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Abstract

We propose a development method for security protocols based on stepwise refinement.
Our refinement strategy transforms abstract security goals into protocols that are secure
when operating over an insecure channel controlled by a Dolev-Yao-style intruder. As
intermediate levels of abstraction, we employ messageless guard protocols and channel
protocols communicating over channels with security properties. These abstractions
provide insights on why protocols are secure and foster the development of families of
protocols sharing common structure and properties. We have implemented our method in
Isabelle/HOL and used it to develop different entity authentication and key establishment
protocols, including realistic features such as key confirmation, replay caches, and encrypted
tickets. Our development highlights that guard protocols and channel protocols provide
fundamental abstractions for bridging the gap between security properties and standard
protocol descriptions based on cryptographic messages. It also shows that our refinement
approach scales to protocols of nontrivial size and complexity.

1 Introduction

The fact that the development of even simple security protocols is error prone motivates the
use of formal methods to ensure their security. The past decades have witnessed significant
progress in post-hoc verification methods for security protocols based on model checking and
theorem proving, such as [59, 19, 6, 29, 62]. However, methods for developing security protocols
lag behind and protocol design remains more an art than a science.

In our view, a development method should be systematic and hierarchical. By this we
mean that the development is decomposed into smaller steps that are easy to understand
and that these steps should span well-defined abstraction levels leading the developer from
requirements down to cryptographic protocols. Moreover, the resulting protocols should be
secure in well-established attacker models and such claims should ideally be supported by
machine-checked formal proofs. Stepwise refinement provides such a hierarchical development
method. However, most existing refinement-based approaches to developing security protocols
[24, 17, 43, 15, 26, 30] fall short in at least one of these desiderata.

In this paper, we advocate a development method based on stepwise refinement that
satisfies all requirements in our wish list. Its central element is a four-level refinement strategy,
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Table 1: Levels of the refinement strategy
Level Name Features
L0 Security properties Global, protocol-independent
L1 Guard protocols Roles, local store, no messages, passive intruder
L2 Channel protocols Channels with security properties, intruder
L3 Crypto protocols Cryptographic messages, Dolev-Yao intruder

introduced in Section 3 and summarized in Table 1. This strategy allows developers to build
models that incrementally incorporate the system requirements and environment assumptions.
Each model constitutes an idealized functionality for subsequent refinements. Safety properties,
once proved for a model, are preserved by further refinements.

Level 0 of our refinement strategy consists of abstract, protocol-independent models of
security properties such as (reachability-based) secrecy and authentication. At Level 1, we
introduce guard protocols consisting of protocol roles, their local state, and the basic sequencing
of the protocol steps. The protocol agents communicate by accessing each other’s local states.
At Level 2, the agents exchange plaintext messages over communication channels with intrinsic
security properties, e.g., confidential or authentic channels. Accordingly, we call these protocols
channel protocols. Finally, at Level 3, we arrive at standard cryptographic protocols, where
we replace these messages by cryptographic messages transmitted over insecure channels
controlled by a Dolev-Yao intruder. In our method, the functional and security requirements
are established at the first two levels, while the last two levels incorporate the environment
assumptions, i.e., the hostile distributed environment.

A central and novel feature of our approach is the use of guard protocols (L1) as an
intermediate abstraction linking security properties (L0) and message-based protocols (L2–3).
Guard protocols enable the straightforward abstract realization of security goals by adding
security guards as necessary conditions for the execution of certain protocol steps. Different
kinds of security guards ensure the preservation of properties such as secrecy, authentication,
and recentness. For example, key secrecy means that only authorized agents may know a key.
Accordingly, the steps of guard protocols where an agent A learns a key K contain a guard
requiring that A is authorized to know K. For authentication, there are guards ensuring that
the local state of an agent (partially) agrees with the state of another agent.

The security guards for secrecy and authentication specify conditions on the global state
in terms of other agent’s local states. This constitutes an abstract form of communication.
This abstraction simplifies proofs, but it is not directly implementable in a distributed setting.
Hence, we implement these guards at Level 2 by receiving messages on channels with intrinsic
security properties. The associated refinement proof naturally gives rise to invariants stating
that the receiving of channel messages implies the security guards they implement. These
invariants precisely state the security properties guaranteed by the messages. For example, a
message containing a key K received on a confidential channel to an agent A may implement a
guard authorizing A to learn K. The corresponding invariant guarantees that A is authorized
to learn K from this message.

To validate the effectiveness of our refinement strategy, we developed different authentication
and key establishment protocols from abstract specifications. In Section 3, we develop two
simple unilateral authentication protocols as running examples illustrating our approach: the
ISO/IEC 9798-3 protocol and the first two steps of the Needham-Schroeder-Lowe protocol. In
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Section 4, we show how to systematically develop an entire family of key transport protocols.
This family consists of the Needham-Schroeder Shared-key protocol, the core of Kerberos 4
and Kerberos 5, and the Denning-Sacco protocol. Compared to the running examples from
Section 3, these protocols are significantly more complex in their size and message structure and
they exhibit additional features and security properties such as the use of timestamps, replay
protection caches, encrypted tickets (double encryption), dynamically created communication
channels, key confirmation, key freshness, key recentness, and session key compromise.

Contributions We see our work making five main contributions to the state-of-the-art. Our
first contribution is methodological and consists of a new method for developing security
protocols that are correct-by-construction. Our initial models at Level 0 specify the security
goals of the guard protocols at Level 1. These in turn determine the basic structure of entire
families of protocols. Using the refinement strategy outlined above, we systematically refine
these abstract models in a series of well-defined steps to protocols using cryptographic messages
sent over an insecure channel. Our refinement strategy aims at proving security properties
at the highest possible abstraction level. General results guarantee that these properties are
preserved by subsequent refinements.

Our refinement strategy naturally gives rise to straightforward parametrized simulation
relations between the state spaces of models at different levels. These relations are instantiated
and used in refinement proofs. Moreover, the process of proving refinements helps us discover
invariants. For example, the simulation relation linking Levels 2 and 3 usually expresses
that the local states of the roles is untouched by the refinement and maps the cryptographic
messages at Level 3 to messages on abstract channels at Level 2. An invariant that appears in
such refinement proofs states that the honest agents’ long-term keys remain secret. This is the
natural level of abstraction for this invariant. Typically, the other relevant security properties
are already proved in earlier refinements.

Second, our development provides evidence that guard protocols and channel protocols
constitute two fundamental abstractions that bridge the gap between security properties
and standard protocol descriptions based on cryptographic messages. For the families of
authentication and the key establishment protocols we present, the Levels 2 and 3 models
refine a common Level 1 ancestor, even though they use different channel types, cryptographic
primitives, and communication patterns. Hence, guard protocols enable a unified view of
different protocol classes, which disappears at the lower abstraction levels. Moreover, the
guarantees about protocol messages we achieve at Level 2 given by the invariants mentioned
above are generally absent, or at best informally stated and reasoned about, in other approaches.
By formalizing them, our approach fosters clear protocol designs and abstract, simple security
proofs. Moreover, in standard protocol descriptions, secrecy and authentication are often
not clearly separated (e.g., when using a secure channel providing both properties) or are
interdependent (e.g., due to a layered use of cryptographic keys and operations). This is a
source of complexity and errors and makes security protocols hard to design and understand.
In contrast, guard protocols realize secrecy and authentication properties abstractly and
independently. This facilitates the formal development of security protocols and underscores
the central role that guard protocols can play in property-driven design approaches.

At the next level, channel protocols allow us to reason about a protocol’s security properties
at a lower degree of complexity than with the Dolev-Yao intruder. The channels also enable a
range of different realizations. For example, we may implement an authentic channel using
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signatures or MACs. Moreover, the communication structure may change from Level 2 to 3.
For instance, an abstract key server may independently distribute keys on secure channels
to the initiator and the responder, whereas in the concrete realization the distribution is
sequential: one role receives two encrypted copies of the key and forwards one copy to the
other role (Section 4). The abstract view represents the essential structure of server-based key
distribution. The forwarding is just an implementation detail.

Third, we show how refinement can be used to develop protocols that are secure under a
Dolev-Yao intruder model (at Level 3). In contrast, in related work such as [17, 43, 24, 15],
the authors do not continue the refinements down to the level of a standard Dolev-Yao model
based on an algebra of cryptographic messages; some use ad-hoc, protocol-dependent intruder
definitions. This makes it difficult to compare their models with existing work on protocol
modeling and verification and to know for which adversaries their properties hold.

Fourth, we show how to develop an entire family of key transport protocols from requirements
down to protocols that are secure against a Dolev-Yao intruder. We model realistic features
that are often abstracted away, such as replay prevention caches for timestamped messages
that achieve strong properties like injective authentication. We have formalized all models
and proofs in this paper in the Isabelle/HOL theorem prover. Our formalization includes an
general, reusable infrastructure with Isabelle/HOL theories for protocol runs, fresh values,
and channels with security properties. Our complete development including the infrastructure
theories is available online [65]. Our development shows that our method scales to protocols of
realistic complexity. The protocols in our development share both structure and properties as
the graph of refinements of our development indicates (see Figure 5). Property preservation
through refinements avoids proof duplication and fosters well-structured proofs.

Our final contribution is a comprehensive definitional extension of Isabelle/HOL with a
theory of refinement that is based on simulation and borrows elements from [4, 2]. We define
an implementation relation on models including a notion of observation, derive proof rules for
invariants and refinement, and show that refinement is a sound method for establishing the
implementation relation between models.

This article is based on [63, 64]. The main difference is that we have extended our method
with a stronger attacker who is able to compromise secrets. As a consequence, we obtain
stronger security guarantees. This required modifications throughout the refinement tree. At
the top-level, we added new events modeling the leakage of messages. At the lower levels, this
required the modification of guards, the generalization of simulation relations, as well as the
adaptation of several invariants. Moreover, we were able to shift several invariants from L3 to
L2 and reduce their overall number, which further highlights the use of our approach to prove
properties at the highest possible level of abstraction.

Organization The remainder of this paper is organized as follows. In Section 2, we introduce
Isabelle/HOL, notational conventions, and summarize the theory of refinement that we have
embedded in Isabelle/HOL. In Section 3, we present our four-level refinement strategy for
security protocols and illustrate its application by deriving two simple authentication protocols.
In Section 4, we report on our development of a family of key transport protocols. In Section 5,
we further discuss related work and we draw conclusions in Section 6.
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2 Preliminaries

2.1 Isabelle/HOL and notation

Isabelle is a generic, tactic-based theorem prover. We have used Isabelle’s implementation
of higher-order logic, Isabelle/HOL [58], for our developments. HOL can roughly be seen as
logic on top of a functional programming language. We assume that the reader has basic
familiarity with both logic and typed functional programming. Proof automation in Isabelle is
supported by a rewrite-based simplifier and a tableau procedure. These are invoked in isolation
or combined using proof tactics.

To enhance readability, we use standard mathematical notation where possible and blur
the distinction between types and sets. We also drop typing information unless it is essential
to understand a definition.

We use two definitional equalities: ≡ for terms and , for types. We define partial functions
by A ⇀ B , A→ B⊥, where B⊥ , Some(B) | ⊥; note that we will often elide single-argument
constructors, e.g., writing Some(x) simply as x. The term f(x 7→ y) denotes the function that
behaves like f , except that it maps x to y. For a function or binary relation R ⊆ A×B and a
set X ⊆ A, we define the image of X under R by R(X) ≡ {y ∈ B | ∃x ∈ X. (x, y) ∈ R}. The
inductive type of lists is defined by list(A) , Nil | Cons(A, list(A)), where Nil is the empty list
and Cons(a, l) is the list built by prefixing the element a ∈ A to the list l ∈ list(A). We usually
write Nil as [] and Cons(a, l) infix as a#l. We also write [1, 2, 3] for 1#2#3#[]. We define
multisets over A by multiset(A) , A→ N. For multisets m,n ∈ multiset(A), the term m(e)
indicates the multiplicity of e in m and union is defined by (m ] n)(e) = m(e) + n(e). Record
types may be defined, such as point , (|x ∈ N, y ∈ N |) with elements like r = (|x = 1, y = 2 |)
and projections r.x and r.y. The term r(|x := 3 |) denotes r, where x is updated to 3, i.e.,
(|x = 3, y = 2 |). The type cpoint , point + (| c ∈ color |) extends point with a field of type
color . For record types T and U including fields F , we define the field identity relation
ΠT,U
F ≡ {(r, s) ∈ T × U |

∧
x∈F r.x = s.x}. If U has exactly the fields F , the field projection

function πT,UF : T → U projects T to U . We will drop the superscripts T and U from ΠT,U
F and

πT,UF when they are clear from the context.

2.2 Refinement theory

A development by refinement starts from a set of system requirements and environment
assumptions. We then construct a series of models resulting in a system that fulfills the
requirements provided it runs in an environment satisfying the assumptions. We summarize
the refinement theory that we developed in Isabelle/HOL. It is inspired by [4, 2].

2.2.1 Specification and implementation

We define the structure of our models and we formalize the meaning of implementation.

Definition 2.1. A specification is a triple of the form S = (T,O, obs), where T = (Σ,Σ0,→)
is a transition system with state space Σ, set of initial states Σ0 ⊆ Σ, and transition relation
→⊆ Σ × Σ. The observation function obs : Σ → O maps states to elements of a set of
observations O.
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The definition of transition systems is standard. The observation function obs specifies
which state information is visible to an outside observer. This function can be freely chosen
and is typically just a projection on a subset of the state variables. We will use the term model
as a synonym for specification.

We will work with structured specifications, where the state space Σ is a record type, i.e., a
set of tuples of state variables, and the transition relation → is a finite union of parametrized
relations, called events. Events have the form

evt(x) = {(s, s′) | G(x, s) ∧ s′.v := f(x, s)},

where ·̄ denotes vectors. Here, x are the event’s parameters, v are the state variables, G(x, s) is
a conjunction of guards, and s′.v := f(x, s) is an action with update functions f . The guards
depend on the parameters x and the current state s and determine when the event is enabled.
The action is syntactic sugar denoting the relation s′ = s(| v := f(x, s) |), i.e., the simultaneous
assignment of values f(x, s) to the variables v in the state s, yielding the state s′. The concrete
parameters for an event’s execution can be thought of as being chosen non-deterministically
by the environment. We assume that all models include the distinguished event skip, which
denotes the identity relation and thus models stuttering steps.

Example 2.2. Consider an abstract file transfer protocol specification

Sf ≡ ((Σf ,Σf ,→f ), Of , id).

Here Σf , (| f, g ∈ file |) with file , I → D, where I is a finite index set and D is a set of data
blocks, and →f ≡ xferf . The event xferf ≡ {(s, s′) | s′.g := s.f} transfers the file f in one shot
to g. All states are possible initial states and the entire state is observable, i.e., Of = Σf and
the observation function is the identity.

The set of behaviors of S, beh(S), consists of the finite sequences s0 · · · sn of states that start
in an initial state s0 ∈ Σ0 and are linked by transitions in →, that is, si → si+1 for 0 ≤ i < n.
The set reach(S) denotes the set of reachable states. Since we only consider safety properties
(in fact, invariants), it suffices to model just finite behaviors. The sets of observable behaviors
and reachable observations of the specification S are defined by obeh(S) ≡ obs(beh(S)) and
oreach(S) ≡ obs(reach(S)), where obs is applied to behaviors element-wise. Our notion of one
specification implementing another is defined by the inclusion of their observable behaviors.

Definition 2.3. We say Sc implements Sa via the mediator function π : Oc → Oa if we have
π(obeh(Sc)) ⊆ obeh(Sa).

The mediator function specifies how to abstract observations of Sc to observations of Sa. It
enables details to be added to observations during implementation. We consider two types of
invariants: internal invariants are supersets of reach(S) and external invariants are supersets
of oreach(S) ≡ obs(reach(S)). We use internal invariants to strengthen simulation relations
in refinement proofs (see Example 2.9 below). The observation function determines which
properties can be expressed as external invariants. These invariants are important since they
are preserved by implementations.

Proposition 2.4 (Invariant preservation). Suppose Sc implements Sa via the mediator
function π and oreach(Sa) ⊆ J for some J ⊆ Oa. Then π(oreach(Sc)) ⊆ J .

Proposition 2.4 guarantees a well-defined notion of property preservation for a series of
implementations. We use refinement as a proof method to establish implementations.
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Figure 1: Refinement of events (left) and observations (right).

2.2.2 Refinement

Our notion of refinement is based on standard simulation [49], which we extend to account for
observations [3]. Figure 1 illustrates the second and third point of the following definition.

Definition 2.5. We say Sc = ((Σc,Σc,0,→c), Oc, obsc) refines Sa = ((Σa,Σa,0,→a), Oa, obsa)
using the simulation relation R ⊆ Σa × Σc and the mediator function π : Oc → Oa, written
Sc vR,π Sa, if the following three conditions hold.

1. Each concrete initial state is related to some abstract initial state, i.e.,

Σc,0 ⊆ R(Σa,0).

2. For each concrete event evtc(x), there is an abstract event evta(z) and witness functions w,
mapping concrete parameters x to abstract parameters w(x) such that evta(w(x)) simulates
evtc(x), i.e.,

R; evtc(x) ⊆ evta(w(x));R,

where ‘;’ is forward relational composition. The plain and dashed arrows in Figure 1 (left)
correspond to the given part on the left-hand side and the sought part on the right-hand
side of the inclusion above.

3. R respects observations mediated by π, i.e., for all (s, t) ∈ R,

obsa(s) = π(obsc(t)).

We say Sc refines Sa using π, written Sc vπ Sa, if Sc vR,π Sa for some R.

In our method, new concrete events usually refine the abstract skip event. The intuition
is that these events correspond to unobservable stuttering steps in the abstract model. Note
that, if R−1 is functional, condition (3) boils down to the equation R−1; obsa = obsc;π.
Choosing obsa = obsc = id and π = R−1 yields maximal observations. Otherwise, if R−1 is
non-functional, there is a tension between what can be made observable and the fact that the
mediators are functional.

Let the concrete and abstract system have state variables v and u, respectively. Moreover,
suppose the event evtc(x) has guards Gc and update functions fc and the abstract event
evta(z) has guards Ga and update functions fa. Condition 2 can be decomposed into two
proof obligations, called guard strengthening and action refinement, both under the premises
(s, t) ∈ R and Gc(x, t).

(GRD) Ga(w(x), s).
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(ACT)
(
s(|u := fa(w(x), s) |), t(| v := fc(x, t) |)

)
∈ R.

Guard strengthening requires that if the concrete event is enabled then so is the abstract one.
Action refinement expresses that the two states resulting from the execution of the abstract
and concrete actions are again related by R.

Refinement is reflexive and transitive. Moreover, refinement is a sound (but incomplete [2,
44]) method to establish implementation.

Proposition 2.6 (Pre-order). We have (i) S vid S and (ii) S3 vρ S2 and S2 vπ S1 imply
S3 vπ◦ρ S1.

Proposition 2.7 (Soundness of refinement). If Sc vπ Sa then Sc implements Sa via the
mediator function π.

The combination of Propositions 2.4, 2.6, and 2.7 ensures that requirements and assumptions,
once established as external invariants, are preserved by subsequent refinements. Note that
this does not generally hold for internal invariants. For later reference we state the following
corollary.

Corollary 2.8 (Invariant preservation II). Suppose Sc vπ Sa and oreach(Sa) ⊆ J for
some J ⊆ Oa, where Oa is Sa’s set of observations. Then π(oreach(Sc)) ⊆ J .

Example 2.9. We define a “protocol” implementing the file transfer specification Sf by
Sp ≡ (Tp, Op, obsp), where Tp = (Σp,Σp,0,→p) and Σp , Σf + (| b ∈ I ⇀ D |) extends the state
Σf with a buffer b. The set Σp,0 consists of initial states of the form (| f = f0, g = g0, b = ∅ |) for
some f0, g0 ∈ file and the empty buffer b. The protocol non-deterministically transfers blocks
of the file f into the buffer b from where it is assigned to g, once the transfer is completed.
The transition relation →p≡ xferp ∪

⋃
i∈I blkp(i) is the union of two events:

blkp(i) ≡ {(t, t′) | i ∈ I \ dom(t.b) ∧ t′.b := t.b(i 7→ f(i))}

and xferp ≡ {(t, t′) | dom(b) = I ∧ t′.g := t.b}. The observation function obsp ≡ πf projects
the state Σp to the observations Op = Σf .

Let us try to establish a refinement between Sp and Sf , using the simulation relation
R ≡ Πf ⊆ Sf × Sp, i.e., the inverse of the projection πf : Σp → Σf , and the identity
mediator function π ≡ id . We focus on point (2), where we must show that blkp(i) re-
fines skip and that xferp refines xferf . The guard strengthening (GRD) proof obligation
is trivial in both cases, since the abstract guards are true. The action refinement (ACT)
proof obligation for blkp(i) and skip (the identity relation) requires showing (s, t′) ∈ Πf for
t′ = t(| b := t.b(i 7→ f(i)) |), assuming (s, t) ∈ Πf and i ∈ I. This holds trivially, since
t′.g = t.g = s.g. In the action refinement for xferp and xferf , we must show that (s(| g := s.f |),
t(| g := t.b |)) ∈ Πf assuming (s, t) ∈ Πf and dom(b) = I. To prove this, we need additional
information about the relation between b and f , which we express as the internal invariant
Ip ≡ {t ∈ Σp | ∀i ∈ dom(b). t.b(i) = t.f(i)} of Sp. We establish this invariant separately and
use it to strengthen the simulation relation to R ≡ Πf ∩ (Σf × Ip).

In further refinements, one could develop a more realistic implementation, for example, by
eliminating non-determinism and by modeling a communication medium such as an unreliable
channel with acknowledgement messages.
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3 Security protocol refinement

We now present our framework for security protocol development by refinement. Each devel-
opment starts by defining the system requirements and the environment assumptions. The
environment assumptions include the attacker model and the cryptographic setup. Given these
elements we need a refinement strategy telling us in which order to incorporate them into our
models. The crucial point is that requirements and assumptions, once modeled, are preserved
by subsequent refinement steps (Corollary 2.8).

The following four-level refinement strategy guides our developments, where each level may
itself consist of several refinement steps.

Level 0 Security properties. We give abstract, protocol-independent specifications of secrecy
and authentication properties. The models’ states contain just enough structure to
formulate these properties as invariants and define a few abstract events satisfying these
invariants.

Level 1 Guard protocols. These are abstract protocols without message passing. We introduce
protocol roles, local states of agents, and basic protocol steps. Agents read data directly
from other agents’ local states, whereby guards enforce the data’s security properties.

Level 2 Channel protocols communicate over abstract channels with security properties, such
as confidential and authentic channels. The intruder may eavesdrop messages on non-
confidential channels and fake messages on non-authentic channels. No cryptography is
used.

Level 3 Cryptographic protocols. The messages on the abstract channels from Level 2 are
now implemented using cryptographic messages sent over insecure channels. A standard
Dolev-Yao intruder completely controls the network.

In the rest of this section, we introduce protocol-independent infrastructure for modeling
and reasoning about security properties, protocol runs, fresh values, channels with security
properties, and intruder behavior. We also describe for each level the relevant structures such
as type definitions, state variables, and simulation relations. As running examples, we develop
two simple authentication protocols. In Section 4, we will apply this framework to a more
complex development and construct a family of key establishment protocols.

Several explanations are in order. First, while we formulate secrecy and authentication as
Level 0 models and establish them by refinement, we express and prove other security properties
such as key freshness as invariants. Second, in our setup, agents, keys, nonces, and timestamps
have different types and we use variables of these types in our protocol models. However, other
options are available. We can easily formalize protocols in an untyped fashion in our framework
by using only message variables, which represent arbitrary messages. Finally, the guarantees
we obtain in our framework hold for an unbounded number of protocol instances.

3.1 Entity authentication protocols

To illustrate our methodology, we develop two unilateral authentication protocols. Both
protocols are based on a standard challenge-response pattern, where the initiator sends a nonce
as a challenge to the responder who returns it in a cryptographically transformed form that
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L0: Security Properties

L1: Guard Protocols

L2: Channel Protocols

L3: Crypto Protocols

a0i

a2

iso3

c2

nsl3

a1

Figure 2: Refinement graph for authentication protocols.

authenticates him to the initiator. The first protocol is the signature-based two-pass ISO/IEC
9798-3 standard [36]. The second, which we call NSL/2, consists of the first two steps of the
Needham-Schroeder-Lowe protocol [41] and uses public-key encryption.

We start by specifying the system requirements and by making our assumptions about the
environment explicit. Our notion of entity authentication is based on the strong property of
injective agreement [42]. A protocol satisfies this property, if given two roles r and r′ and the
data d then for each protocol thread executing role r there exists a unique thread executing
role r′ with whom it agrees on the data d.

Requirement R1 (Protocol roles). The protocol has two roles, which we call initiator and
responder.

Requirement R2 (Entity authentication). The initiator injectively agrees with the re-
sponder on the initiator’s nonce and possibly on additional data.

We assume a standard Dolev-Yao intruder that we identify as usual with the communication
network. Moreover, we make two assumptions about agent corruption and the cryptographic
setup.

Assumption A1 (Dolev-Yao intruder). The intruder controls the network. He receives
all messages sent and he can build and send messages composed from their parts obtained
by decomposing received messages using the cryptographic keys he knows.

Assumption A2 (Static corruption of agents). An arbitrary fixed subset of agents is cor-
rupted,
whereby their long-term keys are exposed to the intruder.

Assumption A3 (Cryptographic setup). The requisite cryptographic keys are distributed
prior to protocol execution.

Development overview Figure 2 summarizes the refinements in our development in a
refinement graph. Each node represents a model and each arc m→ m′ represents a refinement
m vπ m′ for some mediator function π, not shown.

We progress from the initial model a0i representing the intended injective agreement
property at Level 0 (Section 3.3) to the guard protocol a1 at Level 1 (Section 3.4). This guard
protocol is refined into two channel protocols, a2 and c2 , based on authentic and confidential
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channels, respectively (Section 3.5). Finally, we realize these two protocols as cryptographic
protocols, iso3 and nsl3 (Section 3.6). In the following, we will restrict our presentation to
the left path in the refinement graph. We omit the models c2 and nsl3 , whose development is
similar to a2 ’s and iso3 ’s.

3.2 General setup

We describe our formalization of atomic messages: agents, keys, nonces, and numbers. We
start by defining a type of agents, agent . We assume a subset bad of dishonest agents (with
complement good) and an honest server S ∈ good .

We also need a mechanism to generate fresh nonces and keys. We assume a type rid of
identifiers that we will use to uniquely identify protocol runs at Levels 1–3. From this type, we
derive the type of freshness identifiers as fresh , mkf(rid ,N), which has a single constructor
mkf. We write mkf(R, i) as R$i. In protocol specifications, we often use global constants to
distinguish different fresh values of a run R, such as R$sk, R$na, or R$nb. We write both
constructors and constants in sans serif font. This setup allows us to derive an arbitrary number
of unique freshness identifiers from each protocol run identifier. We define the types of nonces,
session keys, and all keys as follows.

nonce , fresh sesk , fresh key , sesK(sesk) | ltK(ltk).

Nonces and session keys both use freshness identifiers. The type of long-term keys, ltk , is left
unspecified at this point.

Finally, we define the type atom of atomic messages as the disjoint sum of the types of
agents, nonces, keys, and numbers:

atom , aAgt(agent) | aNon(nonce) | aKey(key) | aNum(N).

We use numbers mainly as timestamps. We will usually omit constructors from atomic messages
and use a notational convention instead. In particular, we use A,B,C for agents, N,Na,Nb
for nonces, K,Kab for session keys, and T,Ta,Ts for timestamps.

Many protocols assume a setup of long-term keys, which is established out-of-band before the
protocol starts. We model this by assuming an abstract (uninterpreted) key setup keySetup ⊆
key × agent defining the initial key knowledge of each agent. The relevant definitions are
deferred to Level 3 (Section 3.6), since they are protocol-dependent. For example, the protocol
may use a PKI or a shared-key setup. The set of statically corrupted keys is derived from the
key setup as the keys initially known by dishonest agents: corrKey , keySetup−1(bad).

3.3 Level 0 – Security properties

We present abstract, protocol-independent models of secrecy and authentication and we
formalize and prove their relevant properties as external invariants. Each protocol development
starts with the formalization of the protocol’s security requirements. This is achieved by
appropriately instantiating these Level 0 models. We will later show that our guard protocol
models at Level 1 refine these instantiated models, thus establishing the respective requirements
(by Corollary 2.8).
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3.3.1 Secrecy

Our first model abstractly formalizes secrecy including a notion of dynamic compromise. We
introduce three state variables. The first two, kn and az , are relations between data (of
polymorphic type δ) and agents. In particular, (d,A) ∈ s.kn means that agent A knows data d
in state s, and (d,A) ∈ s.az means that agent A is authorized to know data d in state s. The
third state variable, lk , records compromised data that has leaked to the intruder. The entire
state is observable.

Σs0 (δ) , (| kn ∈ P(δ × agent), -- knowledge relation
az ∈ P(δ × agent), -- authorization relation
lk ∈ P(δ) |). -- leaked data

Secrecy can be expressed as the property that all knowledge is either authorized or leaked.

secrecy ≡ {s | s.kn ⊆ s.az ∪ (s.lk × agent)}.

In other words, an agent is allowed to know a secret only if he is authorized to do so or if the
secret has leaked to the intruder. We allow any state satisfying this property to be an initial
state.

Events This model has events for secret generation, for learning secrets, and for leaking
them to the intruder. The secret generation event is parametrized by the data d, an agent A,
and the intended group of agents G sharing d.

gens0 (d,A,G) ≡ {(s, s′) |
-- guards
d /∈ dom(s.kn) ∧ -- d is fresh
A ∈ G ∧ -- A is a member of G

-- actions
s′.kn := s.kn ∪ {(d,A)} ∧
s′.az := s.az ∪ ({d} × (if G ∩ bad = ∅ then G else agent))}.

The guards require that d is fresh, i.e., not known to any agent, and that A belongs to the
group G. The first action adds the pair (d,A) to the knowledge relation s.kn. The second
action updates the authorization relation with {d} ×G if all agents in G are honest and with
{d} × agent otherwise. That is, if the group G contains a dishonest member, there is no point
in restricting access to d.

In the secret-learning event, an agent B learns the secret d provided he is authorized or d
has leaked.

learns0 (d,B) ≡ {(s, s′) |
-- guards
(d,B) ∈ s.az ∪ (s.lk × agent) ∧ -- B authorized to know d or d leaked

-- action
s′.kn := s.kn ∪ {(d,B)} }.
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From a secrecy perspective, it is irrelevant from whom B learns d. Authentication aspects will
be covered separately. The final event of s0 leaks some data d to the intruder.

leaks0 (d) ≡ {(s, s′) |
-- guards
d ∈ dom(s.kn) ∧ -- someone knows d

-- action
s′.lk := s.lk ∪ {d} }.

The model s0 clearly preserves secrecy.

Proposition 3.1. Let s0 be the above specification. Then oreach(s0 ) ⊆ secrecy.

3.3.2 Authentication

Our notion of authentication is based on Lowe’s agreement [42]. Informally, a role r non-
injectively agrees with the role r′ on the data d if whenever an honest agent A in role r
terminates a run, apparently with an honest agent B in role r′, then there is a run of agent B
in role r′ with whom he agrees on the participants, their roles, and the data d. This agreement
is injective if to each such run of role r corresponds a unique run of role r′.

We formulate two models, a0n and a0i , that represent a minimal, extensional variant of
non-injective and injective agreement using signals, which indicate particular stages of each
role’s progress (e.g., termination). The state record has as its single field an initially empty
multiset of signals, sigs. The entire state is observable.

signal(δ) , Running(list(agent)× δ) | Commit(list(agent)× δ),
Σa0 (δ) , (| sigs ∈ multiset(signal(δ)) |).

There are two signals: Running(h, d) and Commit(h, d), where h is a list of agents and d is data
of polymorphic type δ that is instantiated later. The agreement on the data d is, by convention,
between the first two agents in h and assumes the honesty of all agents in h. In the simplest
case, h includes the two agents participating in the agreement, but in some cases it is necessary
to include some other agents in h, for instance agents relaying messages.

Non-injective agreement states that if the agents in h are honest and there is a Commit(h, d)
signal (thought to be raised by the first agent in h), then there is a matching Running(h, d)
signal (raised by the second agent in h).

niagreea0n ≡ {s | ∀h, d.
h ⊆ good ∧ s.sigs(Commit(h, d)) > 0→ s.sigs(Running(h, d)) > 0}.

Injective agreement strengthens this by requiring that the number of Commit(h, d) signals
is not greater than the number of matching Running(h, d) signals.

iagreea0i ≡ {s | ∀h, d. h ⊆ good → s.sigs(Commit(h, d)) ≤ s.sigs(Running(h, d))}.
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Events The models a0n and a0i have two events, running(h, d) and commit(h, d), which
add the corresponding signal to the multiset s.sigs . The first event adds a Running(h, d) signal
to the multiset s.sigs.

runninga0n(h, d) ≡ {(s, s′) | s′.sigs := s.sigs ] {Running(h, d)} }.

The second event adds a Commit(h, d) signal to the multiset s.sigs. Its guard requires that
there is a matching Running(h, d) signal if the agents in h are honest. This ensures that the
invariant niagreea0n is preserved.

commita0n(h, d) ≡ {(s, s′) |
-- guards
h ⊆ good → s.sigs(Running(h, d)) > 0 ∧

-- actions
s′.sigs := s.sigs ] {Commit(h, d)} }.

The honesty condition weakens the guard just enough to accommodate the protocol’s interaction
with an explicit intruder in later refinements.

The model a0i for injective agreement is the same except for the guard in the event
commita0i(h, d), which we strengthen as follows to preserve the stronger invariant iagreea0i .

h ⊆ good → s.sigs(Commit(h, d)) < s.sigs(Running(h, d)).

It is easy to see that a0i refines a0n. The properties of the models a0n and a0i are
summarized as follows.

Proposition 3.2. The models a0n and a0i defined above have the following properties:
(i) oreach(a0n) ⊆ niagreea0n , (ii) oreach(a0i) ⊆ iagreea0i , and (iii) a0i vid ,id a0n.

Since the variable sigs is observable, these invariants are preserved by further refinements
(Corollary 2.8).

Example 3.3 (Formalization of authentication properties). Our example development
starts with a formalization of the main security property: entity authentication by injective
agreement (R2). We do this by instantiating the model a0i . Since we would like our entity
authentication protocols to achieve injective agreement between the initiator A and the
responder B on a nonce Na generated by A and also on a nonce Nb generated by B, we
instantiate the type of data δ in the model a0i to nonce × nonce.

This model is very abstract. Further refinement steps are needed to obtain a protocol
that is executable in the intended distributed environment and is secure against a Dolev-Yao
intruder as described by the environment assumptions.

3.3.3 Other types of security property specifications

In contrast to establishing security properties by refinements of L0 models, we may express
(and prove) security properties directly at the protocol level (i.e., at Level 1, 2, or 3) in one of
two ways.

First, the property may be ensured by a guard, whereby the property is established by
construction so that no extra proof is required. An example is a guard checking the validity of
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a timestamp to ensure the recentness of an associated session key. Second, we may formulate
and prove the property as an external invariant of the protocol. This is how we express the
freshness of session keys. An advantage of using the refinement of abstract models over these
two alternatives is that the abstract models are protocol-independent. This enables clear and
uniform property specifications. In contrast, invariants that are formulated at the protocol
level (see, e.g., [59]) must be specified individually and tend to be more complex.

3.4 Level 1 – Guard protocols

We now introduce protocol roles and runs. A run is a thread executed by some agent in a
given role. Each run has a local memory holding state information. At this abstract level, runs
share information by reading each other’s memory. We call such protocols guard protocols. Of
course, this kind of communication by reading another thread’s memory is unrealistic in a
distributed setting. Hence, at Level 2, we will refine this abstract form of communication by
passing messages over communication channels.

3.4.1 State

Guard protocols have at least one state variable, runs, which is a partial function mapping
each run identifier (of type rid) in its domain to the run’s local store. This local store consists
of the executed role, the participants, and a frame recording role-specific information. As we
focus here on two-party protocols, we model participants as a pair of agents. Similarly, we
fix the roles to an initiator (the first agent), a responder (the second agent), and possibly an
additional fixed server S. This could easily be generalized to handle an arbitrary number of
roles. The frame is a list of atomic messages that the run acquires during its execution.

role , Init | Resp | Serv,

frame , [atom],

runsT , rid ⇀ role × agent × agent × frame,

Σ1 , (| runs ∈ runsT |),
Σ′1 , Σ1 + (| leak ∈ P(δ × γ) |).

(1)

Here, we have schematically defined the state of a Level 1 protocol by the record type Σ1. In
concrete models, this state may contain additional variables. In particular, L1 specifications
that refine the secrecy model s0 extend this state with an additional variable leak ∈ P(δ × γ)
that refines the variable lk of s0 as indicated in Σ′1. Here, δ represents the type of the leaked
data and γ the type of an (optional) session context recorded together with the leaked data.
For example, to model session key compromise and record the intended partners sharing the
key, we set δ = key and γ = agent × agent . In Section 4.4, we will present an example using
the variable leak in detail. We assume that (at least) the variable runs is observable. All
subsequent refinements keep the variable runs, but may add atoms to the run’s frames. This
allows us to prove external invariants about the protocol runs and inherit them through the
refinements.
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3.4.2 Events

Each event executes a protocol step of a run by an agent in a particular role. The sequencing
of events within a role is determined by local guards reading a run’s local store. For example,
the guard runs(R) = (Init, A,B, [Nb]) expresses that the event executes a step of the run R,
which is owned by the agent A playing the initiator role, talks to the responder B, and stores
the nonce Nb in its frame. An event’s action typically extends the run frame with additional
atomic messages, thereby tracking the run’s progress. Informally, we call a run completed if
there is no event that extends its frame.

Example 3.4 (Abstract authentication protocol, part I). The state Σa1 of our model a1
contains a single variable, runs, defined in (1), which models threads executing protocol roles.
Since our setup provides initiator and responder roles, this already establishes Requirement R1
that the protocol has two roles. Each role will generate a nonce that the other role records.

Let na and nb be arbitrary natural numbers. The three events of our specification a1
abstractly model a protocol that follows a standard challenge-response pattern. The first
event, which refines skip, just creates an initiator run Ra with an empty frame. The event also
“generates” a nonce Na = Ra$na associated with this run. Since Na is derived from the run
identifier Ra, there is no need to record it in the frame.

step1a1 (Ra, A,B,Na) ≡ {(s, s′) | -- by A, refines skip
-- guards
Ra /∈ dom(s.runs) ∧ -- fresh run id
Na = Ra$na ∧ -- fresh nonce

-- actions
s′.runs := s.runs(Ra 7→ (Init, A,B, [])) }.

The second event refines runninga0i and creates a responder run identified by Rb and the nonce
Nb. The run acquires an arbitrary nonce Na, which need not come from an initiator, and
records it in its frame. This reflects that the intruder can fake the challenge nonce in later
refinements.

step2a1 (Rb, A,B,Na,Nb) ≡ {(s, s′) | -- by B, refines runninga0i
-- guards
Rb /∈ dom(s.runs) ∧ -- fresh run id
Nb = Rb$nb ∧ -- fresh nonce

-- actions
s′.runs := s.runs(Rb 7→ (Resp, A,B, [Na])) }.

The final event of the model a1 will be presented in the next example.

Agents communicate by reading their peers’ memories. This is achieved by non-local guards
that refer to another run’s store. Such guards read remote values that may be compared
with local values and used in local state updates. We have two kinds of non-local guards:
authorization guards for secrecy and authentication guards for agreements. Authorization
guards prevent unauthorized agents from learning secrets. We will explain the shape of these
guards in Section 3.4.3 below.
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An authentication guard for a given list of agents h and data d (cf. Section 3.3) executed
by a run R requires the existence of a run R′ executing a different role from R’s and agreeing
with R on data d, provided the agents in h are honest. For example, the authentication guard

A ∈ good ∧B ∈ good → ∃Rb. Nb = Rb$nb ∧ s.runs(Rb) = (Resp, A,B, [Ra$na])

expresses that there exists a run Rb that agrees with the present run Ra on Ra$na and Nb,
provided A and B are honest (see also Example 3.5 below). More generally, for A in role
r to agree with B in role r′ on data d assuming honest agents h = [A,B, . . .], we add an
authentication guard G to an appropriate event of agent A (for example, the final event of its
role). This guard requires that the agent B in role r′ knows the data d, whenever the agents in
h are honest. It has the form

G(h, d) = h ⊆ good → ∃R, x. C(R, d) ∧ s.runs(R) = (r′, A′, B′, `),

where R is the identifier of a run of B in role r′, A′ and B′ are agent names possibly including
A and B, ` is a list of atomic messages including those in d, and C(R, d) is a conjunction of
equations fixing nonces and session keys in d generated by the run R. The free variables of G
are exactly the variables appearing in h and d. All other variables are bound by the existential
quantification over x.

Since authorization and authentication guards are related to security properties, we also
call them security guards. There are also local security guards, which do not refer to other
runs’ local store. For example, such a guard may check the validity of timestamps to achieve
recentness. Note that at this level of abstraction, the intruder is passive and leak is the only
intruder event of the guard protocol models.

Example 3.5 (Abstract authentication protocol, part II). The third step refines commita0i
and models the initiator run Na receiving its nonce back from a responder run Nb. The first two
guards state that the run Ra has not yet received the responder B’s nonce and has generated
Na. The third guard is an authentication guard that ensures an agreement with the responder
on the pair of nonces (Na,Nb).

step3a1 (Ra, A,B,Na,Nb) ≡ {(s, s′) | -- by A, refines commita0i
-- guards
s.runs(Ra) = (Init, A,B, []) ∧
Na = Ra$na ∧
(A /∈ bad ∧B /∈ bad → ∃Rb. Nb = Rb$nb ∧ s.runs(Rb) = (Resp, A,B, [Na])) ∧

-- actions
s′.runs := s.runs(Ra 7→ (Init, A,B, [Nb])) }.

More precisely, if A or B is dishonest then Nb is arbitrary. Otherwise, there is a run Rb of
responder B with initiator A that has generated the nonce Nb and previously received the
nonce Na. This can be seen as A reading Nb from B’s store. We will eliminate this abstraction
in the next refinement when we introduce communication channels.

3.4.3 Refinements

We establish the secrecy and authentication properties of our guard protocol models by refining
appropriately instantiated secrecy and authentication models from Section 3.3. Below we
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give general patterns for establishing secrecy and authentication properties. In each case, we
establish a refinement by reconstructing the abstract state (i.e., the knowledge and authorization
relations kn and az or signals sigs) from the concrete run state in terms of the functions knC
and azC , or sigsC . The concrete definitions of knC , azC , and sigsC depend on the protocol.
Moreover, for each such refinement, we identify a pair of concrete protocol events that refine
the abstract ones (i.e., secret generation/learning and running/commit, respectively). The
remaining events refine skip.

Secrecy We establish secrecy by refining the model s0 . We therefore define functions knC
and azC , which reconstruct the knowledge and authorization relations, kn and az , of s0
from protocol runs, and a function lkC , which abstracts the variable leak to the set lk of s0 .
Typically, lkC is the identity function (if leak just mirrors lk) or the domain of a relation
(in case leak is a relation recording some context information with the leaked data). The
simulation relation Rs01 is π−1s01 , where πs01 is the mediator function defined as follows.

πs01 (t) ≡ (| kn = knC (t.runs), az = azC (t.runs), lk = lkC (t.leak) |).

We can now explain how authorization guards are stated in terms of azC and lkC : we use
the expression

d /∈ lkC (t.leak)→ (d,A) ∈ azC (t.runs)

to check whether an agent A is authorized to access data d whenever d has not leaked to the
intruder. We will use authorization guards in Section 4.4 to model the confidential distribution
of session keys.

Authentication We similarly refine a0i and a0n by reconstructing a signal multiset from
the concrete runs. The simulation relation Ra01 is π−1a01 , where the mediator function πa01 is
defined by

πa01 (t) ≡ (| sigs = sigsC (t.runs) |).

In general, for an agreement of agent A in role r with B in role r′ on data d with respect
to agents h = [A,B, . . .], the multiset sigsC (t.runs) contains a Commit(h, d) signal for each
run of A in role r where the data d is known and a Running(h, d) signal for each run of B in
role r′ knowing d.

In contrast to secrecy and authentication, we will formulate key freshness as a state predicate
and establish it as an invariant of guard protocols (see Section 4.4.4).

Example 3.6 (Refinement of authentication model). Let a1 be the model from Exam-
ples 3.4 and 3.5. The simulation relation R01 and mediator function π01 are as described for
Ra01 and πa01 above. It remains to define the function sigsC , which maps completed initiator
and responder runs to Commit and Running signals to express agreement on the nonces Na
and Nb. Concretely, the function sigsC (r) translates a run map r (such as runs in a1 ) to the
multiset of signals (such as sigs in a0i) that is defined as follows.

sigsC (r)(S) =


1 if S = Commit([A,B], (Ra$na,Nb)) and r(Ra) = (Init, A,B, [Nb]),

1 if S = Running([A,B], (Na,Rb$nb)) and r(Rb) = (Resp, A,B, [Na]),

0 otherwise.
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Note that, in general, the abstraction function sigsC (r) maps each signal to the number of
runs in a state that give rise to that signal (see Section 4). Whenever the run identifier appears
in the signal’s data (as in both cases above), there is at most one such run, since r is a partial
function. Therefore, we directly use the constant 1 in the definition above instead of the more
complex general definition.

At this point we can state and prove the refinement result, which establishes the entity
authentication requirement R2. Its proof does not require auxiliary invariants, but relies on a
number of basic properties of the function sigsC .

Proposition 3.7. a1 vR01,π01 a0i .

We have now satisfied both system requirements: injective agreement (R2) between an
initiator and a responder (R1). By using abstraction, we have captured the essential features
of entity authentication protocols and established their main property once and for all. Recall
that the channel protocols a2 and c2 are both refinements of a1 (cf. Figure 2). Our proofs
avoid the intricacies of an active attacker controlling communication. However, the resulting
model is still quite abstract and requires further refinement to be executable in the intended
hostile distributed environment.

3.5 Level 2 – Channel protocols

At Level 2 of our refinement strategy, we introduce protocols that use communication chan-
nels with associated security properties. These channels carry plain text messages without
cryptographic operations. We also introduce an active intruder acting in this distributed
environment.

3.5.1 Channel messages

For informal use, we adopt the notation of [46] (second column of Table 2). We write A→ B
for an insecure channel from agent A to agent B. The “: M ” indicates that the message M is
sent on the channel. Security properties are indicated by a dot on one or both sides of the
arrow. The respective agent has exclusive access to the marked end. A confidential channel
A→•B provides a service to A: A knows that only B can receive messages. An authentic
channel A •→B provides a service to B: B knows that only A can send messages. A secure
channel A •→•B provides both guarantees. Besides these static channels, we also use dynamic
channels, which are accessed using a key K. For example, A •K→B denotes a dynamic authentic
channel. These keys are usually session keys generated during protocol execution. Hence, the
associated channels are dynamically created. Static and dynamic channels will later be realized
by cryptographic operations using long-term and session keys, respectively.

We formalize the channel messages that can be transmitted by a data type chmsg , with
constructors for static and dynamic channels. The first parameter of these constructors specifies
the set of security properties as a combination of authenticity (auth) and confidentiality (confid).
The actual payload message is a list of atomic messages.

security , P{auth, confid}),
chmsg , StatCh(security , agent , agent , [atom]) | DynCh(security , key , [atom]).
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Table 2: Channel notation, messages, and conditions for extraction and faking
Channel type Dot notation Channel message Eavesdrop Fake
insecure A→ B : M Insec(A,B,M) true true
confidential A→•B : M Confid(A,B,M) A or B bad true
authentic A •→B : M Auth(A,B,M) true A or B bad
secure A •→•B : M Secure(A,B,M) A or B bad A or B bad
confidential A

K→•B : M dConfid(K,M) K extractable K run-bounded
authentic A •K→B : M dAuth(K,M) true K extractable
secure A •K→•B : M dSecure(K,M) K extractable K extractable

Static channel messages name the sender and the receiver. For dynamic channel messages,
names are replaced by a key, which determines access to the respective channel. Therefore, the
agent names in the informal dot notation for dynamic channels (e.g., in A K→•B) only suggest
the intended communication partners.

In our formal developments, we use the abbreviations given in the third column of Table 2.
For example, we define

Secure(A,B,M) ≡ StatCh({auth, conf}, A,B,M)

and call this a secure message from A to B. We also say that M is sent to B on a secure
channel. We introduce analogous notions for the other channel messages.

3.5.2 Channel-based intruder

Based on the security attributes of channel messages, we define the intruder capabilities for
eavesdropping (or extracting) payload messages and for faking channel messages, indicated in
the final two columns of Table 2. We formalize these intruder capabilities as two functions:

extrT : P(chmsg)→ P(atom),

fakeT,U : P(chmsg)→ P(chmsg),

where the parameter T ⊆ atom specifies the intruder’s initial knowledge and the parameter U
denotes a set of run identifiers. The expression extrT (H) denotes the set of atoms that the
intruder can extract from the set of (observed) messages H and fakeT,U (H) denotes the set
of messages that the intruder can construct from messages in H. The faked messages carry
payloads that are extracted from messages in H using extrT (H). The set of run identifiers U
restricts the keys that the intruder can use to fake dynamic channel messages. These functions
are defined by the rules in Figures 3 and 4. These rules state that the intruder can eavesdrop
messages on non-confidential (i.e., insecure and authentic) channels and fake messages on
non-authentic (i.e., insecure and confidential) channels. Moreover, the intruder can eavesdrop
messages on confidential channels and fake messages on authentic channels, if these channels
have a dishonest starting or ending point (static case) or the associated key K is known to the
intruder (dynamic case).

The mild technical condition K ∈ rkey(U) in the third rule of Figure 4 restricts the intruder
to using a session key from the set rkey(U) ≡ {R$i | R ∈ U ∧ i ∈ N} to fake a non-authentic

20



·
T ⊆ extrT (H)

StatCh(c, A,B,M) ∈ H confid /∈ c ∨A ∈ bad ∨B ∈ bad

M ⊆ extrT (H)

DynCh(c,K,M) ∈ H confid /∈ c ∨K ∈ extrT (H)

M ⊆ extrT (H)

Figure 3: Rules defining extractable atoms.

·
H ⊆ fakeT,U (H)

M ⊆ extrT (H) auth /∈ c ∨A ∈ bad ∨B ∈ bad

StatCh(c, A,B,M) ∈ fakeT,U (H)

M ⊆ extrT (H) (auth /∈ c ∧K ∈ rkey(U)) ∨K ∈ extrT (H)

DynCh(c,K,M) ∈ fakeT,U (H)

Figure 4: Rules defining fakeable channel messages.

dynamic message. We call these keys run-bounded. Below, we will use U = dom(s.runs) to
preserve the invariant that all identifiers R$i with R /∈ dom(s.runs) are indeed fresh.

The astute reader may be surprised that the intruder does not need to know a key to
read from an authentic dynamic channel or write to a confidential dynamic channel. This
situation differs from Dolev-Yao-style perfect cryptography. For example, verifying a MAC
or signature requires a (shared or public) key. However, the key is typically only required for
verifying the authenticity of the message and not for giving access to the authenticated message
itself. Likewise, producing an encryption in a Dolev-Yao model requires a key. However,
there are encryption schemes such as stream ciphers where the intruder can produce valid
ciphertexts without knowing the encryption key. Similarly, it may be surprising that we allow
the intruder to (i) eavesdrop messages on confidential channels with a dishonest sender and (ii)
send messages on authentic channels with a dishonest receiver. Disallowing these behaviors
would preclude implementations of these channels using symmetric cryptography, for instance,
realizing an authentic channel using MACs.

3.5.3 State, events, and refinement

Channel protocols extend the state of the guard protocol they refine with a variable chan
containing a set of channel messages.

Σ2 , Σ1 + (| chan ∈ P(chmsg) |). (2)

The protocol events use guards of the form M ∈ s.chan to receive a channel message M .
These guards replace the non-local security guards in the guard protocols, which directly
read other runs’ local stores. Sending a message M is achieved by an action of the form
s′.chan := s.chan ∪ {M}.
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Channel protocols include an active intruder event, which closes the set of channel messages
under fakeable messages.

fake2 ≡ {(s, s′) | s′.chan := fake ik0,dom(s.runs)(s.chan)}. (3)

Here, we work with the initial knowledge ik0 consisting of the sets of all agents, corrupted keys,
and numbers.

ik0 ≡ agent ∪ corrKey ∪ N

The refinement of the abstract Level 1 model just extends the state record with the variable
chan. Hence, the simulation relation is typically R12 ≡ Πruns , stating that the values of variable
runs of this and the previous model are identical, or R12 ≡ Πruns,leak in case the state includes
an additional variable leak .

Example 3.8 (A channel-based authentication protocol). The high level of abstraction
of guard protocols allows many different realizations. Recall from the overview in Section 3.1
that we have also refined the model a1 into two protocols, one using authentic and one using
confidential channels, respectively. As an example, we now model the following abstract
protocol using authentic channels.

M1. A→ B : Na

M2. B •→A : Nb,Na.

The initiator A sends the nonce Na to B, who returns it together with his own nonce Nb on
an authentic channel. In Section 3.6, we will refine this protocol into the ISO/IEC 9798-3
two-pass unilateral authentication protocol [36].

The state Σa2 of model a2 is exactly as Σ2 defined in (2). Initially, all fields are empty.
The observation function is πruns , i.e., it projects this state to the runs field.

The intruder event fakea2 is fake2 defined in (3). The protocol events send and receive
messages to and from the insecure and authentic channels. In the first step, step1a1 , the
initiator A sends Na on an insecure channel to B. In the second step, the responder B creates
a new run identified by Rb, an associated nonce Nb, receives message M1 from the insecure
channel, and authentically sends message M2 to A. This event adds the reception and sending
of messages to the event step2a1 that it refines. In particular, instead of accepting any nonce
Na, the nonce is now extracted from M1.

step2a2 (Rb, A,B,Na,Nb) ≡ {(s, s′) | -- by B, refines step2a1
-- guards
Rb /∈ dom(s.runs) ∧ -- fresh run Rb
Nb = Rb$nb ∧ -- fresh nonce Nb
Insec(A,B, [Na]) ∈ s.chan ∧ -- receive M1

-- actions
s′.runs := s.runs(Rb 7→ (Resp, A,B, [Na])) ∧
s′.chan := s.chan ∪ {Auth(B,A, [Nb,Na])} }. -- send M2
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In the third step, the initiator run Ra receives message M2 and updates his local state with
the nonce Nb.

step3a2 (Ra, A,B,Na,Nb) ≡ {(s, s′) | -- by A, refines step3a1
-- guards
s.runs(Ra) = (Init, A,B, []) ∧
Na = Ra$na ∧
Auth(B,A, [Nb,Na]) ∈ s.chan ∧ -- recv M2

-- actions
s′.runs := s.runs(Ra 7→ (Init, A,B, [Nb])) }.

The reception of message M2 replaces the access to the responder run’s memory of the refined
event step3a1 . The corresponding guard refinement (GRD) of the refinement proof requires
the following invariant, which states that authentic messages between honest agents indeed
originate from an associated responder run identified by Rb.

autha2 ≡ {s | ∀A,B,Na,Nb.
Auth(B,A, [Nb,Na]) ∈ s.chan ∧B /∈ bad ∧A /∈ bad
→ ∃Rb. Nb = Rb$nb ∧ s.runs(Rb) = (Resp, A,B, [Na])}.

This invariant is all that is needed to prove the refinement. Note that this is an internal
invariant since it refers to channel messages, which are not observable.

Let a2 be the above specification. The simulation relation is the canonical R12 ≡ Πruns

described above.

Proposition 3.9. Let R′12 ≡ R12 ∩ (Σa1 × autha2 ). Then we have reach(a2 ) ⊆ autha2 and
a2 vR′12,id a1 .

By using abstract channels, we retain the possibility of different cryptographic realizations.
For example, we may realize the authentic channels using signatures or MACs.

3.6 Level 3 – Cryptographic protocols

We model concrete protocols and the Dolev-Yao intruder using a standard theory of crypto-
graphic messages due to Paulson [59]. At this level, messages are transmitted over insecure
channels.

3.6.1 Cryptographic messages and setup

The type of messages, msg , is defined inductively from agents A ∈ agent , nonces N ∈ nonce,
timestamps T ∈ N, keys K ∈ key, pairs 〈M1,M2〉, and encryptions {|M |}K . We sometimes
omit the pair brackets 〈·, ·〉 when no confusion can result. At this level, we can define a concrete
type of long-term keys, ltk . As one of many possible examples, we may define ltk as follows.

ltk , pub(agent) | pri(agent) | shr(agent).

The terms pub(A), pri(A), and shr(A) respectively denote A’s public key, A’s private key, and
the symmetric key that A shares with the server S. We model signatures as encryptions with a
private key.
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We can also concretize the previously declared abstract setup of cryptographic keys,
keySetup (see Section 3.2). For example, we may define keySetup as follows.

A,B ∈ agent

(pub(A), B) ∈ keySetup

A ∈ agent

(pri(A), A) ∈ keySetup

A ∈ agent C ∈ {A,S}
(shr(A), C) ∈ keySetup

.

As a consequence we can prove the following equation about corrKey .

corrKey = pub(agent) ∪ pri(bad) ∪ shr(bad).

To formalize protocol properties and the intruder, we use the standard closure operators
parts , analz , and synth on sets of messages (see [59]; for completeness, we give their definitions
in Appendix A). Note that our framework is currently restricted to encryption with atomic
keys. The term parts(H) closes H under submessages (i.e., subterms of messages), analz (H)
closes H under submessages accessible by projection and decryption using the keys in H, and
synth(H) closes H under message compositions.

3.6.2 State and events

Cryptographic protocols replace the channel messages chan with a variable IK containing a
set of cryptographic messages. Therefore, like the channel protocols, they extend the state Σ1

of the guard protocol they refine.

Σ3 , Σ1 + (| IK ∈ P(msg) |).

Initially, the set IK contains the initial intruder knowledge, e.g., the long-term keys of all bad
agents, corrKey . Note that agent ∪ N ⊆ synth(H) for all sets of messages H.

Protocol events receive messages by using guards of the form M ∈ s.IK and send messages
by actions of the form s′.IK := s.IK ∪ {M}. The Dolev-Yao intruder can generate and send
messages from the set synth(analz (s.IK )).

fake3 ≡ {(s, s′) | s′.IK := synth(analz (s.IK ))}

Example 3.10 (A cryptographic authentication protocol). We now refine the abstract
protocol model a2 into the ISO/IEC 9798-3 two-pass unilateral authentication protocol [36]
by translating the authentic channels into signed messages communicated over an insecure
channel.

M1. A→ B : A,B,Na

M2. B → A : {|Nb,Na, A|}pri(B).

The state Σiso3 is Σ3 described above. Initially, the runs field is empty and IK = corrKey .
Note that for this example the shared keys could be omitted. This models Assumptions A2
and A3 about static corruption and the cryptographic setup. Only the runs field is observable.

We restrict our presentation to the second protocol step, step2iso3 . It refines the abstract
event step2a2 by replacing the insecure message M1 by a corresponding message in IK and the
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authentic message M2 by a signed message in IK .

step2iso3 (Rb, A,B,Na,Nb) ≡ {(s, s′) | -- by B, refines step2a2
-- guards
Rb /∈ dom(s.runs) ∧
Nb = Rb$nb ∧
〈A,B,Na〉 ∈ s.IK ∧ -- receive M1

-- actions
s′.runs := s.runs(Rb 7→ (Resp, A,B, [Na])),
s′.IK := s.IK ∪ {{|Nb,Na, A|}pri(B)} }. -- send M2

The intruder event fake iso3 is fake3 introduced above, which models the Dolev-Yao intruder
described in Assumption A1.

3.6.3 Refinement

The refinement of channel protocols by cryptographic ones is based on a protocol-dependent
message abstraction function absMsg : P(msg) → P(chmsg). Given such a function, the
simulation relation R23 is defined as the intersection of the following four relations.

Rmsgs
23 ≡ {(s, t) | absMsg(parts(t.IK )) ⊆ s.chan},

Rnon
23 ≡ {(s, t) | ∀N ∈ nonce. N ∈ analz (t.IK )→ N ∈ extr ik0(s.chan)},

Rkey
23 ≡ {(s, t) | ∀K ∈ key . K ∈ analz (t.IK )→ K ∈ extr ik0(s.chan)},

Rpres
23 ≡ Πruns .

(4)

The relation Rmsgs
23 expresses that the abstractions of concrete message parts in t.IK are

contained in the channel variable s.chan. Abstracting message parts instead of the messages
themselves increases the flexibility of the abstractions. We will further discuss this point in
Section 4.6 where this possibility enables the modification of the communication topology
between Levels 2 and 3. The relations Rkey

23 and Rnon
23 state that the abstract intruder knows at

least the nonces and keys that the concrete intruder also knows. If no keys or no nonces appear
in a protocol then the corresponding relation can be dropped from the simulation relation.
Finally, the relation Rpres

23 states that the variable runs is preserved, i.e., it has the same value
in the abstract and concrete model. In concrete applications, this relation may include other
preserved state variables, such as leak .

When modeling session key compromise, it may be necessary to generalize this simulation
relation, in particular the relations Rkey

23 and Rnon
23 . We defer the detailed discussion of this

case to Section 4.6.
In the refinement proof for the intruder events, a variant of the following action refinement

(ACT) proof obligation arises.

(s(| chan := fake(s.chan) |), t(| IK := synth(analz (t.IK )) |)) ∈ R23.

This states that the successor states resulting from the respective intruder actions are still in
the simulation relation. The proof of the part concerning Rmsgs

23 relies on the property

(s, t) ∈ R23 → absMsg(parts(synth(analz (t.IK )))) ⊆ fake(s.chan),

which typically follows from the definitions of absMsg and fake and from general properties of
parts, synth, and analz .
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Example 3.11. The simulation relation in this refinement is R23 as defined in (4), except that
Rkey

23 is not needed. We concretize the message abstraction function absMsg(H) as follows.

〈A,B,Na〉 ∈ H
Insec(A,B, [Na]) ∈ absMsg(H)

{|Nb,Na, A|}pri(B) ∈ H
Auth(B,A, [Nb,Na]) ∈ absMsg(H)

.

The refinement proof only requires one internal invariant expressing the secrecy of the
private signing keys.

keysiso3 ≡ {s | ∀A. pri(A) ∈ analz (s.IK )→ A ∈ bad}.

We can now state the refinement result relating this model of the ISO/IEC 9798-3 protocol
to the abstract channel model a2 .

Proposition 3.12. Let R′23 ≡ R23 ∩ Σa2 × keysiso3 . Then reach(iso3 ) ⊆ keysiso3 and
iso3 vR′23,id a2 .

This concludes our running example.

3.7 Discussion

We have presented our four-level refinement strategy along with its supporting infrastructure.
We have illustrated our approach with the development of simple entity authentication protocols.
This resulted in two different concrete protocols at Level 3: ISO/IEC 9798-3 and NSL/2. We
satisfied all system requirements by proving properties of the abstract model at Levels 0
and 1. As these models are not directly implementable, we continued our refinements, thereby
obtaining models that are suitable for an implementation in the intended hostile distributed
environment and, crucially, inherit the properties we proved for the abstract models. The
simulation relation and invariants used here at Levels 2 and 3 are canonical for our refinement
strategy (cf. Section 4). We would like to emphasize that a number of alternative cryptographic
realizations of the channel protocols are possible, for example, using symmetric encryption or
MACs. Our approach fosters abstraction and enables the sharing of structure and proofs.

4 Key establishment protocols

In this section, we validate our refinement approach by developing a family of key establishment
protocols, including the Needham-Schroeder Shared Key (NSSK) protocol, core versions of
the Kerberos 4 and 5 protocols, and the Denning-Sacco protocol. Compared to the running
example from Section 3, our protocol models feature additional elements such as timestamps,
replay caches, dynamic channels, and a changing communication structure. We also prove
additional security properties related to session keys, such as key confirmation, key freshness,
key recentness, and session key compromise.

4.1 Requirements and assumptions

Our informal requirements and assumptions for (server-based) key establishment protocols
follow below. The first three requirements are mandatory and must be satisfied by all protocols
we consider. The last three requirements are optional. We will formalize these requirements in
subsequent sections.
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Requirement R1 (Key distribution). The server generates and distributes a fresh session
key to an initiator and a responder.

Requirement R2 (Key secrecy). Only authorized agents may learn a session key K, unless
one of them is dishonest or the key K has leaked whereby other agents may also learn it.

The next two requirements cover authentication properties, which we will formalize in
Section 4.3 as injective or non-injective agreements.

Requirement R3 (Server authentication). The initiator and the responder each authen-
ticate the server on the session key and possibly on additional data.

Requirement R4 (Key confirmation). The initiator and the responder authenticate each
other on the session key and possibly on additional data, thereby confirming to each
other their knowledge of the key.

Two additional (and independent) requirements concern the freshness and recentness of the
session key. A key is fresh if it is only used in a single session and is recent if its lifetime does
not exceed a specified limit.

Requirement R5 (Key freshness). The initiator and responder obtain assurance that the
session key is fresh.

Requirement R6 (Key recentness). The initiator and responder obtain assurance that
the session key is recent.

The environment assumptions A1–A3 about the intruder, static corruption, and the
cryptographic setup remain the same as in Section 3.1. We also add the possibility of session
key compromise.

Assumption A4 (Session key compromise). Session keys may leak to the intruder.

4.2 Development overview

We concretize our refinement strategy for deriving different server-based key establishment
protocols: the Needham-Schroeder Shared-Key (NSSK) protocol [54], the Denning-Sacco
protocol [32], and a core version of Kerberos 4 [66] and Kerberos 5 [55] with one instead of two
servers. In these protocols, the initiator requests a session key from the server for use with a
given responder. We derive different variants of these protocols. In the simplest variant, the
server responds by sending encrypted copies of the session key directly to the initiator and
the responder. In the original protocols, the server also sends the responder’s encrypted key,
called a ticket, to the initiator who forwards it to the responder. The ticket is either encrypted
inside the message containing the initiator’s copy of the session key (NSSK, Denning-Sacco,
and Kerberos 4) or sent alongside that message (Kerberos 5). Moreover, in the NSSK and
Kerberos 4 and 5 protocols, the initiator and the responder exchange two additional messages
for mutual key confirmation. After this overview, we will focus on the core Kerberos 4 and 5
protocols in the remainder of this section. Figure 12 on page 40 depicts a message sequence
chart of these protocols.

The refinement graph in Figure 5 summarizes our development. Recall that each node
represents a model and each arc m → m′ represents a refinement m vπ m′ for a mediator
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Figure 5: Refinement graph.

function π, not shown. The superscripts refer to the requirements established, where i and r
denote the initiator and the responder.

At Level 0, we have the abstract models of secrecy (s0 ) and authentication (a0i , a0n) from
Section 3.3. At Level 1, our first guard protocol, kt1 , abstractly models server-based secret key
transport (R1, R2). It refines the secrecy model s0 and is an ancestor of all key transport
protocols that we have derived. The model kt1 therefore provides secret key distribution, but
does not guarantee the session key’s authenticity, freshness, or recentness. Hence, we refine kt1
into further guard protocols that establish authentication properties (R3, R4) and use nonces
or timestamps, to prevent replays and guarantee key freshness and recentness (R5, R6). We
do this in two stages.

In the first stage, we refine kt1 into two different models that realize server authentication
(R3). In the first model, kt1in, the initiator injectively agrees with the server on the session
key, while the responder non-injectively agrees with the server (reflected in the name as ending
in). The injective agreement and secrecy entail key freshness (R5) for the initiator. In the
second model, kt1nn, both initiator and responder achieve non-injective agreements with the
server (reflected in the name as nn). The data agreed upon, in addition to the session key,
is a parameter in these models. We establish each authentication property by refining an L0
model, a0n or a0i , using a different mediator function. This explains why there are multiple
arcs between some models in Figure 5.

In the second stage, we refine the model kt1in into nssk1 and krb1 and establish key
confirmation (R4). We achieve this by adding protocol steps and proving mutual agreement
between the initiator and the responder on the key and other data. In nssk1 , these agreements
are injective due to the use of nonces. In krb1 , we use timestamps to ensure key recentness
(R6). A replay prevention cache allows the responder to obtain an injective agreement with
the initiator. Key freshness (R5) for the responder relies on both authentication and secrecy
properties. Finally, we also refine the model kt1nn into ds1 using timestamps to obtain key
recentness. At this point, all requirements are established. The remaining two levels realize the
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Table 3: L3 models and their properties
Protocol Model R1 R2 R3 R4 R5 R6
NSSK nssk3 X X i/n i/i X –
Kerberos 4 krb3iv X X i/n n/i X X
Kerberos 5 krb3v X X i/n n/i X X
Denning-Sacco ds3 X X n/n – – X

environment assumptions A1–A4, making the protocol fit for execution in a hostile distributed
environment.

At Level 2, we construct the three channel-based models, nssk2 , krb2 , and ds2 , where the
roles exchange channel messages instead of reading each other’s memory. The server distributes
the session key on static secure channels to the initiator and responder and key confirmation is
realized in nssk2 and krb2 using dynamic authentic channels protected by the session key.

At Level 3, we replace the channel messages by cryptographic messages sent over an insecure
channel. We implement the static secure channels by symmetric encryption with long-term keys
and the dynamic authentic channels by encryption with the session key. The models at this
level differ in their handling of the responder’s ticket. In models with names ending in d (for
direct), namely, nssk3d , ds3d , and krb3d , the server sends the ticket directly to the responder.
In the other models, the communication topology changes: the server sends the ticket to the
initiator who forwards it to the responder. While in krb3v the ticket is sent alongside the
ciphertext containing the initiator’s session key, it appears inside the ciphertext in the models
nssk3 , ds3 , and krb3iv .

Table 3 summarizes the requirements achieved by the final protocols. In the columns for the
authentication requirements R3 and R4, ‘i’ and ‘n’ mean injective and non-injective agreement.
The slash separates initiator and responder guarantees. The models with names ending in d
(not listed in the table) achieve the same properties as their listed siblings.

Based on the modeling and reasoning framework and the infrastructure from Section 3, in
the following sections we develop concrete models at each abstraction level. We focus on the
models typeset in boldface in Figure 5 that lead to the core versions of Kerberos. Figure 6
provides an overview of most refinements between these models and the related propositions.
State spaces (without variable types) and simulation relations are displayed on the left-hand
side, observations and mediator functions on the right-hand side, and observation functions
are shown as left-to-right arrows. Triples of the form (i, r, s) describe the frames of completed
initiator, responder, and server runs, where “. . .” stands for the fields inherited from the model
above. A star (*) means that the related refinement proof requires invariants to strengthen the
simulation relation. In this figure, we have not included the refinements of the authentication
models a0n and a0i by the models kt1in and krb1 (Propositions 4.2 and 4.5). These exhibit a
structure similar to the refinement of s0 by kt1 . We have also omitted the refinement of krb2
into core Kerberos 4 (krb3iv) stated in Proposition 4.9 as it is similar to the refinement into
core Kerberos 5 (krb3v). This figure is primarily intended as a reference for the reader, but we
will return to it in Section 4.7.1 where we discuss the security guarantees that the refinements
yield for the final models at Level 3.
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Figure 6: Details of refinements in the Kerberos development.

4.3 Security properties (L0)

We start our development by formalizing the security requirements. We formalize each secrecy
and authentication requirement as an instance of the corresponding L0 model from Section 3.3.
We will later show that our guard protocol models (L1) refine these instantiated models, thus
establishing the respective requirements (by Corollary 2.8). We will formalize key recentness
directly as a guard and key freshness as invariants of Level 1 protocols and therefore discuss
these later in Section 4.4.

Secrecy The instantiation of the polymorphic type of data of the model s0 to keys provides
an abstract model of key distribution and key secrecy. Refining this model will establish
Requirements R1 and R2.

Authentication We formalize the Requirements R3 and R4. For this purpose, we must
specify the data agreed upon. We use authentication graphs to represent this information
visually. Figure 7 displays the authentication graph of the Kerberos protocols. In these graphs,
there is one node for each protocol role. Each node is labeled by an agent name (in the given
role), possibly followed by a list of nonces and timestamps generated during the role’s execution.
For example, the server S generates the session key Kab and a timestamp Ts , and the initiator
generates a nonce Na and a timestamp Ta. Each arrow specifies one agreement property,
guaranteed to the agent at the arrow’s head, by defining the parameters h and d for the running
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Figure 7: Authentication graph for Kerberos.

and commit events of the models a0n or a0i . The arrow endpoints define the agents h, whose
honesty is assumed, and the tuples labeling the arrows specify the data d to be agreed upon
between these agents. Note that for the current development, we do not need to assume the
honesty of agents other than the participants in the agreement. An arrow tail indicates an
injective agreement. The boldface labels indicate the requirements that are established for
the agent near the arrow head. For example, the arrow from S to B labeled by (Kab, A,Ts)
means that the responder B non-injectively agrees with the server on (Kab, A,Ts), assuming
the honesty of S and B (R3). The arrow from A to B labeled by (Kab,Ts,Ta) means that B
injectively agrees with A on Kab, Ts, and Ta, assuming the honesty of A and B (R4).

To prove that an L1 model establishes an agreement of role r with role r′, we identify an
event of role r that refines the commit event and an event of role r′ that refines the running
event. All other events must refine skip. Each agreement requires a different mapping of the
protocol events to the running and commit events and therefore requires a separate refinement
of the model a0i or a0n (cf. Figure 5).

4.4 Guard protocols (L1)

In our server-based key transport protocols, there are three roles: a key-generating server
and key-receiving initiators and responders. The state records runtime information about the
execution of these roles and the set of leaked keys as described in Section 3.4.

Σ1 , (| runs ∈ runsT |),
Σkt1 , Σ1 + (| leak ∈ P(key) |).

Initially, the runs map is empty and leak is initialized to the set of corrupted keys, corrKey .
The entire state is observable, i.e., the observation function is the identity.

4.4.1 Secret key distribution

A sequence chart of our first abstract key transport protocol model, kt1 , appears in Figure 8.
This model establishes R1 and R2 as follows. The server S generates the session key Kab,
which is indicated by the role label S: Kab. The initiator A and the responder B then secretly
acquire this key and record it in their run frames, which is represented by arrows from S to A
and B labeled by Kab. These arrows do not represent the communication of messages, since
there are no messages or channels at this stage.

Before presenting the events of the specification kt1 , we discuss the simulation relation
used in the refinement of the model s0 from Section 3.3.1, which establishes session key secrecy.
As described in Section 3.4, we define relations knC (r) and azC (r), which reconstruct s0 ’s
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A BS: Kab
Kab Kab

Figure 8: Basic secret key distribution (kt1 ).

knowledge and authorization relations from the runs r ∈ runsT . We also define the function
lkC as the identity function, i.e., the variable leak equals lk in s0 .

We define the relation knC (r) by four rules. The following three rules describe each role’s
session key knowledge. Recall that x#xs is a list with head element x and tail xs.

r(Ra) = (Init, A,B,K#ns)

(K,A) ∈ knC (r)

r(Rb) = (Resp, A,B,K#ns)

(K,B) ∈ knC (r)

r(Rs) = (Serv, A,B, ns)

(Rs$sk, S) ∈ knC (r)
.

Here, Rs$sk is the fresh value used by the server run Rs for the session key and sk is an
arbitrary natural number. An additional rule states that the initial key setup is contained in
the knowledge relation, i.e., keySetup ⊆ knC (r).

The following rule defines who is authorized to learn a session key that the server S generated
for A and B, namely A, B, and S, if A and B are honest, and everyone otherwise.

r(Rs) = (Serv, A,B, ns) C ∈ {A,B,S} ∨A ∈ bad ∨B ∈ bad
(Rs$sk, C) ∈ azC (r)

. (5)

An additional rule states that keySetup ⊆ azC (r).
The specification kt1 has five events modeling a protocol step and a leak event modeling

session key compromise. The first event creates a new run Ra of initiator A with responder
B by updating runs with (Ra 7→ (Init, A,B, [])). The second event creates a responder run
analogously. These two events refine skip. In the third event, we generate a new server run Rs
with an associated fresh session key Kab. This event refines gens0 (Kab,S, [S, A,B]).

step3kt1 (Rs, A,B,Kab) ≡ {(s, s′) | -- by S, refines gens0

Rs /∈ dom(s.runs) ∧ -- fresh server run
Kab = Rs$sk ∧ -- session key

s′.runs := s.runs(Rs 7→ (Serv, A,B, [])) }.

The last two events model the acquisition of the session key by the initiator and the responder.
They both refine the event learns0 . In Step 5, the responder B acquires the session key Kab in
its run Rb.

step5kt1 (Rb, A,B,Kab) ≡ {(s, s′) | -- by B, refines learns0

s.runs(Rb) = (Resp, A,B, []) ∧ -- B’s run
(Kab /∈ s.leak → (Kab, B) ∈ azC (s.runs)) ∧ -- check authorization

s′.runs := s.runs(Rb 7→ (Resp, A,B, [Kab])) }.

The first guard requires that Rb identifies a run of responder B with initiator A, where B
has not yet received a key. The action updates the responder run. The initiator’s step4kt1 is
analogous.
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The second guard is an authorization guard requiring that B is authorized to learn Kab
unless Kab is leaked. There are two cases according to the definition of azC . The first
case, described by rule (5), corresponds to reading a (session) key Kab from the server, who
determined the authorization to access the key. Note that there is no guarantee that the key
was generated for B. In the second case, Kab is a static key, which may be corrupted. For now,
there are no further constraints on Kab. The authorization guard is sufficient to preserve the
secrecy of Kab. In Section 4.4.2, we establish authentication properties to ensure that honest
agents only accept session keys generated for them and shared with the intended partner.

Finally, the leak event compromises the session key generated by a server run and records
it in the variable leak .

leakkt1 (Rs) ≡ {(s, s′) | ∃A,B,ns. -- by attacker, refines leaks0
s.runs(Rs) = (Serv, A,B,ns) ∧ -- existing server run

s′.leak := s.leak ∪ {Rs$sk} }.

Instantiating the simulation relation Rs01 from Section 3.4 with the relations azC (r) and
knC (r) defined above and lkC with the identity function (i.e., lk = leak), we show that the
model kt1 refines the secrecy model s0 . The guard strengthening proof in the refinement of
the event gens0 by step3kt1 requires an invariant, keykt1 , stating that a fresh session key K is
neither in the domain of knC (s.runs) or azC (s.runs) nor an element of s.leak .

Proposition 4.1. Let R′s01 ≡ Rs01 ∩ (Σs0 × keykt1 ). Then we have reach(kt1 ) ⊆ keykt1 and
kt1 vR′s01 ,πs01 s0 .

Since the abstract variables kn and az are observable and reconstructable from the concrete
state, the secrecy invariant for s0 (Proposition 3.1) is inherited by kt1 (Corollary 2.8), which
thus realizes secret key distribution (R1, R2).

4.4.2 Server authentication

We now refine the model kt1 into kt1in and establish agreements of the initiator and the
responder with the server on the session key and additional data. The additional data is a
parameter of kt1in. However, for the sake of the presentation, we will focus our attention
on the instantiation of kt1in for the Kerberos development. The models kt1 and kt1in have
identical state spaces, but in kt1in we introduce nonces and timestamps, which are part of
the data included in the agreement and recorded in the run frames of the different roles. The
observation function is the identity. Figure 9 shows a sequence chart for this model. The labels
below the arrows denote agreements and an arrow tail indicates an injective agreement as
specified in Figure 7. Na is a nonce generated by A and Ts is a timestamp generated by S. The
initiator A achieves (R3) by an injective agreement with the server on (Kab, B,Na,Ts) and
the responder B establishes (R3) by a non-injective agreement with the server on (Kab, A,Ts).
The model kt1in refines kt1 , a0i , and a0n (cf. Figures 5 and 6). We establish key freshness
(R5) for the initiator as an invariant (cf. Section 4.4.4 for the similar responder case).

We obtain the model kt1in by modifying kt1 in two ways. First, we introduce new event
parameters and corresponding state updates to reflect that both partners of the agreement
know the data being agreed upon. In the server’s Step 3, we add a nonce Na and the timestamp
Ts to the parameters and record these in the run frame, i.e., the runs are updated with Rs 7→
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A: Na BS: Kab, Ts

Kab, B, Na, Ts

Kab

Kab, A, Ts

Kab

Figure 9: Adding server authentication (kt1in).

(Serv, A,B, [Na,Ts]). Neither Na nor Ts are constrained by any guards. In the responder’s
Step 5, we add the parameter Ts and update the runs with Rb 7→ (Resp, A,B, [Kab,Ts]) and
similarly in the initiator’s Step 4.

Second, we realize the agreements described above by adding authentication guards to the
key-receiving Steps 4 and 5. These guards may be added directly to the respective events or
discovered during the refinement proof of the commit event of the model a0n or a0i . Here, we
describe guard discovery.

For the refinement of a0n, we therefore first define the function sigsC , which reconstructs
signal multisets from protocol runs, and use it to obtain the mediator function πrsa01 and
simulation relation Rrs

a01 , as described in Section 3.4. The multiset sigsC rs(r) contains a
Commit signal for each completed responder run. We formalize this as follows.

sigsC rs(r)(Commit([B, S], (Kab, A,Ts))) ≡ |RR|,

where

RR ≡ {Rb | ∃nl. r(Rb) = (Resp, A,B,Kab#Ts#nl)}.

Similarly, completed server runs give rise to Running signals. Since the session key Kab is
derived from the (unique) server run identifier Rs, a simpler definition suffices.

sigsC rs(r)(Running([B, S], (Kab, A,Ts))) ≡
if ∃Rs,Na, nl. (Kab = Rs$sk ∧ r(Rs) = (Serv, A,B,Na#Ts#nl)) then 1 else 0.

The existential quantifications on nl account for extensions to the run frames with additional
atomic messages in later refinements. Finally, we set sigsC rs(r)(x) ≡ 0 at all other points x.

Next, we prove that the server’s event step3kt1in and the responder’s event step5kt1in refine
the events runninga0n([B, S], (Kab, A,Ts)) and commita0n([B, S], (Kab, A,Ts)) of the abstract
model a0n. The remaining events refine skip. In the proof of guard refinement (GRD) for
step5kt1in , we get stuck in a proof state that directly suggests the following authentication
guard for this event.

B /∈ bad→ ∃Rs,Na, nl. (Kab = Rs$sk ∧ s.runs(Rs) = (Serv, A,B,Na#Ts#nl)). (6)

This guard guarantees to an honest B that there is a server in a state counting as a matching
Running([B, S], (Kab, A,Ts)) signal. After adding this guard, the proof succeeds.

For a0i ’s refinement, we proceed similarly to discover the authentication guard for the event
step4kt1in(Ra, A,B,Na,Kab,Ts) in the proof that this event refines commita0i ([A, S], (Kab, B,
Na,Ts)).

A /∈ bad→ ∃Rs, nl. (Kab = Rs$sk ∧ s.runs(Rs) = (Serv, A,B,Na#Ts#nl)).

Compared to (6), the absence of the existential quantification on Na reflects that this agreement
includes Na.
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A: Na,Ta BS: Kab, Ts
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Figure 10: Adding key confirmation (krb1 ).

Proposition 4.2. kt1in vπis
a01

a0i for the initiator and kt1in vπrs
a01

a0n for the responder.

Finally, it is easy to see that kt1in refines kt1 . The mediator function π1in1 removes the
nonce Na and the timestamp Ts from server run frames, and Ts from initiator and responder
run frames, therefore only keeping the session key Kab.

Proposition 4.3. kt1in vπ−1
1in1 ,π1in1

kt1 .

4.4.3 Key confirmation

We next extend the model kt1in to an abstract model of Kerberos (Figure 10), which achieves
key confirmation (R4), key freshness for the responder (R5), and key recentness (R6). To
model timestamps and their expiration, we explicitly introduce a (discrete-time) global clock.
To keep our model simple, we abstract here from the more realistic scenario where clocks are
local and must be synchronized by a separate protocol. For key recentness, the initiator and
responder check the validity of a timestamp Ts that the server associates with the session key
Kab. For key confirmation, the initiator and responder mutually agree on the session key Kab,
its associated timestamp Ts, and an initiator timestamp Ta (cf. Figure 7). The responder
caches keys Kab and timestamps Ta to obtain an injective agreement with the initiator. We
assume arbitrary fixed lifetimes Ls and La for server and initiator timestamps. Note that the
sequence chart in Figure 10 contains all agreements specified in Figure 7 and (partially) orders
them causally.

We define the state of krb1 as the extension of Σ1 (containing just the runs variable, see
Section 3.4) with a refined version of the variable leak of kt1 and two additional variables,
reflecting the elements discussed above.

Σkrb1 , Σ1 + (| leak ∈ P(key × agent × agent × nonce × time),

clk ∈ time, cch ∈ P(agent × key × time) |).

Compared to kt1 , the variable leak here associates the complete session context of the server
to the leaked key Kab, namely the agent names A and B, the initiator nonce Na and the
server timestamp Ts . This will allow us to prove stronger secrecy guarantees. The variable clk
models the discrete-time clock. We introduce an associated tick(T ) event that increments the
clock by T time units. All other events are assumed to take no time and hence do not modify
the clock. The variable cch represents a cache storing triples (B,Kab,Ta) consisting of an
agent name B, a session key Kab, and an initiator timestamp Ta. For replay protection, a
responder B checks the cache before accepting a key Kab with timestamp Ta. A new purge(B)
event removes from B’s cache those entries whose timestamps Ta have expired and thus are no
longer valid, which is the case when s.clk ≥ Ta + La.
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The events for Steps 1–5 of the model krb1 are derived from the corresponding kt1in events,
possibly adding guards and actions. In Step 3, we associate the timestamp Ts with the current
time by adding the guard Ts = s.clk .

In the initiator’s Step 4, we add the initiator’s timestamp Ta as a parameter and record it
in the frame, and we introduce two time-related guards. In particular, we have guards that
check the validity of timestamps to ensure key recentness (R6).

step4krb1 (Ra, A,B,Na,Kab,Ts,Ta) ≡ {(s, s′) | -- by A
· · · -- guards of step4kt1in (omitted)
Ta = s.clk ∧ -- get timestamp
s.clk < Ts + Ls ∧ -- check validity of Ts

s′.runs := s.runs(Ra 7→ (Init, A,B, [Kab,Ts,Ta])) }.

The first guard states that the timestamp Ta is the current value of the clock. The second
guard ensures the validity of the server timestamp Ts.

In the responder’s Step 5, we also add Ta as a parameter and record it in the frame.
Furthermore, we introduce four new guards and a new action.

step5krb1 (Rb, A,B,Kab,Ts,Ta) ≡ {(s, s′) | -- by B
· · · -- guards of step5kt1in (omitted)
-- for agreement with A on (Kab,Ts,Ta)
(A /∈ bad ∧B /∈ bad → ∃Ra,nl . s.runs(Ra) = (Init, A,B,Kab#Ts#Ta#nl)) ∧

(B,Kab,Ta) /∈ s.cch ∧ -- replay protection
s.clk < Ta + La ∧ -- check validity of Ta
s.clk < Ts + Ls ∧ -- check validity of Ts

s′.cch := s.cch ∪ {(B,Kab,Ta)} -- cache update
s′.runs := s.runs(Rb 7→ (Resp, A,B, [Kab,Ts,Ta])) }.

The first guard ensures agreement with the initiator on the data (Kab,Ts,Ta). The second
guard achieves injectivity for the responder by checking that B has not previously seen Kab
with timestamp Ta. The last two guards ensure recentness by checking the validity of Ta and
Ts. The new action adds (B,Kab,Ta) to the cache to avoid future replays.

We also add a new Step 6 to the initiator, which uses an authentication guard to achieve
agreement with a responder run Rb on Kab, Ts, and Ta. We add an arbitrary value END to
the frame to mark the initiator run’s termination.

step6krb1 (Ra, A,B,Na,Kab,Ts,Ta) ≡ {(s, s′) | -- by A
s.runs(Ra) = (Init, A,B, [Kab,Ts,Ta]) ∧

-- for agreement with B on (Kab,Ts,Ta)
A /∈ bad ∧B /∈ bad → (∃Rb. s.runs(Rb) = (Resp, A,B, [Kab,Ts,Ta])) ∧

s′.runs := s.runs(Ra 7→ (Init, A,B, [Kab,Ts,Ta,END ])) }.

Finally, we modify the leak event by recording tuples (Kab, A,B,Na,Ts) instead of just
Kab and by including the additional guard s.clk > Ts + Ls, which reflects the intuition that
the lifetime Ls is short enough to prevent the compromise of a session key during its validity
period.
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The mediator function π11 in the refinement of kt1in by krb1 drops the timestamps Ta
and the termination marker END from initiator and responder frames.

Proposition 4.4. krb1 vπ−1
11 ,π11

kt1in.

The mediators πira01 and πria01 and associated simulation relations for refining a0i and a0n
are defined analogously to Section 4.4.2. The authentication guards can be defined or discovered
as described in that section. The replay cache guarantees injective agreement with the initiator
to the responder, while the initiator obtains only a non-injective agreement with the responder.
The proof of injectivity in the refinement of commita0i by step5krb1 requires an invariant stating
that if a responder B knows a key Kab and a timestamp Ta then he has an entry (B,Kab,Ta)
in the replay cache during Ta’s validity. Appendix B provides some proof details.

Proposition 4.5. (i) krb1 vπir
a01

a0n for the initiator and (ii) krb1 vπri
a01

a0i for the responder.

4.4.4 Key freshness

Finally, we formalize key freshness (R5) for the responder as an invariant of krb1 . Recall that
key freshness means that there is a unique key for each session. More precisely, this property
expresses that a session key K appearing in a run of a responder B with an initiator A uniquely
identifies that run, provided that A and B are honest and the session key K has not leaked.

rfreshkrb1 ≡ {s | ∀R,R′, A,A′, B,B′,K,Ts,Ts ′,Ta,Ta ′.
s.runs(R) = (Resp, A,B, [K,Ts,Ta]) ∧
s.runs(R′) = (Resp, A′, B′, [K,Ts ′,Ta ′]) ∧
B /∈ bad ∧A /∈ bad ∧K /∈ dom(s.leak)
→ R = R′}.

We have proved that this is an external invariant of krb1 .

Proposition 4.6. oreach(krb1 ) ⊆ rfreshkrb1 .

All cases except for the critical Step 5 by the responder are proved automatically. The proof
of Step 5 relies on other invariants proved for krb1 or inherited from its ancestors. Secrecy and
the responder’s agreement with the server are used to exclude the cases where the initiator A′

or the responder B′ in the run R′ is dishonest. Otherwise, we use the injective agreement with
the initiator to reduce the proof to the initiator’s key freshness (proved for kt1in).

4.5 Channel protocols (L2)

As described in Section 3.5, at Level 2, we extend the state with a field chan for the set of
channel messages of type chmsg . All fields except chan are observable, i.e., the observation
function πruns,leak ,clk ,cch projects Σkrb2 to Σkrb1 .

Σkrb2 , Σkrb1 + (| chan ∈ P(chmsg) |).

For the refinement of krb1 , we use the simulation relation R12 ≡ Πruns,leak ,clk ,cch with the
identity mediator function. In the protocol events, we add message-receiving guards, which
replace the authorization and authentication guards from Level 1 (if any), and actions for
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M2a. Kab, B, Ts, Na M2b. Kab, A, Ts

M1. A, B, Na

M3. Kab: A, Ta

M4. Kab: Ta

Figure 11: Channel-based Kerberos protocol (krb2 ).

sending channel messages. The local guards remain the same. We refine the leak event to add
an insecure message containing the leaked key to the set of channels messages. Moreover, we
introduce an active intruder as described in Section 3.5. The intruder’s fake event refines skip,
as it only modifies chan, while all other events refine their counterparts in the model krb1 .

The channel-based refinement krb2 of krb1 is shown in Figure 11. The protocol is now
started by the initiator sending A,B together with his nonce Na to the server. The server
uses static secure channels to send the session key Kab, the name B, the timestamp Ts, and
the nonce Na to the initiator A and Kab, A,Ts to the responder B. The responder B obtains
key confirmation from A by receiving A,Ta on a dynamic authentic channel protected by the
session key Kab (and similarly for A’s guarantee in the other direction). No confidentiality is
required in the key confirmation phase.

As example events, we describe the changes in Steps 3 and 5. In the server’s Step 3, we
add an additional guard for receiving message M1 and an action for sending messages M2a
and M2b.

Insec([A,B,Na]) ∈ s.chan, -- receive M1

s′.chan := s.chan ∪ {Secure(S, A, [Kab, B,Ts,Na]),Secure(S, B, [Kab, A,Ts])}.

In Step 5, the responder B receives message M2b from the server and M3 from A and
sends message M4. Here, the message-receiving guards replace the previous authorization and
authentication guards.

Secure(S, B, [Kab, A,Ts]) ∈ s.chan,
dAuth(Kab, [A,Ta]) ∈ s.chan,

s′.chan := s.chan ∪ {dAuth(Kab, [Ta])}.

We can now prove several invariants related to session key secrecy and compromise. The
following invariant expresses that the addition of a set of keys KS to the intruder’s initial
knowledge does not reveal any additional keys.1 We have proved a similar invariant for nonces.

sesKkrb2 ≡ {s | ∀KS ,K. K ∈ extrKS ∪ ik0(s.chan)↔ K ∈ KS ∨K ∈ extr ik0(s.chan)}.

A group of three invariants express the session key’s secrecy from each role’s point of view.
More precisely, these invariants state that the intruder can extract a session key only if it has

1This is the L2 equivalent of the session key compromise invariants in [59].
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leaked from a session context matching the role’s context (i.e., its frame and any fresh values it
might have generated). In the case of the initiator, this invariants reads as follows.

ikk_initkrb2 ≡ {s | ∀Ra, A,B,Kab,Ts,nl .
s.runs(Ra) = (Init, A,B,Kab#Ts#nl) ∧
Kab ∈ extr ik0(s.chan) ∧A ∈ good ∧B ∈ good →
(Kab, A,B,Ra$na,Ts) ∈ s.leak}.

This strengthens the guarantee resulting from the refinement of the secrecy model s0 by taking
into account the role’s local view and its complete context. By combining the conclusion with
an auxiliary invariant stating that Kab ∈ dom(s.leak) implies s.clk ≥ Ts + Ls, we know that
the intruder can extract at most expired session keys. The server and responder’s version of
this invariant are similar, but the nonce in the responder’s conclusion is existentially quantified,
since it is not part of its context. Of these three invariants, only the server’s version is needed
in the refinement proof.

The refinement proof also requires invariants related to authentication. These are directly
suggested by the guard strengthening proof obligations stating that the message-receiving
guards at Level 2 imply the security guards at Level 1 (cf. Example 3.8). This is one of the
main benefits of using guard protocols as a link between the properties and the message-based
protocols.

We can now state the following refinement result. Appendix C contains a proof sketch of
guard strengthening for Step 5.

Proposition 4.7. Let Ikrb2 be the intersection of the invariants of krb2 and let R′12 ≡
R12 ∩ (Σkrb1 × Ikrb2 ). Then (i) reach(krb2 ) ⊆ Ikrb2 and (ii) krb2 vR′12,id krb1 .

4.6 Cryptographic protocols (L3)

As described in Section 3.6, in our setup at Level 3, each agent A shares a long-term symmetric
key shr(A) with the server S. We concretize the initial key setup relation by defining keySetup ≡
{(shr(A), C) | C = A ∨ C = S}, thereby establishing Assumption A3. In the state, we replace
the set of channel messages, chan, by a set of cryptographic messages, IK (for intruder
knowledge). All fields except IK are observable. Initially, IK holds the corrupted long-term
keys, i.e., shr(bad), which models Assumption A2.

Σkrb3v , Σkrb1 + (| IK ∈ P(msg) |).

The simulation relation R23 with krb2 is defined as the intersection of the relations Rmsgs
23 ,

Rkey
23 , and Rnon

23 with Πruns,leak ,clk ,cch . In order to take session key compromise into account,
the relation Rkey

23 generalizes the basic version from Section 3.6 as follows.

Rkey
23 ≡ {(s, t) | ∀KS ,K.

KS ⊆ ran(sesK)→ (K ∈ analz (KS ∪ t.IK )↔ K ∈ extrKS ∪ ik0(s.chan))}.

We generalize the relation Rnon
23 analogously. The relation Rmsgs

23 is parametrized by the
protocol-dependent message abstraction function absMsg ∈ P(msg)→ P(chmsg), which we
will instantiate to the Kerberos protocols below.
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M1. A, B, Na
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Figure 12: Cryptographic core Kerberos protocols.

By refining the channel-based intruder into a standard Dolev-Yao intruder, as described
in Section 3.6, we also establish Assumption A1. Moreover, the leak event now adds leaked
session keys to the intruder knowledge IK , thus realizing Assumption A4. In the protocol
events, we replace the channel messages by cryptographic ones. In general, there are alternative
realizations using different cryptographic operations.

Figure 12 shows the core of Kerberos 4 [66] and Kerberos 5 [55]. We implement the static
secure channels by encryption with the long-term keys and we refine the dynamic authentic
channels into encryptions with session keys. (In the Dolev-Yao model, symmetric encryption
also provides authenticity.)

We also modify the communication topology of the channel-based model: The initiator now
relays the responder’s ticket from the server. While in Kerberos 5 the ticket is sent alongside the
ciphertext containing the initiator’s session key, it appears inside the ciphertext in Kerberos 4.
We now present our models of Kerberos 5 and Kerberos 4, krb3v and krb3iv .

4.6.1 Kerberos 5 protocol (L3)

We focus on the refinement of Steps 3–5, which reflect the modified communication topology.
In Step 3, the server sends the message M2 by adding it to IK . This message consists of a
pair of ciphertexts and replaces the messages M2a and M2b in krb2 . In Step 4, the initiator
A receives M2 and forwards its second component along with the authenticator {|A,Ta|}Kab ,
which proves that A knows Kab.

〈{|Kab, B,Ts,Na|}shr(A), X〉 ∈ s.IK -- recv M2

s′.IK := s.IK ∪ {〈{|A,Ta|}Kab , X〉}. -- send M3

The responder receives the two-component message M3 in Step 5 and sends back the confirmation
message M4.

〈{|A,Ta|}Kab , {|Kab, A,Ts|}shr(B)〉 ∈ s.IK -- recv M3

s′.IK := s.IK ∪ {{|Ta|}Kab}. -- send M4

The message abstraction function, absMsg , abstracts the components of messages M2 and
M3 separately. For instance, here are the rules defining the abstraction of the initiator’s
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encrypted key, the responder tickets, and the authenticators.

{|K,B, T,N |}shr(A) ∈ H
Secure(S, A, [K,B, T,N ]) ∈ absMsg(H)

{|K,A, T |}shr(B) ∈ H
Secure(S, B, [K,A, T ]) ∈ absMsg(H)

{|A, T |}K ∈ H
dAuth(K, [A, T ]) ∈ absMsg(H)

.

The possibility to abstract message parts, which is reflected in the definition of the simulation
relation as absMsg(parts(s.IK )) ⊆ t.chan (cf. Section 3.6.3), allows us to abstract each
component of message M2 separately. This enables the modification of the communication
topology between Levels 2 and 3.

The refinement proof requires only two additional invariants. The first one, called ltK krb3v,
states that the long-term keys the intruder knows are exactly those of the dishonest agents
(Assumption A2). The second invariant is the L3-equivalent of invariant sesK krb2 , which we
can however directly derive from that invariant and the simulation relation. We have already
established all other relevant properties on higher levels of abstraction.

Proposition 4.8. Let Rv23 ≡ R23 ∩ (sesK krb2 × ltK krb3v ). Then we have reach(krb3v) ⊆
ltK krb3v and krb3v vRv

23,id
krb2 .

4.6.2 The Kerberos 4 protocol (L3)

In the core Kerberos 4 protocol, the responder’s ticket is encrypted inside the initiator’s message
from the server. Hence, message M2 is modified as follows.

M2’. S→ A : {|Kab, B,Ts,Na, {|Kab, A,Ts|}shr(B)|}shr(A).

The changes in the model are straightforward. Moreover, we must slightly adapt the simu-
lation relation as follows. In the message abstraction function, the cryptographic messages
abstracted to message M2a, i.e., Secure(S, A, [K,B, T,N ]) (see Figure 11), are now of the
form {|K,B, T,N,X|}shr(A) and include a message variable X for the responder’s ticket instead
of {|K,B, T,N |}shr(A) for Kerberos 5. Moreover, we have to weaken the equivalences in the
relations Rkey

23 and Rnon
23 to implications, since the double encryption of the responder’s key has

no correspondent on L2. As a consequence, we can no longer derive the session key compromise
invariants from the L2 versions and the simulation relation. Instead, we must reprove them at
this level.

The refinement proof for krb3iv requires an additional invariant, which links the variable
X above with the ticket by describing the ticket’s shape and the encrypted key K in message
M2 received by an honest initiator A.

ticketkrb3iv ≡ {s | ∀A,B, T,N,K,X.
{|K,B, T,N,X|}shr(A) ∈ parts(s.IK ) ∧A /∈ bad → X = {|K,A, T |}shr(B) ∧K ∈ ran(sesK)}.

We then prove:

Proposition 4.9. Let Ikrb3iv be the intersection of the invariants of krb3iv and let Riv23 ≡ R′23∩
(sesK krb2 × Ikrb3iv ). Then reach(krb3iv) ⊆ Ikrb3iv and krb3iv vRiv

23,id
krb2 .
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4.7 Discussion

4.7.1 Overall security guarantees at Level 3

Having gone through a number of refinements, the reader may wonder at this point what is
the precise relationship between the secrecy and authentication properties proved as invariants
at Level 0 and the final models at Level 3. The answer is given by Proposition 2.6 and
Corollary 2.8, which state that refinement is transitive and that external invariants (such as
the secrecy and agreement invariants of s0 , a0n, and a0i) are preserved along refinements.
The mediator function translates the observations from concrete to abstract models.

As an example, consider the series of refinements in Figure 6: we have refined the secrecy
model s0 in five steps into the core Kerberos 5 model (krb3v). The composed mediator function
along the right-hand side of this figure is πs01 ◦π1in1 ◦π11. The first part, π1in1 ◦π11, projects the
state of the model krb3v with fields runs , clk , cch, and IK to the state of the model kt1 , which
has only the runs variable. Moreover, using the notation of Figure 6, the frames of the initiator,
responder, and server runs are projected from ([Kab,Ts,Ta], [Kab,Ts,Ta,END ], [Na,Ts]) to
([Kab], [Kab], []), thereby removing everything but the session key Kab.

The second part, the mediator function πs01 (defined in Section 4.4.1), transforms this
minimal state information to the knowledge and authorization relations kn and az of the
model s0 . Hence, using Proposition 2.4, the following overall secrecy result can be derived as a
combination of Propositions 3.1, 4.1, 4.3, 4.4, 4.7, and 4.8.

Corollary 4.10. (πs01 ◦ π1in1 ◦ π11)(oreach(krb3v)) ⊆ secrecy.

In a similar way, we can express the authentication results directly as properties of krb3v
(cf. Figure 7). The initiator’s injective agreement with the server on (Kab, B,Na,Ts) and his
non-injective agreement on (Kab,Ts,Ta) with the responder are summarized in the following
corollary.

Corollary 4.11. For the initiator, we have

1. (πisa01 ◦ π1in1 ◦ π11)(oreach(krb3v)) ⊆ iagree, and

2. (πira01 ◦ π11)(oreach(krb3v)) ⊆ niagree.

We complete the picture by stating the authentication guarantees for the responder with
the server and with the initiator.

Corollary 4.12. For the responder, we have

1. (πrsa01 ◦ π1in1 ◦ π11)(oreach(krb3v)) ⊆ niagree, and

2. (πria01 ◦ π11)(oreach(krb3v)) ⊆ iagree.

Summarizing, given a security property P proved as an external invariant of a model S (e.g.,
at Level 0) and a series of refinements of S into a model S′ (e.g., at Level 3) with composed
mediator function π, Proposition 2.4 yields the guarantee π(oreach(S′)) ⊆ P for S′, i.e., π
transforms the set of concrete observations of S′ to a set of abstract observations satisfying P .
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Table 4: Overall specification and proof statistics
Definitions Lemmas Lines CPU time

Infrastructure 57 327 3421 25 sec
Level 1 models 50 146 2107 46 sec
Kerberos 5 83 166 3055 3 min 44 sec
NSSK 80 192 3234 2 min 41 sec
Denning-Sacco 60 89 1857 1 min 02 sec

Table 5: Detailed proof statistics: lemmas, inductive/derived/inherited invariants, and refine-
ments

Level Model Lemmas Invariants Refines

L1

kt1 31 1 / 0 / 1 s0
kt1in 62 2 / 0 / 3 a0i , a0n
kt1nn 53 1 / 0 / 0 a0n (twice)
krb1 81 3 / 0 / 5 kt1in, a0i , a0n
nssk1 74 2 / 0 / 5 kt1in, a0n (twice)

L2 krb2 57 9 / 3 / 2 krb1
nssk2 84 12 / 3 / 2 nssk1

L3
krb3iv 40 4 / 0 / 0 krb2
krb3v 28 1 / 0 / 1 krb2
nssk3 34 3 / 0 / 0 nssk2

4.7.2 Specification and proof statistics

We summarize some statistics from our developments in Table 4, which has entries for five
groups of theories. For each group, we indicate the number of definitions and lemmas that we
formalized in Isabelle/HOL, the number of lines of the corresponding theory files, and the CPU
time. The times are for proof checking only and do not include the generation of a session
image or the documentation. The measurements were made on a 2.6 GHz Intel Core i7 laptop
with 8 GB RAM running Isabelle/HOL 2016-1.

The first group consists of 11 infrastructure theories, which support our method, and
includes our general theory of refinement (Section 2.2) and our infrastructure for security
protocol modeling and refinement including the L0 models of secrecy and authentication
(Section 3). These theories can be reused in other developments. The second group consists
of the L1 models kt1 , kt1in, and kt1nn (Sections 4.4.1 and 4.4.2). The third, fourth, and
fifth lines list the data for the models krb1 , krb2 , and krb3v pertaining to the Kerberos 5
protocol (Sections 4.4.3, 4.5, and 4.6.1), the models nssk1 , nssk2 , and nssk3 related to the
Needham-Schroeder Shared-Key (NSSK) protocol, and the models ds1 , ds2 , and ds3 for the
Denning-Sacco protocol (see also Figure 5).

Table 5 shows more detailed proof statistics for the models used in our development of
the Kerberos 4 and 5 protocols and the NSSK protocol. In particular, the fourth column lists
three numbers for invariants. The first number denotes inductive invariants, which are proved
by induction and primarily used to strengthen the simulation relation in refinement proofs.
One type of (internal) invariant, which we find in many models at Levels 1 and 2, are key
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definedness invariants. These state that session keys are only generated by existing runs, i.e.,
the run R of a used session keys R$sk appears in the domain of the variable runs; they are
easy to prove and serve mainly a technical purpose. These invariants are therefore not further
mentioned below. The second number denotes derived invariants, which follow from other
invariants of the same model. The third number indicates invariants that are inherited from
higher-level models. This number does not include all inherited invariants, but only those that
are needed in a proof at the same or a lower level. For example, the abstract Kerberos and
NSSK models, krb1 and nssk1 , inherit the same five invariants from their common L0 and L1
ancestor models. Hence, these invariants can be used in further proofs without the need to
reestablish them.

As mentioned earlier, all system requirements are already established at Level 1, mainly
in the form of refinements of L0 models. Exceptions are key freshness properties, which are
formulated as invariants. There is one other new invariant at Level 1, which states a property
of the cache in the abstract Kerberos model krb1 .

The largest number of invariants is required at Level 2. These invariants can be classified
into two groups: those concerning session key secrecy or compromise (6 each for krb2 and
nssk2 ) and those relating received messages to their sender’s or receiver’s state (5 for krb2 and
6 for nssk2 ). Many of these invariants arise naturally from guard refinement proof obligations,
for example, to establish that the received messages imply an authorization or authentication
guard at Level 1. Most of them have short straightforward proofs (2–6 lines of proof script).

The invariants remaining at Level 3 mainly concern details introduced at that level.
Examples are the secrecy of long-term keys, an invariant about the shape of forwarded tickets
that are encrypted with an honest agent’s long-term key (krb3iv and nssk3 ), and an invariant
expressing that session keys are not used to encrypt other session keys or nonces (krb3iv and
nssk3 ).

5 Related work

There have been other proposals for developing security protocols by refinement using various
formalisms such as the B method [17], its combination with CSP [24], Event-B [16], I/O
automata [43], and ASMs [15]. None of these continue their refinements to the level of a
full Dolev-Yao intruder. Either they only consider an intruder that is passive [43], defined
ad-hoc [24, 15, 16], or that corresponds to our L2 intruder [17]. This makes a comparison of
their results with standard protocol models difficult. Moreover, these works do not propose a
uniform and systematic development method as we do with our four-level refinement strategy
and most of them develop individual protocols rather than entire families.

Several authors have studied protocol transformations within the cryptographic level, L3.
Hui and Lowe [35] define a family of syntactic transformations and prove their soundness.
Nguyen and Sprenger [56, 57] extend this work to the untyped case and to equational theories.
The focus of these works is on improving the performance of automatic verification tools rather
than on protocol development. Guttman [34] studies a rich class of protocol transformations in
the strand space model and proves their soundness. His approach is based on the simulation of
protocol analysis steps instead of execution steps. Each such analysis step explains the origin
of a message. Datta et al. [30] prove properties of protocol classes specified using messages
containing function variables. Refinement here means instantiating function variables and
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discharging the associated assumptions. Pavlovic et al. [60, 26] propose a logical approach to
proving such refinements. However, the soundness of these refinements is not formally justified.
In contrast to our approach, the transformations discussed in this paragraph do not involve
a fundamental change of the abstraction level as they all work with cryptographic messages
(Level 3).

Abstract channels with security properties and their transformations were studied by Mau-
rer and Schmid [46]. Boyd has formalized analogous results using Z [20]. Bieber et al. [18]
model abstract channels using the B method and refine them to cryptographic implementations.
Abadi et al. [1] formalize secure channels in a process calculus and establish full abstraction
results for translations to cryptographic implementations. Several works have investigated the
use of abstract channels to model and verify layered protocols, e.g., an application protocol
running on top of a protocol establishing a secure channel (such as TLS). Bella et al. [12]
explore the modeling of such layered protocols based on channel abstractions in Paulson’s
inductive approach [59]. Kamil and Lowe [38] prove the soundness of such channel abstractions
under certain independence conditions and show in [39] that TLS satisfies these conditions.
Mödersheim et al. [52, 33, 53] propose a compositional approach, where the protocols imple-
menting the channel and the (possibly cryptographic) application protocol can be verified
separately. Their objective is to provide composition theorems guaranteeing that, under certain
disjointness conditions, security properties are preserved by layered composition. In contrast,
our focus in on refining channel protocols into concrete cryptographic protocols.

Classical notions of refinement (such as simulation) do not preserve information-flow
properties, since they involve a reduction of non-determinism, which can destroy secrecy. Several
works address this problem, known as the refinement paradox, for example, [45, 5, 37, 47].
Morgan and McIver [47, 50, 51] solve the paradox by explicitly recording the set of possible
values of secret variables. These sets represent the intruder’s ignorance and refinements may
extend, but never reduce them. Cortier et al. [28] show that strong secrecy is equivalent to
reachability-based secrecy (used here), if the secrets are not tested. Key establishment protocols
that include a key confirmation phase (such as such as Kerberos and NSSK) do not satisfy this
condition.

Simulation-based security [25, 7] is a paradigm for specifying idealized functionalities and
implementing them using a notion of secure emulation. Delaune et al. [31] have proposed a sym-
bolic version of this paradigm, which can be understood as a form of compositional refinement.
The compositionality comes at the price of requiring an public-key encryption/decryption
functionality and proving a joint-state theorem. As an example, they derive the Needham-
Schroeder-Lowe protocol. The modeling of encryption as a service considerably reduces the
abstraction level of these models compared to the standard symbolic representation as a term
constructor.

Our most concrete models are still quite abstract when compared to a protocol imple-
mentation in a programming language such as C or Java. The work by Polikarpova and
Moskal [61] can be seen as an extension of our refinement levels with two additional levels
leading towards an implementation: one in which the messages are replaced by bitstrings and
one that represents the real implementation. The refinements are encoded and proved in the
general-purpose C program verifier VCC.

Isabelle/HOL has been used in several approaches to post-hoc security protocol verification.
Paulson [59] uses induction to define the protocols’ event traces and verify their properties.
We reuse his Isabelle/HOL theory of cryptographic messages including the closure operators
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parts, analz , and synth in our L3 refinements. Refinement enables us to prove most security
properties at higher levels of abstraction. Moreover, strong authentication properties such as
injective agreement cannot be proved in his models, since any message may trigger the same
response multiple times. More recently, Isabelle/HOL has been used to machine-check proofs
that are generated by automatic security protocol verifiers [21, 48].

Several other researchers have analyzed Kerberos. Bella and Riccobene [15] develop
Kerberos 4 in three refinements using ASMs. They use a non-standard attacker model and
prove mostly liveness properties (for example, all runs reach a specific state) instead of secrecy
and authentication properties. Bella and Paulson model BAN Kerberos [14], Kerberos 4
[13], and Kerberos 5 [11] including session key compromise using the inductive approach [59].
However, they do not model a replay cache and prove only non-injective agreements. Butler et
al. [23, 22] constructed detailed models of Kerberos 5 using multiset rewriting. These models
include cross-realm authentication and other realistic features such as options, flags, and error
handling. They manually construct their models and proofs in several “refinements” to keep
them manageable. However, their notion of refinement is informal.

6 Conclusions

Our development provides strong evidence that refinement supports the systematic understand-
ing and development of families of protocols. The abstract models help the developer to focus
on the essentials: In our case studies, we have established all requirements on guard protocol
models (L1), which contain neither messages, communication channels, nor intruder events.
Our refinement strategy guides the developer towards the concrete levels that account for the
environment assumptions, namely, the distributed environment controlled by a Dolev-Yao
intruder. The abstraction levels of our refinement strategy are reflected in well-structured
proofs of correctness, where the simulation relations used are either fixed (a projection at
L1–L2) or systematically derived (for example, abstraction of runs to signals at L0–L1 and
cryptographic to channel messages at L2–L3). Our case studies also show that our development
strategy and tools scale to realistic protocols with non-trivial features. Our approach may also
help in the standardization of security protocols [9, 10]. Standards frequently include several
variants of a protocol, for example, designed for different cryptographic setups or using different
forms of key establishment (e.g., key transport versus Diffie-Hellman key agreement). Here, one
could use our method to identify an abstract protocol model capturing the commonalities of
the different variants and prove their properties once and for all. The different concretizations
can then be obtained by refinements.

A central part of this work has been the development and exploitation of guard protocols,
which form the bridge between security properties and channel protocols, i.e., from the “what”
to the “how”. Security guards realize properties abstractly. Moreover, they substantially
simplify proof construction. They give rise to invariants in a canonical way during refinement,
thereby facilitating invariant discovery. These invariants strengthen the simulation relations in
the refinement proofs.

Our channel protocol model is quite simple and protocol messages with nested cryptographic
operations or undecryptable message parts have no direct representation. This excludes
modeling, for example, messages containing certificates, the forwarding of undecryptable
messages, and nested encryption (NSSK and Kerberos). Our experience has convinced us

46



that this simplicity is a virtue rather than a limitation. Our models of server-based key
transport protocols naturally reflects their actual (star-shaped) security architecture. We view
forwarding and double encryption as implementation techniques, to be dealt with at the final
level. Our developments show that this is possible. Such abstractions are even more beneficial
for developing new protocols. From this perspective, certificates provide an abstract authentic
channel from the certification authority to the agent verifying the certificate’s content and
encrypted and signed messages are just one way of implementing a secure channel.

Future work We ultimately envision a tool-based development process where engineers can
choose standard properties and follow high-level recipes for building guard, channel, and crypto
protocols, with tools checking their steps along the way. To achieve this, we will work into two
directions. First, we want to extend the range of protocols that can be modeled and reasoned
about. For example, we plan to add support for Diffie-Hellman key agreement, compromising
adversaries, and more complex properties such as perfect forward secrecy, possibly along the
lines of [8]. Recent work in this direction is [40], which in addition to session key compromise
also covers different forms of dynamic agent compromise. Second, we would like to automate
development based on our strategy. It should be possible to derive protocol models directly
from high-level descriptions such as the authentication graphs of Figure 7 and sequence charts
of Figures 8–10. Moreover, with suitable infrastructure it should be feasible to automatically
generate and (as far as possible) prove invariants and simulations, given their strong regularity.

Acknowledgements We are grateful to Jean-Raymond Abrial for fruitful discussions in the
early stages of this work. We would also like to thank Ivano Somaini for developing parts of
the Isabelle/HOL theories, the anonymous reviewers for their useful feedback, and Martin
Vechev, Vincent Jugé, Son Thai Hoang, Eugen Zălinescu, Binh Thanh Nguyen, Ognjen Maric,
and Andreas Lochbihler for their helpful comments on earlier drafts of this paper.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions.
Inf. Comput., 174(1):37–83, 2002.

[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,
82(2):253–284, 1991.

[3] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

[4] J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of discrete
models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

[5] R. Alur, P. Cerný, and S. Zdancewic. Preserving secrecy under refinement. In M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, editors, Proc. 33nd International Colloquium
on Automata, Languages and Programming (ICALP), number 4052 in Lecture Notes in
Computer Science, pages 107–118, 2006.

47



[6] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool
for the automated validation of internet security protocols and applications. In K. Etessami
and S. K. Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer Science,
pages 281–285. Springer, 2005.

[7] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework
for asynchronous systems. Inf. Comput., 205(12):1685–1720, 2007.

[8] D. A. Basin and C. Cremers. Know your enemy: Compromising adversaries in protocol
analysis. ACM Trans. Inf. Syst. Secur., 17(2):7:1–7:31, 2014.

[9] D. A. Basin, C. Cremers, and S. Meier. Provably repairing the ISO/IEC 9798 standard
for entity authentication. Journal of Computer Security, 21(6):817–846, 2013.

[10] D. A. Basin, C. J. F. Cremers, K. Miyazaki, S. Radomirovic, and D. Watanabe. Improving
the security of cryptographic protocol standards. IEEE Security & Privacy, 13(3):24–31,
2015.

[11] G. Bella. Formal Correctness of Security Protocols. Information Security and Cryptography.
Springer, 2007.

[12] G. Bella, C. Longo, and L. C. Paulson. Verifying second-level security protocols. In D. A.
Basin and B. Wolff, editors, TPHOLs, volume 2758 of Lecture Notes in Computer Science,
pages 352–366. Springer, 2003.

[13] G. Bella and L. C. Paulson. Kerberos version 4: Inductive analysis of the secrecy goals.
In Proc. 5th European Symposium on Research in Computer Security (ESORICS), pages
361–375, 1998.

[14] G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the inductive method. In A. J.
Hu and M. Y. Vardi, editors, CAV, volume 1427 of Lecture Notes in Computer Science,
pages 416–427. Springer, 1998.

[15] G. Bella and E. Riccobene. Formal analysis of the Kerberos authentication system. Journal
of Universal Computer Science, 3(12):1337–1381, 1997.

[16] N. Benaïssa. La composition des protocoles de sécurité avec la méthode B événementielle.
PhD thesis, Université Henri Poincaré - Nancy I, France, May 2010. (In French).

[17] P. Bieber and N. Boulahia-Cuppens. Formal development of authentication protocols. In
Sixth BCS-FACS Refinement Workshop, 1994.

[18] P. Bieber, N. Boulahia-Cuppens, T. Lehmann, and E. van Wickeren. Abstract machines
for communication security. In Proc. 6th IEEE Computer Security Foundations Workshop
(CSFW), pages 137–146, 1993.

[19] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW,
pages 82–96. IEEE Computer Society, 2001.

48



[20] C. Boyd. Security architectures using formal methods. IEEE Journal on Selected Areas in
Communications, 11(5), 1993.

[21] A. D. Brucker and S. Mödersheim. Integrating automated and interactive protocol
verification. In P. Degano and J. D. Guttman, editors, Formal Aspects in Security and
Trust, volume 5983 of Lecture Notes in Computer Science, pages 248–262. Springer, 2009.

[22] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A formal analysis of some
properties of Kerberos 5 using MSR. In Proc. 15th IEEE Computer Security Foundations
Workshop (CSFW), pages 175–. IEEE Computer Society, 2002.

[23] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis of
Kerberos 5. Theoretical Computer Science, 367:57–87, November 2006.

[24] M. J. Butler. On the use of data refinement in the development of secure communications
systems. Formal Aspects of Computing, 14(1):2–34, 2002.

[25] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[26] I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication logic for
reasoning about key distribution protocols. In CSFW ’05: Proceedings of the 18th IEEE
workshop on Computer Security Foundations, pages 48–61, Washington, DC, USA, 2005.

[27] S. Chong, editor. 25th IEEE Computer Security Foundations Symposium, CSF 2012,
Cambridge, MA, USA, June 25-27, 2012. IEEE Computer Society, 2012.

[28] V. Cortier, M. Rusinowitch, and E. Zalinescu. Relating two standard notions of secrecy.
Logical Methods in Computer Science, 3(3), 2007.

[29] C. J. F. Cremers. The Scyther tool: Verification, falsification, and analysis of security
protocols. In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in
Computer Science, pages 414–418. Springer, 2008.

[30] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositionl
logic for security protocols. Journal of Computer Security, 13:423–482, 2005.

[31] S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi calculus.
In R. Kannan and K. N. Kumar, editors, FSTTCS, volume 4 of LIPIcs, pages 169–180.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

[32] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communications
of the ACM, 24(8):533–536, 1981.

[33] T. Gross and S. Mödersheim. Vertical protocol composition. In Proceedings of the 24th
IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France,
27-29 June, 2011, pages 235–250. IEEE Computer Society, 2011.

[34] J. D. Guttman. Establishing and preserving protocol security goals. Journal of Computer
Security, 22(2):203–267, 2014.

49



[35] M. L. Hui and G. Lowe. Fault-preserving simplifying transformations for security protocols.
Journal of Computer Security, 9(1/2):3–46, 2001.

[36] ISO. Information Technology – Security Techniques – Entity Authentication Mechanisms –
Part 3: Entity Authentication Using a Public-key Algorithm ISO/IEC 9798-3. International
Standard, 2nd edition, 1998.

[37] J. Jürjens. Secrecy-preserving refinement. In Proc. 10th Symposium on Formal Methods
Europe (FME 2001), number 2021 in Lecture Notes in Computer Science, pages 135–152.
Springer, 2001.

[38] A. Kamil and G. Lowe. Understanding abstractions of secure channels. In P. Degano,
S. Etalle, and J. D. Guttman, editors, Formal Aspects of Security and Trust - 7th
International Workshop, FAST 2010, Pisa, Italy, September 16-17, 2010. Revised Selected
Papers, volume 6561 of Lecture Notes in Computer Science, pages 50–64. Springer, 2010.

[39] A. Kamil and G. Lowe. Analysing TLS in the strand spaces model. Journal of Computer
Security, 19(5):975–1025, 2011.

[40] J. Lallemand, D. A. Basin, and C. Sprenger. Refining authenticated key agreement with
strong adversaries. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, April 26-28, 2017, pages 92–107. IEEE, 2017.

[41] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
Software — Concepts and Tools, 17:93–102, 1996.

[42] G. Lowe. A hierarchy of authentication specifications. In IEEE Computer Security
Foundations Workshop, pages 31–43, Los Alamitos, CA, USA, 1997. IEEE Computer
Society.

[43] N. A. Lynch. I/O automaton models and proofs for shared-key communication systems. In
Proc. 12th IEEE Computer Security Foundations Workshop (CSFW), pages 14–29, 1999.

[44] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. untimed
systems. Inf. Comput., 121(2):214–233, 1995.

[45] H. Mantel. Preserving information flow properties under refinement. In Proc. 22nd IEEE
Symposium on Security & Privacy, pages 78–91, 2001.

[46] U. M. Maurer and P. E. Schmid. A calculus for secure channel establishment in open
networks. In Proc. 9th European Symposium on Research in Computer Security (ESORICS),
pages 175–192, 1994.

[47] A. McIver and C. C. Morgan. Sums and lovers: Case studies in security, compositionality
and refinement. In FM 2009: Formal Methods, Second World Congress, Eindhoven, The
Netherlands, November 2-6, 2009. Proceedings, pages 289–304, 2009.

[48] S. Meier, C. Cremers, and D. A. Basin. Efficient construction of machine-checked symbolic
protocol security proofs. Journal of Computer Security, 21(1):41–87, 2013.

50



[49] R. Milner. An algebraic definition of simulation between programs. In IJCAI, pages
481–489, 1971.

[50] C. Morgan. The shadow knows: Refinement of ignorance in sequential programs. In Math-
ematics of Program Construction, 8th International Conference, MPC 2006, Kuressaare,
Estonia, July 3-5, 2006, Proceedings, volume 4014 of LNCS, pages 359–378, 2006.

[51] C. Morgan. The shadow knows: Refinement and security in sequential programs. Science
of Computer Programming, 74(8):629–653, 2009.

[52] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In M. Backes and P. Ning,
editors, Proc. 14th European Symposium on Research in Computer Security (ESORICS),
volume 5789 of Lecture Notes in Computer Science, pages 337–354. Springer, 2009.

[53] S. Mödersheim and L. Viganò. Sufficient conditions for vertical composition of security
protocols. In S. Moriai, T. Jaeger, and K. Sakurai, editors, 9th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan -
June 03 - 06, 2014, pages 435–446. ACM, 2014.

[54] R. Needham and M. D. Schroeder. Using encryption for authentication in large data
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[55] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer networks.
IEEE Communications Magazine, 32(9):33–38, 1994.

[56] B. T. Nguyen and C. Sprenger. Sound security protocol transformations. In D. A.
Basin and J. C. Mitchell, editors, Principles of Security and Trust - Second International
Conference, POST 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7796 of Lecture Notes in Computer Science, pages 83–104. Springer, 2013.

[57] B. T. Nguyen and C. Sprenger. Abstractions for security protocol verification. In R. Focardi
and A. C. Myers, editors, Principles of Security and Trust - 4th International Conference,
POST 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume 9036 of
Lecture Notes in Computer Science, pages 196–215. Springer, 2015.

[58] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[59] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Computer
Security, 6:85–128, 1998.

[60] D. Pavlovic and C. Meadows. Deriving secrecy in key establishment protocols. In Proc.
11th European Symposium on Research in Computer Security (ESORICS), pages 384–403,
2006.

[61] N. Polikarpova and M. Moskal. Verifying implementations of security protocols by
refinement. In R. Joshi, P. Müller, and A. Podelski, editors, VSTTE, volume 7152 of
Lecture Notes in Computer Science, pages 50–65. Springer, 2012.

51



[62] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis of Diffie-
Hellman protocols and advanced security properties. In Chong [27], pages 78–94.

[63] C. Sprenger and D. Basin. Developing security protocols by refinement. In Proc. 17th ACM
Conference on Computer and Communications Security (CCS), pages 361–374, October
4-8, Chicago, IL, USA, 2010.

[64] C. Sprenger and D. A. Basin. Refining key establishment. In Chong [27], pages 230–246.

[65] C. Sprenger and I. Somaini. Developing security protocols by refinement. Archive of Formal
Proofs, 2017. https://www.isa-afp.org/entries/Security_Protocol_Refinement.
shtml.

[66] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication service for
open network systems. In Winter 1988 Usenix Conference, Feb. 1988.

A Definitions of synth, analz , and parts

For completeness, we include the definitions of the closure operators synth, analz , and parts on
cryptographic messages from [59]. The rules for synthesizing messages are given in Figure 13.
The first rule injects the set of messages H into synth(H). The next two rules model that
agent names and timestamps are public values. The final two rules enable the attacker to
construct pairs, ciphertexts, and signatures.

M ∈ H
M ∈ synth(H)

A ∈ agent

A ∈ synth(H)

T ∈ N
T ∈ synth(H)

M1 ∈ synth(H) M2 ∈ synth(H)

〈M1,M2〉 ∈ synth(H)

M ∈ synth(H) K ∈ synth(H)

{|M |}K ∈ synth(H)

Figure 13: The rules defining synth.

M ∈ H
M ∈ analz (H)

〈M1,M2〉 ∈ analz (H)

Mi ∈ analz (H)

{|M |}K ∈ analz (H) K−1 ∈ analz (H)

M ∈ analz (H)

M ∈ H
M ∈ parts(H)

〈M1,M2〉 ∈ parts(H)

Mi ∈ parts(H)

{|M |}K ∈ parts(H)

M ∈ parts(H)

Figure 14: The rules defining analz and parts.

The rules in Figure 14 define the decomposing closure operators analz and parts. The set
analz (H) represents the set of messages that an attacker can extract from the set H using
the available cryptographic keys, whereas the set parts(H) represents all messages that the
attacker could extract from H if he knew all keys. The first rule in each row injects the
set H into the closure. The second rule in each row models the projection of pairs on each
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component (i ∈ {1, 2}). The final rules enable the extraction of cleartexts from ciphertexts and
signatures. For analz , the extraction of M from {|M |}K requires the inverse key K−1, defined
by pub(A)−1 = pri(A), pri(A)−1 = pub(A)−1, and K−1 = K for symmetric keys K.

B Proof of Step 5 in Proposition 4.5(ii) (L1)

We sketch the proof of guard strengthening that arises in the refinement of the abstract
event commita0i ([B,A], (Kab,Ts,Ta)) by the concrete step5krb1 (Rb, A,B,Kab,Ts,Ta) of the
responder B, which is part of establishing the responder’s injective agreement with the initiator.
We define the function sigsC (r) that reconstructs the abstract signals from the runs map r as
follows.

sigsC (r)(Running([B,A], (Kab,Ts,Ta))) ≡ cI(r),
sigsC (r)(Commit([B,A], (Kab,Ts,Ta))) ≡ cR(r).

Here, cI(r) and cR(r) are the following cardinalities.

cI(r) ≡
∣∣{Ra | ∃nl. r(Ra) = (Init, A,B,Kab#Ts#Ta#nl)}

∣∣,
cR(r) ≡

∣∣{Rb | ∃nl. r(Rb) = (Resp, A,B,Kab#Ts#Ta#nl)}
∣∣.

For the remaining cases, we set sigsC (r)(x) ≡ 0. Guard strengthening requires that we prove
the assertion cR(r) < cI(r), assuming that A and B are honest and that the guards of step5krb1
are satisfied. Since we use a cache to prevent a responder B from accepting the same key
Kab and timestamp Ta multiple times, there cannot be any prior execution of Step 5 with
these parameters. We therefore strengthen the subgoal cR(r) < cI(r) to the conjunction of
the following two subgoals: cI(r) > 0 and cR(r) = 0. The first subgoal follows from the
authentication guard for step5krb1 . The second subgoal requires that there is no responder run
Rb ′ and list nl′ corresponding to a commit signal, i.e.,

s.runs(Rb′) = (Resp, A,B,Kab#Ts#Ta#nl′). (7)

We prove this by contradiction, using an invariant stating that (7) and the validity of Ta (i.e.,
s.clk < Ta + La) entail the existence of a cache entry (B,Kab,Ta) ∈ s.cch. This entry was
added in a previous execution of Step 5 by run Rb′ and is not yet purged from the cache, since
the timestamp Ta is still valid. Hence, by assuming (7) and noting that s.clk < Ta + La and
the replay check (B,Kab,Ta) /∈ s.cch are guards of Step 5, we use the invariant to derive a
contradiction. This concludes the proof that the guards of the step5krb1 event imply the guard
of commita0i .

C Proof of Step 5 in Proposition 4.7(ii) (L2)

The guard strengthening proof obligation for the responder’s step5 krb2 requires that the guards
for receiving M2b and M3 and for the timestamps’ validity imply the three security guards
of step5 krb1 : the authorization guard (8), the server authentication guard (9), and initiator
authentication guard (10):

Kab /∈ dom(s.leak)→ (Kab, B) ∈ azC (s.runs), (8)
B /∈ bad → ∃Rs,Na.Kab = Rs$sk ∧ s.runs(Rs) = (Serv, A,B, [Na,Ts]), (9)
A /∈ bad ∧B /∈ bad → ∃Ra, nl. s.runs(Ra) = (Init, A,B,Kab#Ts#Ta#nl). (10)
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The following invariant directly arises from the proof obligation expressing the strengthening
of the server authentication guard (9). It expresses the guarantee that an honest B gets about
the server’s state from receiving message M2b.

M2 krb2 ≡ {s | ∀Kab, A,B,Ts.
Secure(S, B, [Kab, A,Ts]) ∈ s.chan ∧B /∈ bad →
∃Rs,Na.Kab = Rs$sk ∧ s.runs(Rs) = (Serv, A,B, [Na,Ts])}.

An additional invariant describes the reasons for the intruder knowing a key Kab: either the
key is a corrupted long-term key or a session key generated by the server for some dishonest
agent. These two invariants suffice to derive the strengthening of the authorization guard (8).

The strengthening of the initiator authentication guard (10) corresponds to the following
proof obligation. It describes the authentication guarantee that the responder B gets about
the initiator A’s state from receiving messages M2b and M3.

Secure(S, B, [Kab, A,Ts]) ∈ s.chan ∧ dAuth(Kab, [A,Ta]) ∈ s.chan ∧
A /∈ bad ∧B /∈ bad →
∃Ra,nl . s.runs(Ra) = (Init, A,B,Kab#Ts#Ta#nl).

(11)

When trying to prove that this is an invariant, we get stuck in a proof state that suggests
replacing the honesty of A and B by the secrecy of Kab. This enables the successful completion
of the proof.

M3 krb2 ≡ {s | ∀Kab, A,B,Ts,Ta.
Secure(S, B, [Kab, A,Ts]) ∈ s.chan ∧ dAuth(Kab, [A,Ta]) ∈ s.chan ∧
Kab /∈ extr ik0(s.chan)→
∃Ra,nl . s.runs(Ra) = (Init, A,B,Kab#Ts#Ta#nl)}.

To establish the guard strengthening (11) using the invariants M2bkrb2 and M3krb2 , it
suffices to show that the premises of (11) imply Kab /∈ extr ik0(s.chan). This follows from an
invariant stating that session keys with valid timestamps are never leaked and the following
invariant, which guarantees to the server that the intruder never learns a session key generated
for honest agents unless it has been leaked.

ikk_srvkrb2 ≡ {s | ∀Rs, A,B,nl .
s.runs(Rs) = (Serv, A,B,nl) ∧A /∈ bad ∧B /∈ bad ∧ Rs$sk ∈ extr ik0(s.chan)→

(Rs$sk, A,B,Na,Ts) ∈ s.leak}.

This completes our sketch of the refinement proof of step5krb1 by step5krb1 .
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