti�
ation introdu
ed by (Ind-L) and thus making the indu
tion hypothesisavailable for lo
al dis
harge at the repeat node. The rest of this se
tion is devotedto proving the following theorem along these lines.Theorem 4. Let P = (D;R) be a Sglob-proof of � `O �, tree-dis
hargeable by(R;�; Æ). Then P 
an be transformed into a Slo
-proof D0 of � `O �.Proof. (Sket
h) We assume w.l.o.g. that (A) R is inje
tive and �=�P , byLemma 5, and (B) 
ompanions appear only as des
endents of nodes where arule other than (Subst), (Cut), (^-R) and (<-R) is applied.Our 
onstru
tion re
ursively transforms D = (N ; E ;L) into a new derivationtree D0 = (N 0; E 0;L0) by repla
ing at ea
h node N the rule applied to produ
e



the set of des
endents NN by a derivation DN with root bN and premises dNN =f
N 0 j N 0 2 NNg (and some fresh interior nodes). The pro
edure keeps theset H of 
urrent indu
tion hypotheses, whi
h is added to N(� `O �) yieldingbN(� `O �;H) in D0. For any node N 2 N de�ne the set of repeats a
tive at Nby RN = fR0 2 R j 9R 2 R:N 2 �(R) and R �P R0g and let ON = fÆR j R 2RNg be the 
orresponding set of indu
tion variables. We note fa
t (C): there issome R 2 RN preserving all variables in ON . Hen
e, ON � O for N(� `O �).The indu
tion hypothesis HR to be added to the 
urrent set of hypotheses H atthe 
ompanion node M(� `O �) of a repeat R = (N;M) is de�ned byHR = 9Æ<ÆR:	R[Æ=ÆR℄	R = 9�� �R:9v:V(� [ :� [ :H)[�=�R℄where f�Rg = OM � fÆRg and fvg = fv(� `O �) � OM . The free indu
tionhypothesis 	R pa
ks the sequent at M together with the set H into a singleformula, existentially quanti�es all but the a
tive indu
tion variables in OMand binds the (preserved) a
tive indu
tion variables �R in 	R by a quanti�erof type 9� � �R. The guarded indu
tion hypothesis HR additionally binds the(progressing) indu
tion variable ÆR in 	R by a quanti�er of type 9��ÆR.Transformation of D to D0. Our pro
edure ensures that for ea
h node N(� `O�) in D there is a node bN(� `O �;H) su
h that the following invariant holds:I(N;H) = HgN � H � HNwhere HgN = fHR j R 2 RNg and HN = HgN [ f	R j R 2 RNg. By assumption(B) the root Nr is not a 
ompanion so RN = ? and the invariant holds triviallyby initially setting H = ?. We now des
ribe the derivations DN repla
ing inD0 the rule appli
ation at N in D. Suppose we have 
onstru
ted D0 up to somenode bN(� 0 `O0 �0;H) where the invariant holds. The 
ases where a rule otherthan (Subst) is applied at N and none of the des
endents of N is a 
ompanionare easy to show. We just remark that in order to maintain the invariant at thebran
hing rules (Cut), (^-R) and (<-R) we possibly need weakening on H toa

ount for the splitting of the set of a
tive repeats between the two bran
hes.Due to assumption (B) the two remaining 
ases are:Case 1. The single des
endent M(� `O �) of N is the 
ompanion of a repeatR. The invariant I(M;H) is violated for H, be
ause the indu
tion hypothesisHR is missing in H. The derivation DN in Fig. 1 adds HR to bN(� 0 `O0 �0;H)yielding 
M(� `O �;H; HR) and thus reestablishing the invariant.At node M 0 we 
ut in 9ÆR:	R. After weakening away all but the latter for-mula on the left hand side, we apply the indu
tion rule (Ind-L). This leaves uswith the sequent 	R `ON HR, whi
h is transformed into the desired sequent
M(� `O �;H; HR) by applying a series of essentially �rst-order rules (RS1)de
onstru
ting 	R on the left. On the right hand side, we apply a dual seriesof rules (RS2) proving Nr(� `O �;H; 	R) lo
ally. Note that the sequent at Nranti
ipates, thanks to the 
ut, the desired situation at the repeat node of R,sin
e it 
ontains a right hand side o

urren
e of the free indu
tion hypothesis.



bN(� 0 `O0 �0;H) (rule at N)M 0(� `O �;H) (Cut)�; 9ÆR:	R `O �;H (Weak)9ÆR:	R `ON�fÆRg (Ind-L)	R `ON HR (RS1)
M(� `O �;H; HR) � `O �;H; 9ÆR:	R (9�-R)Nr(� `O �;H; 	R) (RS2)�Figure 1. Derivation DN inserted at 
ompanion node N of a repeat RCase 2. Rule (Subst) applied at N with des
endent M . We need to make surethat the substitution rule is 
orre
tly applied and that the indu
tion hypothesesin H are (re-)generated as in the following 
ompressed version of derivation DN :bN(� [�℄ `O[�℄ �[�℄;H) (Regen)M 0(� [�℄ `O[�℄ �[�℄;H0[�℄) (Subst)
M(� `O �;H0)where H0 = fHR j HR 2 Hg [ f	R j 	R 2 H or N ` �(ÆR) < ÆRg. We haveRM = RN , sin
e M is not a 
ompanion by assumption (B). It is then easy tosee that I(M;H0) holds. Note that, sin
e fv(HN ) � ON , it follows from fa
t (C)above that ea
h � 2 fv(HN ) is preserved by � at N , that is, N ` �(�) < � or�(�) = �. The derivation from bN to M 0 labelled (Regen) then in
ludes, for ea
hR 2 RN , a derivation that produ
es:1. 	R[�℄ from HR if N ` �(ÆR) < ÆR, exploiting progress of ÆR and preservationof �R by � at N ,2. 	R[�℄ from 	R if �(ÆR) = ÆR and 	R 2 H, using preservation of ÆR and �Rby � at N , and3. HR[�℄ from HR, also using preservation of ÆR and �R by � at N .In ea
h of the derivations (1)-(3) the leading bounded ordinal quanti�ers in 	Rand HR are dupli
ated and 
ommuted prior to instantiation as ne
essary, byapplying some easily derivable auxiliary rules.Continuing this pro
edure down to the leaves of D yields, for ea
h repeatR = (N;M), two nodes 
M(� `O �;H) and bN(� `O �;H0) in D0 (where bN isa leaf of D0 so far). We now show that H � H0 and 	R 2 H0, implying that thesequent at bN is provable in Slo
 in the same way as the one at node Nr in Fig. 1.Consider some R0 2 RM . From RM = RN and the invariant it follows that HR0is in both HM and HN . If 	R0 2 HM then we also have 	R0 2 HN , sin
e Rpreserves ÆR0 and so 	R0 is regenerated along �(R) (see dis
ussion in 
ase (2)above). Hen
e, H � H0. Sin
e R progresses on ÆR, 	R will be generated fromHR at some point on the path �(R) and then regenerated in ea
h subsequentappli
ation of rule (Subst) along �(R). Hen
e, we have 	R 2 H0. This showsthat D0 
an be 
ompleted into an Slo
-proof. ut



6.2 General Case: Unfolding ProofsThe previous translation 
ru
ially depends on the tree-dis
hargeability of theindu
tion order: repeats with 
ompanions lower in the proof tree preserve in-du
tion variables of repeats higher in the proof tree (�higher� and �lower� beingdetermined by �P). In general, we need to unfold the proof until it be
omestree-dis
hargeable. This task is a
hieved by Algorithm 1.1: input2: P0 = (D0;R0) whereD0 = (N0; E0;L0), rootNr {R0 inje
tive }3: (R0;�0; Æ0) { indu
tion order dis
harging P0 }4: output5: P = (D;R) whereD = (N ; E ;L), N � N0�N { unfolded proof }6: globals7: s 2 N { sequen
e number to distinguish 
opies of nodes }8: begin9: s := 0; E := ?; R := ?10: N := f(Nr; s)g; L := f((Nr; s);L0(Nr))g11: unfold (Nr; s) ?12: end13: pro
edure unfold (N; k) B14: parameters15: (N; k) 2 N0�N { node of P = (node of P0, 
opy number) }16: B : R0 * N { 
opy numbers for 
ompanions available in P }17: if N is the repeat node of some R = (N;M) 2 R0 then18: if (R; i) 2 B for some i then { 
ompanion (M; i) available for (N; k) }19: R := R [ f((N; k); (M; i))g20: else { no 
ompanion available, 
ontinue unfolding through repeat }21: s := s+ 1 { get a new sequen
e number }22: add node (M; s) labelled L0(M) as 
hild of (N; k) to D23: unfold (M; s) B24: end if25: else { N is an axiom leaf or an inner node of D0 }26: if N is the 
ompanion of some R 2 R0 and R 62 domB then27: B := f(R; k)g [ f(R0; k0) 2 B j R �0 R0g28: end if29: for ea
h 
hild N 0 of N in D0 do { add and unfold ea
h 
hild node }30: add node (N 0; k) labelled L0(N 0) as 
hild of (N; k) to D31: unfold (N 0; k) B32: end for33: end if Algorithm 1: Unfolding proofs



It takes a proof P0 = (D0;R0) with inje
tive R0 as input and produ
es atree-dis
hargeable proof P = (D;R). Note that no generality is lost by requiringthat R0 is inje
tive. The nodes of P are pairs (N; k), where N is a node ofP0 and k is the 
opy number. The original proof tree is traversed re
ursively,unfolding repeats into new 
opies of the proof tree as ne
essary. The pro
eduremaintains a partial map B from repeats R0 to 
opy numbers in N to keep tra
kof 
ompanions that are available for looping ba
k at repeat nodes. This map isupdated whenever we en
ounter the 
ompanion of some repeat R 2 R withoutan entry in B: the entry (R; k) is added to B, while any entry for a repeat R0 notabove R with respe
t to �0 is removed from B (line 26-27). When examining
opy l of the repeat node N of some repeat R = (N;M) 2 R we 
he
k whetherthere is some entry (R; k) 2 B (lines 17-18). If so, then we 
an safely 
lose theloop and add ((N; l); (M;k)) as a new repeat to R (line 19). Otherwise, if thereis no 
ompanion available for R, we pro
eed by unfolding the tree at (N; l) byadding the node (M;k) with a fresh k as a des
endant of (N; l) to P (line 21-23).The labelled indu
tion order (R;�; Æ) for P is obtained by lifting (R0;�0; Æ0)to P . Writing bR = (N;M) 2 R0 for R = ((N; k); (M; i)) 2 R, we de�neR � R0 , bR �0 
R0 or ( bR =
R0 and k � k0) and Æ(R) = Æ0( bR)where R = ((N; k); (M; i)) and R0 = ((N 0; k0); (M 0; i0)). Note the tie-breakingrole of the repeat sequen
e number in 
ase of identi
al proje
ted repeats.Theorem 5. Let P0 = (D0;R0) be a Sglob-proof of � `O � su
h that R0 isinje
tive and P0 is dis
harged by (R0;�0; Æ0). Then Algorithm 1 produ
es, intime O(2jN0j�jR0j), a proof P = (D;R) of � `O �, dis
harged by the tree-
ompatible indu
tion order (R;�; Æ) de�ned above.Proof. For partial 
orre
tness it is su�
ient to show that1. P = (D;R) is a pre-proof,2. (R;�) is a tree-
ompatible indu
tion order for P , and3. (R;�; Æ) dis
harges P .It is easy to see that P is a pre-proof. As a preparation for (2) and (3) 
onsidera repeat R = ((N; k); (M; i)) in R. Let
 = ((N0; k0);B0) � � � ((Nj ; kj);Bj) � � � ((Nm; km);Bm)with (N0; k0) = (M; i) and (Nm; km) = (N; k) be the (su�x of the) sequen
e ofre
ursive 
alls leading to the introdu
tion of R in P . The pair ( bR; i) is added toB0 in 
all 
0 (line 27) and appears in all subsequent Bj (1 � j � m). Finally, therepeat R is added to R in 
all 
m (line 19). Consider a repeat R00 = (N 00;M 00) 2R0 with its 
ompanion M 00 = Nj o

urring in 
j with 0 � j � m. Sin
e ( bR; i) isin both Bj and Bj+1 and (R00; kj) is added to Bj at in 
all 
j (line 27), we have(A) if R00 62 domBj then R00 �0 bR.



Ad (2). It is easy to 
he
k that (R;�; Æ) is a forest-like partial order. Now supposeR0 �P R for some R;R0 2 R. Sin
e the 
ompanion of R0 appears on �(R) in Pand hen
e as Nj in some 
j it must be the 
ase that 
R0 62 domBj so we have
R0 �0 bR by (A). From the de�nition of � and Lemma 4 it follows that (R;�)is an indu
tion order. If, moreover, R 6�P R0 then 
R0 6= bR, sin
e bR 
annot beunfolded on �(R). This implies that (R;�) is tree-
ompatible.Ad (3). Let S0 � R0 be the set of repeats unfolded on �(R) and let S = S0[f bRg.Note that �(R) in P is the 
omposition of all the paths �(R00) in P0 with R00 2 S.Suppose R � R0 for some R0 2 R. Then 
ertainly bR �0 
R0. Let R00 2 S0 with
ompanion M . Sin
e R00 is unfolded in some 
all 
j�1, we have Nj = M andR00 62 domBj . Hen
e, R00 �0 bR by (A) and R00 preserves Æ(R0) = Æ0(
R0), implyingthat R preserves Æ(R0). Moreover, R progresses on Æ(R), sin
e bR progresses onÆ0( bR). This shows (3).Complexity. Suppose for a 
ontradi
tion that there is a (su�x of a) sequen
e of
alls of the form 
 above su
h that m > 0 and (N0; domB0) = (Nm; domBm).Note �rst that, sin
e the 
ontrol �ow of unfold does not depend on the 
opynumbers, there is an extension ((Nm+1; km+1);Bm+1) � � � ((N2m; k2m);B2m) of 
su
h that (Ni; domBi) = (Ni+m; domBi+m) for all i � m (and, in fa
t, so on adin�nitum). Let S be the set of repeats R 2 R0 su
h that Ni is the 
ompanionof R and R 62 domBi for some i � m. It is not di�
ult to see that S is strongly
onne
ted in (R0;!) and thus there is a �0-greatest element eR 2 S. Suppose Niis the 
ompanion of eR for some i � m. Sin
e eR 62 domBi and eR is �0-greatestin S, it follows that eR 2 domBk for all i < k � i +m (line 27). In parti
ular,eR 2 domBi+m, whi
h 
ontradi
ts domBi = domBi+m. Hen
e, length of any 
allsequen
e 
 of unfold is bounded by j
j � jN0j�jR0j, yielding an upper bound ofjN j � 2jN0j�jR0j for the size of P and the time 
omplexity of the algorithm. ut7 Con
lusionsWe have presented a translation between proofs using well-founded indu
tion and
y
li
 proofs based on a global well-foundedness 
ondition. The proof systemsuse expli
it ordinal approximations as suggested in [4℄. Sin
e our main interest inapproximants is as a proof-theoreti
al me
hanism to deal with �xed points ratherthan proving theorems about them, it would be desirable to identify a fragment ofthe language whi
h 
ould be shown to 
onserve (not in
rease) the expressivenessof the basi
 �-
al
ulus (without expli
it approximations). Simpson and S
höpphave proposed an alternative approa
h to approximants based dire
tly on these
ond-order variables instead of ordinal variables [11℄ and they have proved a
onservativity result for a variant of this language [12℄. Their language la
ks,however, the ability to �internalise� sequents into single formulas, required inour dire
t translation to lo
al proofs. Thus, it seems that our approa
h 
an notreadily be adapted to yield a similar translation in their framework.



On a di�erent line of resear
h, we would like to investigate whether the ideasof this paper 
an be transferred to the 
ontext of type theories with indu
tivede�nitions su
h as the Cal
ulus of Indu
tive Constru
tions [9℄. A useful startingpoint is the introdu
tion of approximated indu
tive types along the lines of [2℄.A
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