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1 Introdu
tionMotivation Over the last years, 
omputer systems have be
ome in
reasinglydynami
: they are 
omposed of various 
ommuni
ating 
omponents that 
anjoin the system or be put together dynami
ally. Typi
al examples are mobilesmart devi
es (mobile phones, smart 
ards, television set top boxes, PDAset
.) and dynami
ally re
on�guring distributed systems. When allowing thedynami
 addition of new 
omponents, one wishes to ensure that this will nothave any negative impa
t on the global behaviour of the system. In parti
ularwhen the system 
ontains priva
y-sensitive information, as is for example the
ase for smart 
ards 
ontaining health 
are information or ele
troni
 purses,strong se
urity guarantees are required. With the a

eptan
e of evaluations
hemes su
h as Common Criteria (see [1℄), industry has 
ome to realise thatthe way to a
hieve su
h high guarantees is to adopt the use of formal methodsin industrial pra
ti
e.The te
hniques developed here are appli
able in any 
ontext 
on
erned withinterpro
edural 
ontrol-�ow properties of 
omponents 
ommuni
ating via pro-
edure 
alls. Interesting properties of su
h 
omponents in
lude for exampletype safety, memory 
onsumption, and illi
it data or 
ontrol �ow. Here we
on
entrate on the last 
ategory of properties. More pre
isely, we study sequen-tial (i.e., single-threaded) programs and propose a spe
i�
ation and veri�
a-tion method for safety properties of inter-pro
edural 
ontrol �ow, i.e., prop-erties des
ribing safe sequen
es of pro
edure invo
ations. Typi
al examplesof 
ontrol-�ow safety properties are: �m1 never 
alls m2�, �m1 is never 
alledwhen m2 is 
alled�, �m1 is only 
alled afterm2 is 
alled�, and �m1 is only 
alledfrom within m2� (see Chugunov et al. [2℄ for a formalisation).So far, most resear
h on formal veri�
ation in this area has fo
used on the
orre
tness or se
urity of a single program 
omponent (e.g., [3,4,5℄). However,in the 
ontext of mobile 
ode we also need te
hniques to support veri�
ationof systems for whi
h it is not known in advan
e what its 
omponents willbe. In su
h situations one needs 
ompositional veri�
ation te
hniques, thatis te
hniques where one states minimal requirements for the 
omponents that
an be
ome available later, and then veri�es (at loading time) that the 
ompo-nents a
tually respe
t these requirements. Only then, existing 
omponents 
ansafely 
ommuni
ate with new 
omponents, without 
orrupting the 
orre
tnessor se
urity of the whole system. In parti
ular, su
h te
hniques 
an support these
ure post-issuan
e loading of new appli
ations onto smart devi
es. To avoidfalse negatives, i.e., reje
ting 
omponents that are a
tually se
ure, su
h 
om-positional veri�
ation te
hniques should not only be sound, but also 
omplete.Completeness is also 
ru
ial to avoid typi
al so
ial engineering atta
ks, whererepresents the views of the authors. 2



the devi
e user gets so frustrated with the system repeatedly reje
ting new
omponents, that he/she will simply a

ept all, without a
tually inspe
tingwhether they passed veri�
ation or not.Approa
h Our veri�
ation method is 
ompositional : it allows global guar-antees of a system to be veri�ed even if the implementations of some 
ompo-nents are not yet available at veri�
ation time. This is a
hieved by abstra
tingthe missing 
omponents by logi
al assumptions. These assumptions 
an beveri�ed later, when the implementations be
ome available. Su
h a veri�
ationapproa
h is embodied by the following proof prin
iple:
⊢ A : φ X : φ ⊢ X ⊗ B : ψ

⊢ A⊗B : ψwhere A and B are 
omponents, and X is a 
omponent variable. This prin
ipleredu
es the problem of showing that the 
omposition of 
omponents A and Bsatis�es ψ, where the implementation of A is not yet known, to three tasks:(1) de
ompose the global property ψ by �nding a suitable lo
al property φof 
omponent A,(2) prove 
orre
tness of the de
omposition, i.e., verify that for any 
ompo-nent X satisfying φ, X 
omposed with B satis�es ψ (se
ond premise),and(3) when the implementation of A be
omes available, verify that it satis�esthe lo
al property φ (�rst premise).Noti
e that this rule 
an be applied repeatedly, to repla
e several 
omponentsby assumptions.The 
ompositionality of the method supports di�erent s
enarios for se
ure
on�guration of 
omponents on a devi
e (or platform), where the tasks above
an potentially be delegated to di�erent authorities. In one su
h s
enario, thedevi
e issuer (or platform provider) spe
i�es both the global guarantee (e.g., ase
urity poli
y) and the lo
al assumptions, and veri�es � using the te
hniquesdes
ribed in this paper � that the de
omposition is 
orre
t, meaning that thelo
al spe
i�
ation is su�
ient to establish the global spe
i�
ation. Ea
h timea new 
omponent is to be added (i.e., loaded on the devi
e), an algorithmprovided by the devi
e issuer 
he
ks whether the 
omponent implementationsatis�es the required spe
i�
ation. An alternative s
enario is that the devi
eissuer only provides the global guarantee (and lo
al assumptions for its own
omponents), and leaves it to the 
omponent provider to 
ome up with anappropriate lo
al spe
i�
ation for ea
h 
omponent to be added. As in theprevious s
enario, an algorithm provided by the devi
e issuer 
he
ks the 
om-ponent against the lo
al spe
i�
ation upon loading, but now also the propertyde
omposition needs to be veri�ed at loading time, potentially on-devi
e.3



Task (1) above is a manual one and requires insight into the system, whilethe other two 
an be automated in our approa
h. We show how Task (2)and Task (3) 
an be algorithmi
ally redu
ed to problems for whi
h standardalgorithmi
 te
hniques exist.The approa
h that we take to handle Task (2) is inspired by the pioneeringwork on automati
 modular veri�
ation by Grumberg and Long [6℄. To 
he
kwhether X : φ |= X ⊗ B : ψ holds we repla
e X by a maximal model θ(φ)and then verify |= θ(φ) ⊗ B : ψ algorithmi
ally. The maximal model θ(φ)represents all models satisfying φ in the sense that it simulates exa
tly thosemodels and thus satis�es pre
isely the properties enjoyed by all these models.For this te
hnique to be sound and appli
able it is required that maximalmodels exist for the 
hosen logi
 and simulation relation, ⊗ preserves simu-lation, and logi
al properties are preserved by simulation. In earlier work [7℄,we explored dedu
tive veri�
ation of 
orre
tness of de
ompositions based on aproof system. The logi
 
onsidered there was more expressive, but the intera
-tive nature of the approa
h required 
onsiderable time and expertise from theuser, rendering the approa
h less preferable in many situations as 
omparedto algorithmi
 solutions like the one presented here.We are interested in safety properties of both the stru
ture and the behaviourof programs. Sin
e the same behaviour 
an be brought about by di�erentstru
tures, a behavioural property language allows properties to be expressedin a more abstra
t fashion. However, as a rule, behavioural properties require
omputationally more expensive veri�
ation te
hniques. Still, they 
an oftenbe (equivalently) reformulated on the stru
tural level, with the advantage ofallowing more e�
ient veri�
ation. To support both kinds of properties, wedistinguish between a stru
tural and a behavioural level of programs. Bothstru
ture and behaviour are 
ast via the abstra
t notion of model (or la-belled Kripke stru
ture). Then, stru
tural properties are interpreted over the(�nite-state) 
ontrol-�ow graphs themselves, while behavioural properties areinterpreted over the (in�nite-state) behaviours indu
ed by the stru
tures. Thelogi
 we employ to express su
h properties is a modal logi
 with box modalitiesand simultaneous greatest �xed points (written in equational form), whi
h isexpressively equivalent to the fragment of the modal mu-
al
ulus with boxmodalities and greatest �xed points only [8℄. The fragment is known to beadequate for expressing safety properties (
f. [9℄). Be
ause of the 
lose rela-tionship between logi
al satisfa
tion and simulation between models, and the
ompositional properties of simulation, this logi
, whi
h for 
onvenien
e weterm simulation logi
, is parti
ularly suitable for 
ompositional veri�
ationvia maximal models. We instantiate simulation logi
 and simulation at boththe stru
tural and the behavioural levels.The methods provided by an applet are frequently implemented using inter-nal, private methods. Sin
e the private methods 
annot be expe
ted to be4



known before the applet is implemented, we introdu
e publi
 interfa
es, whi
hhide private methods. A

ordingly, the (publi
) interfa
e behaviour of an ap-plet abstra
ts from (internal) 
alls to the private methods of an applet. Tohandle Task (3) for programs with private pro
edures, we de�ne an inliningtransformation that re
ursively inlines all 
alls to private pro
edures. Thistransformation over-approximates the interfa
e behaviour, and redu
es thetask to showing that the inlined program respe
ts property φ. For the latter,we apply standard algorithmi
 veri�
ation te
hniques.Contributions The main 
ontribution of the present paper is a sound and
omplete 
ompositional veri�
ation prin
iple for sequential programs with pro-
edures, for properties expressed in simulation logi
, and its adaptation toprograms with private pro
edures. In more detail, the 
ontributions are asfollows.(1) Program Model.Most of the existing work on 
ompositional model 
he
k-ing fo
uses on the veri�
ation of parallel 
ompositions of �nite-state pro-
esses. We extend 
ompositional model 
he
king to an important 
lass ofin�nite-state programs, namely sequential programs with pro
edures. Inthe rest of this paper, we refer to programs as applets and to pro
eduresas methods, but we would like to stress that our te
hnique is appli
able tomany di�erent kinds of programs with pro
edures. We represent appletsas 
olle
tions of method 
ontrol-�ow graphs equipped with interfa
es ofprovided and required methods. Applet 
omposition forms the disjointunion of the respe
tive 
olle
tions of method graphs and allows the 
om-posed applets to 
ommuni
ate via method invo
ation. Applets 
orrespondto a sub
lass of pushdown pro
esses, with potentially in�nite-state be-haviour (
f. Burkart et al. [10℄).(2) Maximal Model Constru
tion. We establish a logi
al 
hara
terisation ofthe standard notion of simulation between models and, vi
e versa, abehavioural 
hara
terisation of logi
al satisfa
tion in terms of maximalmodels. In parti
ular, we present a novel maximal model 
onstru
tion,
onsisting of a step-wise transformation of the formula into a semanti-
ally equivalent normal form, whi
h is isomorphi
 to a maximal modelfor the formula. In 
ontrast to more expressive logi
s, the maximal mod-els for simulation logi
 formulae are representable as standard transitionsystems. To the best of our knowledge, this is the �rst maximal model
onstru
tion for (a variant of) the modal µ-
al
ulus, whi
h in
ludes thefull expressive power of simultaneous greatest �xed points.(3) Maximal Applet Constru
tion. When tailoring the maximal model te
h-nique to applets, we require that the maximal model for a given propertyis itself an applet. This is ne
essary for 
ompleteness of the te
hnique.Sin
e the veri�
ation of |= θ(φ)⊗B : ψ is de
idable in our setup, 
omplete-ness guarantees that if the veri�
ation of the 
orre
tness of de
omposition5



fails, there is indeed an applet F among the set of models su
h that Fsatis�es φ but F ⊗ B does not satisfy ψ. Completeness is thus essentialin that it eliminates the possibility of false negatives. Therefore, in 
ase
|= θ(φ) ⊗ B : ψ fails, we know that we have to strengthen φ and iteratethe pro
ess.To adapt the maximal model te
hnique to stru
tural properties, we �rstgive a logi
al 
hara
terisation of interfa
es by de�ning, for a given inter-fa
e I a stru
tural formula φI whi
h is satis�ed exa
tly by those mod-els representing applet stru
tures with this interfa
e, and then de�nethe maximal applet for a given interfa
e I and stru
tural property φ by
θI(φ) = θ(φI ∧ φ). Sin
e θ(φI ∧ φ) satis�es both φ and φI , this guaran-tees that the resulting maximal model is indeed an applet stru
ture withinterfa
e I satisfying the stru
tural formula φ.However, for behavioural properties there is in general no unique max-imal applet: di�erent applets, in
omparable by simulation, might existthat satisfy the same property. It is ongoing work to investigate underwhat 
onditions and how this 
olle
tion of maximal applets 
an be 
har-a
terised exa
tly. Preliminary results in this dire
tion are presented byGurov and Huisman in [11℄.(4) Compositional Veri�
ation. Our 
hara
terisation results, together withresults linking the stru
tural and behavioural levels, give rise to a 
om-positional veri�
ation prin
iple of the shape suggested above, where theglobal guarantee 
an be either stru
tural or behavioural, but the lo
alassumptions are always stru
tural. We establish the soundness and 
om-pleteness of the prin
iple, and adapt existing algorithmi
 te
hniques fordealing with the resulting veri�
ation sub-tasks.(5) Interfa
e Abstra
tion. We extend our 
ompositional veri�
ation methodto interfa
e properties of applets, i.e., properties of the interfa
e be-haviour. We de�ne an abstra
tion whi
h redu
es the set of methods of agiven applet to the set of its publi
 methods, while over-approximatingthe interfa
e behaviour of the applet. This abstra
tion is based on inliningof private methods. We show the abstra
tion to be sound with respe
t tointerfa
e properties: every interfa
e property that holds for the behaviourof the inlined applet also holds for the interfa
e behaviour of the originalapplet. Sin
e the abstra
tion transformation may introdu
e new interfa
ebehaviours, 
ompleteness, on the other hand, does not hold in general.However, for the 
ase when the 
on
rete implementation is last-
all re-
ursive (that is, re
ursive 
alls are not followed in the 
ontrol-�ow graphby any other method 
alls), the abstra
tion te
hnique is 
omplete withrespe
t to observable interfa
e properties: if su
h a property does nothold of the inlined applet it does not hold of the original applet either.Last-
all re
ursion is a generalisation of the notion of tail re
ursion, wherere
ursive 
alls are the last statements of their methods. In pra
ti
e, forindustrial 
ode it is very 
ommon to be last-
all re
ursive.(6) Tool support and real-life 
ase study. To support our 
ompositional veri-6



�
ation te
hnique, we have developed a tool set. This tool set integratesour own implementations in O
aml of the maximal applet 
onstru
tionand the inlining algorithm with an implementation of a model extra
-tor, build on top of the SOOT framework [12℄, and a number of externalmodel 
he
king tools. We have validated this tool set on an industrial
ase study, namely an ele
troni
 purse smart 
ard applet for whi
h wehave veri�ed the absen
e of 
ertain illi
it 
ontrol �ows between Purseand Loyalty applets. In parti
ular, we ensured that di�erent Loyalty ap-plets on the 
ard 
annot 
ommuni
ate information about the transa
tionlog table � that is needed to 
orre
tly 
ompute the points in the loyaltyprogram � among themselves, instead they all need to register (and pay)to get this information dire
tly from the Purse. In this 
ase study, theinlining te
hnique proved to be an essential ingredient that enabled the
ompositional veri�
ation of the otherwise too large model.Our 
ontributions span the 
omplete spe
trum from the theoreti
al underpin-nings of the 
ompositional applet veri�
ation te
hnique (our prin
ipal 
ontri-bution) to its support by a tool set and its appli
ation to an industrial 
asestudy.Related Work The work presented here is related to several di�erent re-sear
h areas.Program Model. The program model used in the present paper has been in-spired by the work of Besson et al. [4℄, who verify sta
k properties for Javaprograms. Typi
ally, the behaviour of programs with re
ursion is modelled asPushdown Automata (as, e.g., in [3,13℄).Re
ursive state ma
hines were introdu
ed by Alur et al. [5℄ as a formalism
apable of modelling the 
ontrol �ow of sequential imperative programs 
on-taining re
ursive pro
edure 
alls. This program model is 
losely related to ourown, but is �ner in that 
alls and returns relate individual entry and returnnodes, thus allowing the e�e
t of data to be modelled. The authors develope�
ient algorithms for (global) model 
he
king of re
ursive state ma
hinesagainst LTL and CTL* properties, and investigate their 
omplexity.Temporal Logi
. Related to the above program models is the temporal logi
of 
alls and returns CaRet proposed by Alur et al. [14℄. This logi
 allows tospe
ify properties in terms of method 
alls and returns, thus in
reasing the ex-pressiveness of temporal logi
 while retaining de
idability of model 
he
king.A spe
ial veri�
ation strategy is de�ned, that is able to �jump over� internal
omputations. An extension of this logi
 was re
ently presented by Alur etal. [15℄. Among other modalities, it introdu
es the useful �within� modality,whi
h is not expressible in simulation logi
. While these logi
s may be more ad-7



equate than simulation logi
 for spe
ifying behavioural properties of programswith pro
edures, they would (arguably) require more involved te
hniques for
ompositional veri�
ation.Compositional Veri�
ation. There is a wealth of methods for 
ompositionalveri�
ation of 
on
urrent programs, most notably assumption/
ommitmentbased reasoning about pro
esses with syn
hronous message passing, and therely/guarantee method for shared-variable 
on
urren
y. A systemati
 overviewof these and related proof methods, some of whi
h have been adapted tosupport algorithmi
 veri�
ation is given by De Roever et al. [16℄. However,these te
hniques do not address programs with re
ursive pro
edures.Laster and Grumberg [17℄ present a 
ompositional method for sequential pro-grams written in a high-level While language (without pro
edures). Their te
h-nique partitions the program text into a sequen
e of sequentially 
omposedsubprograms, whi
h 
an be model 
he
ked individually using assumptions onthe properties holding at the 
ut points.Alur and Grosu [18℄ present an assume-guarantee style 
ompositional veri�
a-tion prin
iple for a hierar
hi
 extension of rea
tive state ma
hines. However,their approa
h does not address programs with re
ursion.Ly [19℄ also proposes a 
ompositional method for de
iding 
ontrol-�ow proper-ties of pro
edural programs based on lo
al stru
tural assumptions and globalbehavioural guarantees. The author generalises our de
idability results tomonadi
 se
ond-order logi
 for programs whose 
ontrol-�ow graphs have abounded tree-width. To the best of our knowledge, so far this approa
h hasnot been implemented in a tool.The method of partial model 
he
king introdu
ed by Andersen [20℄ is basedon a redu
tion pro
edure that removes the top-level operator from a pro
essalgebra term and 
omputes a new property for the redu
ed term. To verifythat the produ
t P ×Q of two pro
esses has some property φ, the redu
tion�divides� the property φ by Q to yield φ/Q, whi
h 
an be e�e
tively 
omputedonly if Q is �nite.Maximal Models for Compositional Veri�
ation. The original maximal modelte
hnique by Grumberg and Long [6℄ was designed for ACTL, the universalfragment of CTL, and later extended to ACTL*, the universal fragment ofCTL*, by Kupferman and Vardi [21℄. These works study syn
hronous par-allel 
ompositions of sequential pro
esses under fairness assumptions. Sin
ewe are interested in safety properties of sequential programs, we do not needto add fairness to our models. Simulation logi
 and ACTL* are expressivelyin
omparable: liveness properties su
h as GFp (�in�nitely often p�) are ex-pressible in ACTL*, but not in simulation logi
, while the µ-
al
ulus formula
νX. p ∧ [−][−]X (�p holds on every other level of the 
omputation tree�) is8



easily translated to simulation logi
 (whi
h is in equational form), but is notexpressible in ACTL*. Our transformational approa
h to the maximal model
onstru
tion is 
loser to an implementation than the automata-theoreti
 
on-stru
tions in the 
ited papers, sin
e it already in
ludes 
ertain optimisations,e.g., removal of dupli
ate and unrea
hable equations.Chara
terisation results 
onne
ting logi
s and behavioural preorders similarto ours are des
ribed by Boudol and Larsen [22℄ (see also [23℄), who 
on-stru
t maximal models in the form of modal transition systems with respe
tto the re�nement preorder for Hennessy-Milner logi
 (HML) [24℄. Simulationlogi
 and HML are expressively in
omparable: existential properties are notexpressible in simulation logi
, while 
o-re
ursive properties (su
h as invari-ants) are not expressible in HML. Sin
e HML does not in
lude �xed points,the 
onstru
ted maximal models are essentially �nite forests. Apart from theabsen
e of diamond modalities in simulation logi
, our 
onstru
tion 
an beseen as an extension of Larsen and Boudol's with greatest �xed points. Theextension of HML with greatest �xed points (or, equivalently, simulation logi
with diamond modalities) requires more general models than modal transitionsystems: a �nite maximal modal transition system does not exist for all for-mulae of this logi
. This is shown by Dams and Namjoshi [25℄, who introdu
efo
us transition systems, generalising modal transition systems, in order to
onstru
t linear-size maximal models for properties expressed by alternatingtree automata (thus subsuming the full modal µ-
al
ulus). In [26℄ the sameauthors propose to dire
tly use µ-automata obtained from modal µ-
al
ulusformulae as maximal models, for whi
h they de�ne an appropriate notion ofsimulation. All natural extensions of simulation logi
 require models with morestru
ture than transition systems to 
apture maximal models. In our work, wewere interested in safety properties, for whi
h simulation logi
 and transitionsystems are an appropriate 
hoi
e.Bouajjani et al. [9℄ de�ne maximal models for a 
o-re
ursive modal logi
 ex-pressing safety properties. Their logi
 has an expressive power similar to ours,but is somewhat less standard as it in
ludes a 
onne
tive 
orresponding tonon-deterministi
 
hoi
e.A more re
ent appli
ation of the maximal model te
hnique is presented byGoldman and Katz [27℄ in the 
ontext of modular veri�
ation of aspe
ts. While
lose in spirit to our veri�
ation prin
iple, the prin
iple presented by the au-thors is for a more 
ompli
ated 
omposition operator. The prin
iple is basedon the maximal model of the aspe
t property (whi
h is not ne
essary a legalaspe
t behaviour) and is therefore sound, but not 
omplete.Organisation The paper is stru
tured as follows. First, Se
tion 2 presentsthe theoreti
al foundation for our work: it de�nes the models and logi
 that9



we 
onsider, together with appropriate notions of simulation and satisfa
tion.Next, Se
tion 3 presents our novel maximal model 
onstru
tion, and showshow logi
al satisfa
tion of a formula is equivalent to simulation by the 
orre-sponding maximal model. Se
tion 4 then dis
usses how our results instantiateto applets, at stru
tural and at behavioural level, and Se
tion 5 presents the
ompositional veri�
ation prin
iple. Se
tion 6 presents the inlining abstra
tionthat we use to be able to verify interfa
e properties over applets with privatemethods. Finally, Se
tions 7 and 8 illustrate how our approa
h is implementedas a tool set and is applied to an industrial 
ase study, while Se
tion 9 draws
on
lusions and presents future work.This paper is a 
ombination and extension of several results presented earlier.The maximal model 
onstru
tion and 
ompositional veri�
ation prin
iple arepresented in [28℄. The abstra
tion te
hnique for applets with private methodsis presented in [29℄. The 
ase study was presented in [30℄, but without takingthe di�eren
e between publi
 and private methods into a

ount.2 Models, Simulation and Logi
This se
tion des
ribes the theoreti
al foundation for our treatment of 
ontrol-�ow stru
ture and behaviour of programs with re
ursive pro
edures. First, wede�ne the (abstra
t) models that we study, together with the standard notionof simulation. Further, we de�ne the logi
 that we use to express our programproperties. Finally, we transfer all these notions to the so-
alled weak setting,where not all a
tions are observable.2.1 Model and SimulationFirst we de�ne models, spe
i�
ations and simulation. These notions are stan-dard up to some minor variations.De�nition 1 (Model, Spe
i�
ation) A model is a stru
ture M = (S, L,→
, A, λ), where S is a set of states, →⊆ S×L×S is a labelled transition relationwith labels taken from L, and λ : S → P(A) is a valuation assigning to ea
hstate a set of atomi
 propositions taken from A. A spe
i�
ation S is a pair
(M, E), where M is a model and E ⊆ S is a set of entry states.The rea
hable part of a spe
i�
ation S = (M, E) is de�ned by R(S) =
(M′, E), where M′ is obtained from M by deleting all states and transitionsnot rea
hable from any entry state in E.Example 2 Figure 1 shows the graphi
al representation of the spe
i�
ation10
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S = (M, E), where M = ({s1, s2, s3}, {a, ε},→, {p, q}, {s1 7→ {p, q}, s2 7→
{p}, s3 7→ ∅}) with → = {(s1, ε, s2), (s2, a, s1), (s2, a, s3), (s3, a, s1), (s3, ε, s2)}and E = {s1, s2}. As usual, entry states are depi
ted through additional in-
oming edges without sour
e.De�nition 3 (Simulation) A simulation is a binary relation R on S su
hthat whenever (s, t) ∈ R then λ(s) = λ(t), and whenever s a

−→ s′ then thereis some t′ ∈ S su
h that t a
−→ t′ and (s′, t′) ∈ R. We say that t simulates s,written s ≤ t, if there is a simulation R su
h that (s, t) ∈ R.Simulation on two modelsM1 andM2 is de�ned as simulation on their disjointunion M1⊎M2. The transitions of M1⊎M2 are de�ned by ini(s)

a
−→ ini(s

′) if
s

a
−→ s′ in Mi and its valuation by λ(ini(s)) = λi(s), where ini (for i ∈ {1, 2})inje
ts Si into S1 ⊎ S2. Simulation is extended to spe
i�
ations (M1, E1) and

(M2, E2) by de�ning (M1, E1) ≤ (M2, E2) if there is a simulation R on M1⊎
M2 su
h that for ea
h s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R.Spe
i�
ation S1 is simulation equivalent to S2, written S1 ≃ S2, if S1 ≤ S2 and
S2 ≤ S1. We extend disjoint union to spe
i�
ations (by (M1, E1)⊎(M2, E2) =
(M1 ⊎M2, E1 ⊎E2)) and show that simulation is preserved by disjoint union.Theorem 4 If S1 ≤ T1 and S2 ≤ T2 then S1 ⊎ S2 ≤ T1 ⊎ T2.2.2 Simulation Logi
We de�ne simulation logi
 in two steps: �rst we de�ne a basi
 modal logi
, andthen we add re
ursion by means of equation systems. This results in a logi
that is equally expressive as the modal µ-
al
ulus with boxes and greatest �xedpoints only (
f. Beki£ [31℄). However, the use of equation systems fa
ilitatesthe de�nition of a normal form, where the 
orresponden
e between formulaeand spe
i�
ations is immediate. In parti
ular, this allows to 
ompute maximalmodels by transforming the equations into this normal form.Let V be a 
ountably in�nite set of propositional variables. Basi
 simulationlogi
 is a variant of Hennessy-Milner logi
 [24℄ without diamond modalities:

φ ::= ff | tt | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ11



where p ∈ A, a ∈ L and X ∈ V. The interpretation ‖φ‖ρ of a basi
 formula
φ is de�ned with respe
t to a model M and an environment ρ interpretingthe propositional variables. The de�nition is standard (
f. Stirling [32℄); inparti
ular, for the box modality we have s ∈ ‖[a]φ‖ρ if and only if for all t ∈ Ssu
h that s a

−→ t we have t ∈ ‖φ‖ρ. Formulae like p or ¬p are 
alled literals.We use n-ary versions of 
onjun
tion and disjun
tion, setting ∨

∅ = ff (false)and ∧

∅ = tt (true). As usual, for �nite K ⊆ L, we write [K]φ for ∧

a∈K [a]φand [−]φ for [L]φ.To make the logi
 expressive enough to 
hara
terise all �nite models, we fol-low Larsen [23℄ and add re
ursion to basi
 simulation logi
 by introdu
ingmodal equation systems. A modal equation system Σ is a �nite set of de�ningequations of the shape X = φX , where X is a propositional variable and φXis a formula of basi
 simulation logi
. The de�ned variables X are pairwisedistin
t and bound in Σ, while all other variables are free. For a simpler pre-sentation, we restri
t our attention here to 
losed equation systems withoutfree variables.Sin
e the 
onsidered equations systems are 
losed, it is su�
ient to work withenvironments ρ : bv(Σ) → P(S) mapping the bound variables of Σ to setsof states. The equations in Σ indu
e a map ΨΣ : P(S)bv(Σ) → P(S)bv(Σ) onsu
h environments ρ de�ned by ΨΣ(ρ)(X) = ‖φX‖ρ. A solution of Σ is anenvironment ρ su
h that all equations in Σ are satis�ed (that is, ΨΣ(ρ) =
ρ), and is thus a �xed point of ΨΣ. Environments are ordered by point-wisein
lusion. The semanti
s of a modal equation system Σ with respe
t to amodel M, denoted ‖Σ‖, is its greatest solution. By the Knaster-Tarski �xedpoint theorem [33℄ a greatest solution always exists, sin
e ΨΣ is a monotonefun
tion on the 
omplete latti
e of environments ordered by point-wise setin
lusion.De�nition 5 (Simulation Logi
) A (
losed) formula of simulation logi
has the shape φ[Σ], where φ is a formula of basi
 simulation logi
 and Σis a (
losed) modal equation system su
h that all variables o

urring in φare bound in Σ. The semanti
s of φ[Σ] with respe
t to model M is de�nedby ‖φ[Σ]‖ = ‖φ‖‖Σ‖. We say a spe
i�
ation (M, E) satis�es φ[Σ], written
(M, E) |= φ[Σ], if E ⊆ ‖φ[Σ]‖.Example 6 Consider the formula φ = (X ∨ Y )[Σ], where

Σ =







X = [ε]Y ∧ [a]X ∧ p

Y = [ε] (X ∧ Y ) ∧ ¬q





 .Let us determine the semanti
s of this formula with respe
t to the spe
i�
ation
S in Figure 1. The greatest �xed point ‖Σ‖ of ΨΣ with respe
t to S 
an be
omputed in the standard way by iteration of ΨΣ starting with ρ0 = {X 7→12



S, Y 7→ S}, where S = {s1, s2, s3}. This yields ‖Σ‖ = {X 7→ {s1}, Y 7→ {s2}}.So, E = ‖X ∨ Y ‖‖Σ‖ = {s1, s2}, and hen
e spe
i�
ation S satis�es φ.Hen
eforth, we often omit the equation system Σ from φ[Σ] if no 
onfusion
an arise. We say that φ1 is a logi
al 
onsequen
e of φ0, written φ0 ⊑ φ1, iffor all spe
i�
ations S, S |= φ0 implies S |= φ1. The formula φ0 is logi
allyequivalent to φ1, written φ0 ≡ φ1, if φ0 ⊑ φ1 and φ1 ⊑ φ0.Simulation logi
 is equally expressive as the modal µ-
al
ulus [8℄ without dia-mond modalities and least �xed points. The translation from this fragment ofthe modal µ-
al
ulus to simulation logi
 is straightforward and repla
es ea
h�xed point by an equation. As an example, the formula νX.p1∧(νY.X∧[a] (p2∨
Y )) is translated into the equivalent formulaX[X = p1∧Y, Y = X∧[a] (p2∨Y )]of simulation logi
. The translation in the other dire
tion is based on Beki£'sprin
iple (
f. [34,31℄), whi
h expresses a �xed point in a produ
t latti
e interms of a ve
tor of 
omponent-wise �xed points.2.3 Weak Simulation and Logi
Often, one is only interested in the observable behaviour of systems. To a
hievethis, one 
an identify a distinguished a
tion ε ∈ A, 
alled the silent a
tion,and de�ne weak transitions s a

⇒ t in terms of the usual (strong) transitions asfollows: s ε
⇒ t whenever s( ε

−→)∗t, and s a
⇒ t whenever s ε

⇒
a
−→

ε
⇒ t for all a 6= ε.Weak simulation ≤w (weak simulation equivalen
e ≃w) is then de�ned as sim-ulation (simulation equivalen
e) with respe
t to weak transitions. Similarly,we 
an interpret the box modality of simulation logi
 over the weak transitionsrather than the strong transitions of models. To distinguish the two interpre-tations, we shall rede�ne the notion of satisfa
tion and write S |=w φ in that
ase. Thus, S |=w [a]φ holds if and only if all states that 
an be rea
hed fromsome entry state of S by a transition labelled a, pre
eded and followed by anarbitrary number of ε-steps, satisfy φ.Example 7 Consider again the spe
i�
ation in Figure 1. Then (M, {s1}) |=w

[ε] p, but not (M, {s3}) |=w [a] q, sin
e s3
a
⇒ s2 but s2 does not satisfy theatomi
 proposition q.3 Representation ResultsThis se
tion relates simulation logi
 to simulation by de�ning two mappings,

χ and θ. The mapping χ translates ea
h �nite spe
i�
ation into a formula,while θ translates formulae into (�nite) spe
i�
ations. The latter map is �rst13



de�ned on formulae in so-
alled simulation normal form (SNF), and is thenextended to all formulae by showing how any formula 
an be transformed intoan equivalent one in SNF. We show that χ logi
ally 
hara
terises simulationand θ behaviourally 
hara
terises logi
al satisfa
tion. These two maps forma Galois 
onne
tion between �nite spe
i�
ations ordered by simulation andformulae ordered by logi
al 
onsequen
e. Similar results for somewhat di�erentsettings appear in [22,23,9℄. In this paper, we present a novel pro
edure to
onstru
t maximal models, whi
h is similar to the 
onstru
tion by Boudol andLarsen [22℄, but handles greatest �xed points. In 
ontrast to 
onstru
tions forother bran
hing-time logi
s [6,21℄, we do not dire
tly build the model, butpro
eed by a step-wise transformation of the formula into an equivalent onein SNF, whi
h is isomorphi
 to the desired maximal model. Moreover, unlikein 
onstru
tions for more expressive logi
s [25,26℄, our maximal models arerepresentable as standard transition systems. To the best of our knowledge,this is the �rst maximal model 
onstru
tion for a fragment of the modal µ-
al
ulus in
luding the full expressive power of greatest �xed points.3.1 Chara
teristi
 FormulaeFirst we de�ne the mapping from �nite spe
i�
ations to formulae. A �nitespe
i�
ation (M, E) is translated into its 
hara
teristi
 formula χ(M, E) =
φE[ΣM], where φE =

∨

s∈E Xs and ΣM de�nes Xs for ea
h s ∈ S by
Xs =

∧

a∈L

[a]







∨

s
a

−→t

Xt





 ∧
∧

p∈λ(s)

p ∧
∧

q∈A−λ(s)

¬qRe
all that ∨

∅ = ff (false) and ∧

∅ = tt (true).Example 8 Consider the spe
i�
ation S displayed in Figure 1. Its 
hara
ter-isti
 formula is χ(S) = (Xs1
∨Xs2

)[Σ], where
Σ =















Xs1
= [a] ff ∧ [ε]Xs2

∧ p ∧ q

Xs2
= [a] (Xs1

∨Xs3
) ∧ [ε] ff ∧ p ∧ ¬q

Xs3
= [a]Xs1

∧ [ε]Xs2
∧ ¬p ∧ ¬q















.

We have a variation of an earlier result by Larsen [23℄, stating that spe
i�-
ation S1 is simulated by the �nite spe
i�
ation S2 whenever S1 satis�es the
hara
teristi
 formula of S2.Theorem 9 Let S1, S2 be spe
i�
ations and suppose S2 is �nite. Then S1 ≤
S2 if and only if S1 |= χ(S2). 14



Note that using in�nite equation systems this theorem generalises to �nitelybran
hing S2.3.2 Maximal ModelsThe next step is to de�ne the inverse mapping. Not all formulae 
orresponddire
tly to a spe
i�
ation, but those in simulation normal form do.De�nition 10 (Simulation normal form) A formula φ[Σ] of simulationlogi
 is in simulation normal form (SNF) if φ has the form ∨

X for some�nite set X ⊆ bv(Σ) and all equations in Σ are in the following state normalform
X =

∧

a∈L

[a]
(

∨

YX,a

)

∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬qwhere ea
h YX,a ⊆ bv(Σ) is a �nite set of variables and ea
h BX ⊆ A is a setof atomi
 propositions.Noti
e that any 
hara
teristi
 formula χ(S) is in SNF. From a formula (
∨

X )[Σ]in SNF we derive the spe
i�
ation θ((
∨

X )[Σ]) = ((S, L,→, A, λ), E) where
S = bv(Σ), E = X and, for ea
h X ∈ bv(Σ), the equation for X indu
es thetransitions {X a

−→ Y | Y ∈ YX,a} and the valuation λ(X) = BX .Lemma 11 χ and θ are ea
h others inverse up to equivalen
e, that is,(1) θ(χ(S)) ∼= S for �nite S (where ∼= denotes isomorphism), and(2) χ(θ(φ)) ≡α φ for φ in SNF (where ≡α denotes α-
onvertibility).Here, isomorphism means a label-and-valuation-preserving bije
tion betweenthe respe
tive states and transitions.For φ in SNF, the spe
i�
ation θ(φ) is amaximal model of φ with respe
t to thesimulation preorder, in the sense that it simulates exa
tly those spe
i�
ationsthat satisfy formula φ.Theorem 12 For φ in SNF, we have S ≤ θ(φ) if and only if S |= φ.PROOF. Follows from Theorem 9 by Lemma 11(2). 23.3 Transformation to SNFWe now present a step-wise transformation of any simulation logi
 formulainto a logi
ally equivalent formula in SNF. Before des
ribing the transforma-15



tion in detail, we introdu
e some auxiliary notions. First, we use a slightlynon-standard variant of disjun
tive normal form: we say that a formula φof basi
 simulation logi
 is in disjun
tive normal form (DNF ) if it is a dis-jun
tion of 
onjun
tions of box formulae and literals, i.e., it has the shape
φ =

∨

i(
∧

j [aij]ψij ∧
∧

Li) where Li are sets of literals and ψij arbitrary formu-lae in basi
 simulation logi
. Furthermore, the 
onjun
tive de
omposition c(ψ)of a formula ψ into its 
onjun
ts is given by c(ψ) = {ψ1, . . . , ψm} su
h that no
ψi is a 
onjun
tion and ψ =

∧

i ψi (modulo asso
iativity and 
ommutativity).Note that c(tt) = ∅. The elements of c(ψ) are 
alled 
onjun
tive 
omponentsof ψ.We 
all an o

urren
e of a subformula top-level if it is not under the s
ope ofa box operator. We say that Y is unguarded in φX , written X ⊲ Y , if thereis a top-level o

urren
e of Y in φX . A modal equation system Σ (or formula
φ[Σ]) is weakly guarded if the relation ⊲ is a
y
li
, and strongly guarded if ⊲ isempty.Example 13 Consider the modal equation system

Σ =







X = [a]X ∨ (q ∧ Y )

Y = [b] (X ∧ [a]Y ) ∧ p





Variable X is guarded in φX (the only o

urren
e of X is under the s
ope ofa box operator), but Y is not (it o

urs on the top-level). Both X and Y areguarded in φY . Hen
e, ⊲ = {(X, Y )} being a
y
li
 but not empty, Σ is weaklyguarded but not strongly guarded.Any weakly guarded formula 
an be transformed into a strongly guarded oneby repeatedly rewriting ea
h unguarded o

urren
e of a variable by its de�ningequation. Moreover, using a result of Walukiewi
z [35℄ we 
an also show thatany formula of simulation logi
 
an be transformed into an equivalent weaklyguarded one (and thus into a strongly guarded one).After these auxiliary de�nitions, we are ready to present the transformation.It 
onsists of three phases:Phase I transforms ea
h equation into a disjun
tion of formulae in state nor-mal form, where only single variables appear under modalities,Phase II splits top-level disjun
tions in ea
h equation into a set of new equa-tions, one for ea
h disjun
t, yielding an equation system in state normalform, andPhase III is an optimisation phase removing unrea
hable and redundantequations.The transformation into SNF uses a partial fun
tion h that keeps tra
k how16



sets of formulae are mapped to variables. This map avoids the repeated in-trodu
tion of new equations for the same formula, whi
h is essential for thetermination of the transformation. If h maps a set of formulae Ψ to variable
X, this means that an equation X =

∧

Ψ (su
h that c(∧ Ψ) = Ψ) has beenintrodu
ed earlier and that variable X should be used instead of introdu
ingany further equation for ∧

Ψ.Before going into the details, let us illustrate the basi
 ideas on a simpleexample. A more elaborate transformation example appears in Se
tion 8.3.1.Example 14 Let φ = [b] ff ∧ p be interpreted as a formula over L = {a, b}and A = {p}. This formula holds for spe
i�
ations, where ea
h initial statesatis�es p and has no outgoing b transition. We �rst translate φ to (
∨

X0)[Σ0]with X0 = {X} and Σ0 = {X = [b] ff ∧ p}. In the following, the numbers inparentheses refer to the transformation steps detailed below.The equation for X is already strongly guarded (I.1) and in DNF (I.2). Next,we add the missing box [a] using the equivalen
e tt ≡ [a] tt (I.3), yielding
X = [a] tt ∧ [b] ff ∧ p. In the next step (I.4), we introdu
e new variables forthe formulae under the boxes: Y = tt and Z = ff. This is re
orded in h withtwo new entries: (∅, Y ) (sin
e tt =

∧

∅) and ({ff}, Z). The equation for Xbe
omes
X = [a]Y ∧ [b]Z ∧ pwhi
h is already in state normal form. We pro
eed with Y = tt. Again, the �rststep with an e�e
t adds the missing boxes (I.3), produ
ing Y = [a] tt ∧ [b] tt.Next, sin
e c(tt) = ∅ and h(∅) = Y , we know that Y stands for tt, so werepla
e the subformulae tt under the boxes by Y , yielding Y = [a]Y ∧ [b] Y . Toget a disjun
tion of state normal forms, we add the missing literals in positiveand negative form, yielding

Y = ([a]Y ∧ [b] Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p).The third equation Z = ff (= ∨

∅) is already a (trivial) disjun
tion of statenormal forms. Note that X remains un
hanged in Phase I. Thus, at the endof Phase I we have the following equation system.
Σ =















X = [a]Y ∧ [b]Z ∧ p

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b] Y ∧ ¬p)

Z = ff













Next, Phase II splits ea
h top-level disjun
tion into a set of new equationsand substitutes the disjun
tion of new variables for the original variable. Con-
retely, all o

urren
es of Y are repla
ed by Y1 ∨ Y2 and Z = ff (= ∨

∅) is17
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Figure 2. Maximal model for φ = [b]ff ∧ psubstituted ba
k into φX , yielding
Σ =















X = [a] (Y1 ∨ Y2) ∧ [b] ff ∧ p

Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p

Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p













Sin
e X is not split into several equations, X = {X} remains un
hanged.Phase III is the identity transformation in this example as there are no un-rea
hable or dupli
ate equations. Thus, the �nal result is X[Σ], whi
h is insimulation normal form. The derived maximal model θ(X[Σ]) is displayed inFigure 2. Indeed, it simulates exa
tly all those spe
i�
ations where ea
h initialstate satis�es p and has no outgoing b transition.We now des
ribe the a
tual transformation in detail. We assume without lossof generality that the initial formula has the shape X0[Σ0], where Σ0 is weaklyguarded (sin
e any formula 
an be transformed into a weakly guarded one).We initialise X = {X0}, Σ = Σ0 and h = ∅.Phase I (Disjun
tion of state normal forms)This phase transforms ea
h equation into a disjun
tion of formulae in statenormal form. Its steps are applied on
e to ea
h equation in
luding the newones introdu
ed in step I.4 below.(1) (Strong guardedness) Make equation strongly guarded by repeated rewrit-ing of unguarded o

urren
es of variables using the original system Σ0.(2) (DNF) Put equation into disjun
tive normal form and remove in
onsis-tent disjun
ts (those where ff or both p and ¬p appear).(3) (Box grouping and 
ompletion) Group boxes together using [a]φ1∧[a]φ2 ≡
[a] (φ1 ∧ φ2) and add missing boxes to ea
h disjun
t using tt ≡ [a] tt su
hthat there is a box formula for ea
h a ∈ L. The resulting equation shapeis

X =
∨

i

(
∧

a∈L

[a]ψia ∧
∧

Li)(4) (Modal depth redu
tion) Apply the following to ea
h top-level box sub-formula [a]ψia where ψia is not a variable. If (c(ψia), Y ) ∈ h for some18



variable Y then repla
e [a]ψia by [a]Y ; otherwise, 
hoose a fresh variable
Z 6∈ bv(Σ), add the new equation Z = ψia to Σ, repla
e [a]ψia by [a]Zand extend h to h ∪ {(c(ψia), Z)}. The equation shape is then

X =
∨

i

(
∧

a∈L

[a]Zia ∧
∧

Li)(5) (Literal 
ompletion) Repla
e equation X = φ by X = φ ∧
∧

p∈A(p ∨ ¬p),then repeat step (2) to put equation ba
k into DNF. The equation shapeis (for Bi ⊆ A)
X =

∨

i

(
∧

a∈L

[a]Zia ∧
∧

p∈Bi

p ∧
∧

q∈A−Bi

¬q)Note that step (I.4) might introdu
e unguarded o

urren
es of variables inthe newly added equations. Thus, the rewriting step (I.1) is needed to bringthese equations into strongly guarded form. For the termination of Phase I, itis 
ru
ial to use the original equation system Σ0 and not the 
urrent Σ in thisstep, be
ause this limits the set of subformulae introdu
ed by the rewriting tothose already o

urring in Σ0. This in turn guarantees that subsequent modaldepth redu
tions in step (I.4) eventually �nd already existing variables for thesubformulae under the box operator.Phase II (Push disjun
tions inside)This phase eliminates the top-level disjun
tions by introdu
ing a new equationfor ea
h disjun
t, thus pushing these disjun
tions under box modalities. It isapplied on
e to ea
h equation in Σ.(1) Remove an equation of shape X =
∨n

i=1 φi with n 6= 1 from Σ; note thatthis in
ludes the 
ase X = ff (for n = 0).(2) Add a new equation Xi = φi for ea
h non-variable disjun
t φi and sub-stitute ∨n
i=1Xi for X in all equations of Σ (where Xi is either identi
alto φi or Xi is the fresh variable introdu
ed for φi).(3) If X ∈ X then repla
e X by (X − {X}) ∪ {X1, . . . , Xn}.The resulting equation is in state normal form.Phase III (Optimisation)This optimisation phase iteratively removes unrea
hable and dupli
ate equa-tions.(1) Remove equations Z = ψ from Σ in 
ase Z 
an not be rea
hed from anyvariable in X via variable dependen
ies (X depends on Y if Y o

urs in

φX). 19



(2) If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ su
h that ψ1[Z1/Z2] =
ψ2[Z1/Z2], then remove Z2 = ψ2 from Σ and substitute Z1 for Z2 in theremaining equations as well as in X .Theorem 15 The algorithm above terminates and transforms any formula

φ of simulation logi
 into an equivalent formula snf(φ) in simulation normalform.PROOF. (Sket
h; full proof in [36℄) Let Xi, Σi and hi denote the values of
X , Σ and h after i transformation steps. We 
on
entrate in this sket
h onPhase I, whi
h preserves the following two invariants:J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡ Y [Σ0], andJ2. if (Ψ, Z) ∈ hi then Ψ ⊆ Ψ0, where Ψ0 is de�ned as the set of 
onjun
tive
omponents of subformulae appearing under some box modality in Σ0, thatis, Ψ0 =

⋃

{c(ψ) | ∃a. [a]ψ is a subformula of Σ0}.Preservation of the semanti
s by the transformation steps follows from J1 andthe fa
t that X is 
onstant in Phase I. To see that Phase I terminates, note�rst that step I.1 terminates, be
ause Σ0 is weakly guarded (by assumption)and all steps preserve weak guardedness. Overall non-termination of Phase Idue to the introdu
tion of equations in step I.4 is ruled out by J2: sin
e Ψ0 is�nite, the map h eventually �lls up and thus Phase I terminates. 2We extend the mapping θ to all formulae of simulation logi
 by de�ning θ(φ) =
θ(snf(φ)). Sin
e snf preserves the semanti
s, Theorem 12 
an be extended toall formulae, showing that θ(φ) is the maximal model of φ with respe
t to thesimulation preorder.Theorem 16 S ≤ θ(φ) if and only if S |= φ.We 
on
lude with two important 
onsequen
es of Theorems 9 and 16. The�rst one is that simulation preserves logi
al properties.Corollary 17 S1 ≤ S2 and S2 |= φ imply S1 |= φ.The se
ond 
orollary expresses that the maps χ and θ form a Galois 
onne
tionbetween the preorder (S,≤) of (isomorphism 
lasses of) �nite spe
i�
ationsordered by simulation and be the preorder (L,⊑) of formulae of simulationlogi
 ordered by logi
al 
onsequen
e.Corollary 18 χ and θ are monotone and, for �nite spe
i�
ations S, S ≤ θ(φ)if and only if χ(S) ⊑ φ. 20



3.4 Representation results for weak simulationA natural question is whether the results of the previous subse
tion 
an be usedto relate weak simulation and simulation logi
 in the same way as simulationand simulation logi
 are related by the transformation θ (and its adjoint map
χ). Note that applying θ on a formula of simulation logi
 interpreted over weaktransitions would only give us a model in terms of weak transitions, withoutthe underlying strong transitions. However, there is a standard translation offormulae interpreted over weak transitions into equivalent formulae interpretedover strong transitions [32℄. This translation, let us denote it by δ, is easilyadapted to our setting. It has the property that S |=w φ exa
tly when S |=
δ(φ). We show that θ ◦ δ provides the desired transformation relating weaksimulation and simulation logi
.To this end, we �rst introdu
e the notion of saturated model, i.e., a modelin whi
h s a

−→ t whenever s a
⇒ t. We show that for all formulae φ, θ (δ (φ)) issimulation equivalent to its saturation, and therefore it is su�
ient for a modelto be weakly simulated by θ (δ (φ)) in order to satisfy φ when interpreted overweak transitions.De�nition 19 (Saturation) Let M = (S, L,→, A, λ) be a model. The sat-uration of M is the model sat(M) = (S, L,→s, A, λ) in whi
h s a

−→s t exa
tlywhen s a
⇒ t for all a. The saturation of a spe
i�
ation (M, E) is the spe
i�-
ation sat(M, E) = (sat(M), E).Thus, sat(M) is the least saturated model with respe
t to the subset orderingon the powerset of S×L×S, 
ontaining M. For instan
e, in the model givenin Figure 1 above, we have to add the transition s1

a
−→ s3 and ε-self-loops tosaturate the model. We have s a

⇒s t in sat(S) whenever s a
−→s t in sat(S)whenever s a

⇒ t in S. As 
onsequen
es, we have the following properties ofweak simulation and simulation logi
.Proposition 20 We have(i) S1 ≤w S2 i� S1 ≤ sat(S2), and(ii) S |=w φ i� sat(S) |=w φ i� S |= δ(φ).Lemma 21 sat(θ (δ (φ))) ≃ θ (δ (φ)).PROOF. Clearly, θ (δ (φ)) ≤ sat(θ (δ (φ))) holds; it remains to show theother dire
tion. From re�exivity of≤ and Theorem 16 we know that θ (δ (φ)) |=
δ(φ). Then, by Proposition 20(ii), sat(θ (δ (φ))) |= δ(φ), and again by Theo-rem 16, sat(θ (δ (φ))) ≤ θ (δ (φ)). 221



These results allow the following 
hara
terisation of simulation logi
, in thestyle of Theorem 16.Theorem 22 S ≤w θ (δ (φ)) if and only if S |=w φ.PROOF. By Proposition 20(i) and Lemma 21 the following statements areequivalent: (a) S ≤w θ (δ (φ)), (b) S ≤ sat(θ (δ (φ))), and (
) S ≤ θ (δ (φ)).Theorem 16 together with Proposition 20(ii) then establish the result. 2Corollary 23 S1 ≤w S2 and S2 |=w φ imply S1 |=w φ.4 Program ModelThis se
tion uses the notions developed above to formally de�ne applet stru
-ture and behaviour, stru
tural and behavioural simulation logi
, and maximalapplets. The next se
tion then shows how these support 
ompositional veri�-
ation of 
ontrol-�ow-based safety properties of applets.4.1 Applet Stru
tureWe model the 
ontrol stru
ture of an applet as a 
olle
tion of method spe
i-�
ations. We �rst de�ne the notion of applet interfa
e as the sets of methodswhi
h are provided and 
alled by an applet. We shall need this notion for
onstru
ting maximal applets. Let Meth be an in�nite set of method names(not 
ontaining the spe
ial symbols r and ε).De�nition 24 (Applet interfa
e) An applet interfa
e is a pair I = (I+, I−),where I+, I− ⊆ Meth are �nite sets of names of provided and required meth-ods, respe
tively. We say I is 
losed if I− ⊆ I+. The 
omposition of two inter-fa
es I1 = (I+
1 , I

−
1 ) and I2 = (I+

2 , I
−
2 ) is de�ned by I1∪I2 = (I+

1 ∪I+
2 , I

−
1 ∪I−2 ).Next, we de�ne method spe
i�
ations, whi
h are the basi
 building blo
ks ofapplets. Ea
h method is des
ribed by its 
ontrol-�ow graph and a set of entrypoints.De�nition 25 (Method spe
i�
ation) A method graph for m ∈ Methover a set M of method names is a �nite model Mm = (Vm, Lm,→m, Am, λm),where Vm is the set of 
ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r},

m ∈ λm(v) for all v ∈ Vm, i.e., ea
h node is tagged with the method name. Amethod spe
i�
ation for m ∈ Meth over M is a spe
i�
ation (Mm, Em) su
hthat Mm is a method graph for m over M .22
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p ε m, rm, rv4Figure 3. A method graphThe nodes labelled with the distinguished atomi
 proposition r are the returnpoints of m.Example 26 Figure 3 shows the method graph for the following Java-likemethod m:void m() {if 
() {p()} else x = 3}An applet is a 
olle
tion of method spe
i�
ations.De�nition 27 (Applet) Applets A with interfa
e I, written A : I, are in-du
tively de�ned by
• 0M : (∅,M), where 0M is the empty applet over M de�ned by 0M =

((∅,M ∪ {ε},∅, {r},∅),∅),
• (Mm, Em) : ({m},M) if (Mm, Em) is a method spe
i�
ation for m over M ,
• A1 ⊎A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.An applet A : I is 
losed if its interfa
e I is 
losed.This de�nition requires that ea
h provided method m ∈ I+ of an applet A : Ihas to be implemented in a method graph for m. The interfa
e of an applet
an be derived from its implementation: a straightforward indu
tion showsthat if A is an applet built from a model over L and A then its interfa
e is
(A−{r}, L−{ε}). We write S : I for an arbitrary spe
i�
ation S to mean that
S is (isomorphi
 to) an applet with interfa
e I. Note that, up to isomorphism,applet 
omposition ⊎ is asso
iative and 
ommutative with neutral element 0∅.We have developed a tool to extra
t applet graphs from Java Card byte 
ode.The tool is based on the SOOT framework (see Se
tion 7).4.1.1 Stru
tural Simulation and Logi
Stru
tural simulation on applets 
oin
ides with simulation on the spe
i�
a-tions de�ning the applets. For 
onvenien
e we write A1 ≤s A2 instead of
A1 ≤ A2 to denote stru
tural simulation. Sin
e applet 
omposition 
orre-sponds to disjoint union, stru
tural simulation is preserved by applet 
ompo-23



sition (
f. Theorem 4).Corollary 28 If A1 ≤s B1 and A2 ≤s B2 then A1 ⊎ A2 ≤s B1 ⊎ B2.We also instantiate (weak) simulation logi
 to this level. For an applet A : Iand a formula φ of simulation logi
 over L = I− ∪ {ε} and A = I+ ∪ {r} wewrite for 
larity A |=s φ instead of A |= φ and A |=s,w φ instead of A |=w φ.4.2 Maximal Applet Stru
turesIn general, the maximal model of a given formula in stru
tural simulation logi
is not a legal applet stru
ture. What we are interested in, then, is 
omputinga maximal applet for the formula, i.e., an applet stru
ture whi
h satis�esthe formula and whi
h stru
turally simulates all other applets satisfying theformula. This problem, however, 
an only be solved for a �xed applet interfa
e:one 
an axiomatise applet stru
tures within stru
tural simulation logi
 for agiven interfa
e. This allows the maximal model 
onstru
tion presented aboveto be used for 
omputing a maximal applet for a given formula in stru
turalsimulation logi
.De�nition 29 (Interfa
e formula) Let I = (I+, I−) be an applet interfa
e.De�ne φI [ΣI ], the interfa
e formula for I, by
φI =

∨

m∈I+ Xm

ΣI = {Xm = [I−, ε]Xm ∧ pm | m ∈ I+}

pm = m ∧
∧

{¬m′ | m′ ∈ I+, m′ 6= m}The formula φI [ΣI ] axiomatises the basi
 stru
ture of an applet with inter-fa
e I, namely, ea
h initial node belongs to a unique method m and no tran-sition leaves m. Note that ΣI is not in SNF (proposition r is missing).The maximal applet with respe
t to a formula φ and interfa
e I is de�ned asthe maximal model of φ 
onjoined with the interfa
e formula for I.De�nition 30 (Maximal applet) The maximal applet with respe
t to in-terfa
e I and formula φ[Σ] is de�ned as θI(φ[Σ]) = θ(φ ∧ φI [Σ,ΣI ]) (where itis assumed without loss of generality that the bound variables of Σ and ΣI aredisjoint).Example 31 The interfa
e formula for interfa
e I = ({m1, m2}, {m1, m3})24
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Figure 4. Maximal applet for interfa
e I = ({m1,m2}, {m1,m3}) and φ = ttis given by the formula φI [ΣI ], where φI = Xm1
∨Xm2

and
ΣI =







Xm1
= [m1, m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1, m3, ε]Xm2

∧m2 ∧ ¬m1





The maximal applet for interfa
e I (and formula φ = tt) is shown in Figure 4.The following result re
ords the main properties of interfa
e formulae andmaximal applets.Theorem 32 Let I be an applet interfa
e. For any spe
i�
ation S = (M, E)over labels L = I−∪{ε} and atomi
 propositions A = I+∪{r} we have (where
R denotes the rea
hable part of a spe
i�
ation, as de�ned on page 10)(1) S |=s φI if and only if R(S) : I, and(2) S ≤s θI(φ) if and only if S |=s φ and R(S) : I.
PROOF. (1) (Sket
h) �⇒� By an indu
tion on the size of I+. The restri
-tion to the rea
hable part of S is required, be
ause the formula φI does not
onstrain the unrea
hable parts of S. �⇐� By inspe
tion of the de�nitionof applets. (2) Using the de�nition of θI(φ) and Theorem 16 we know that
S ≤s θI(φ) is equivalent to S |=s φ and S |=s φI . The result then follows from(1). 2

Point (1) of the theorem essentially expresses that the formula φI 
hara
terisesthose spe
i�
ations that are applets with interfa
e I, while point (2) extendsTheorem 16 from spe
i�
ations to applets. As a 
onsequen
e of (2) we have
θI(φ) |= φI and θI(φ) : I, sin
e all nodes of θI(φ) are rea
hable by 
onstru
tion.25



4.3 Applet BehaviourNext, we 
hange our fo
us to the behavioural level, where we �rst de�ne theoperational semanti
s of a 
losed applet. Sin
e our 
ompositional veri�
ationmethod is based on stru
tural assumptions, there is no need to 
ompose ap-plets on the behavioural level, so an operational semanti
s of 
losed applets issu�
ient. This is in 
ontrast with previous work on semi-automati
 
omposi-tional applet veri�
ation [7℄ where the use of behavioural assumptions requireda more involved open semanti
s of applets.Applet behaviour 
an be des
ribed in terms of Pushdown Automata. We alsopresent an equivalent formulation of applet behaviour, de�ning it dire
tly interms of a model. Applet behaviour is 
losely 
onne
ted with applet stru
ture,in the sense that simulation of applet stru
ture immediately 
arries over tosimulation of applet behaviours. This will be exploited in the next se
tion,when presenting the 
ompositional veri�
ation prin
iple.4.3.1 Applet Behaviour as Pushdown AutomatonPushdown Automata provide a natural exe
ution model for programs withre
ursion. They form a well-studied 
lass of in�nite state systems for whi
hmany important problems like bisimulation equivalen
e and model 
he
kingare de
idable (see e.g., [10,5℄ for analysis te
hniques and [3,2℄ for appli
ations).Applet behaviour 
an be des
ribed dire
tly in terms of Pushdown Automata.De�nition 33 (PDA) A non-deterministi
 Pushdown Automaton is a tuple
P = (Q,Σ,Γ,∆, Q′,⊥) where Q is a set of 
ontrol states, Σ a �nite inputalphabet, Γ a �nite sta
k alphabet, Q′ ⊆ Q are the start states, ⊥ ∈ Γ isthe initial sta
k symbol, and ∆ ⊆ (Q × Γ) × Σ × (Q × Γ∗) a set of labelledprodu
tions (or rewrite rules) of the shape (q1, A)

a
→֒ (q2, γ).A 
on�guration of a PDA is a pair (q, γ) ∈ Q× Γ∗. The set of 
on�gurations

Q′ × {⊥} are 
alled initial 
on�gurations. The set of produ
tions indu
es alabelled transition relation on 
on�gurations as the least relation whi
h 
on-tains the initial 
on�gurations and is 
losed under the pre�x rewrite rule:
(q1, A · γ′)

a
−→ (q2, γ · γ

′) whenever (q1, A)
a
→֒ (q2, γ) ∈ ∆.Applet behaviour is indu
ed from the applet PDA through the pre�x rewriterule. The 
onne
tion between applet stru
ture and applet PDA is establishedthrough the following de�nition.De�nition 34 (Applet PDA) Let A = (M, E) : (I+, I−) be a 
losed appletsu
h that M = (V, L,→, A, λ). Then PA = (V, Lb, V ∪ {⊥},∆, E,⊥) is the26



[transfer℄ (v, σ)
τ
−→ (v′, σ) if v

ε
−→m v′, v |= ¬r[
all℄ (v1, σ)

m1 call m2−−−−−−→ (v2, v
′
1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1
v′1, v1 |= ¬r,

v2 |= m2, v2 ∈ E[return℄ (v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1Table 1Applet Transition RulesPDA indu
ed by A where

Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}

∆ = {(v, v⊥)
ε
→֒ (v′, v⊥) | v |= ¬r ∧ v →m v′}

∪ {(v1, v⊥)
m1 
all m2

→֒ (v2, v
′
1 · v⊥) | v1 |= ¬r ∧ v1

m2−→m1
v′1

∧ v2 |= m2 ∧ v2 ∈ E}

∪ {(v2, v1)
m2 retm1

→֒ (v1, ε) | v2 |= r ∧ v2 |= m2 ∧ v1 |= m1}where v⊥ ranges over V ∪ {⊥}.Note that the valuation λ also applies to PDA 
ontrol states and is lifted to
on�gurations by de�ning λ̂((v, v⊥)) = λ(v).4.3.2 Applet Behaviour by Transition RulesAn alternative approa
h is to des
ribe applet behaviour expli
itly as a spe
i-�
ation, by de�ning appropriate transition rules.De�nition 35 (Behaviour) Let A = (M, E) : (I+, I−) be a 
losed ap-plet su
h that M = (V, L,→, A, λ). The behaviour of A is des
ribed bythe spe
i�
ation b(A) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) is de-�ned by Sb = V × V ∗, that is, states are pairs of 
ontrol points and sta
ks,
Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}, →b is de�ned by thetransition rules of Table 1, Ab = A and λb((v, σ)) = λ(v). The set of initialstates Eb is de�ned by Eb = E × {ε}.A simple inspe
tion of the rules in Table 1 and De�nition 34 shows thatthe behaviour indu
ed by the applet PDA through the pre�x rewrite rule isisomorphi
 to the expli
itly des
ribed applet behaviour.27



4.3.3 Behavioural Simulation and Logi
Applet A1 behaviourally simulates applet A2, written A1 ≤b A2, if b(A1) ≤
b(A2). Similarly, we instantiate simulation logi
 on the behavioural level. Be-havioural properties are more abstra
t than stru
tural ones as they do not referto the program 
ontrol stru
ture. We de�ne behavioural satisfa
tion A |=b ψas b(A) |= ψ for applets A : I and ψ a formula of simulation logi
 over Lb and
Ab. Similarly, weak behavioural satisfa
tion A |=b,w ψ is de�ned as b(A) |=w ψ.Sin
e applet behaviour 
oin
ides with behaviour of a Pushdown Automaton,verifying goals of the shape A |=b ψ (or A |=b,w ψ) 
an be redu
ed to PDAmodel 
he
king, for whi
h standard algorithms exist.4.3.4 Simulation Corresponden
eThe notions of applet stru
ture and behaviour have been de�ned so as toensure that any two applets related by stru
tural simulation are also relatedby behavioural simulation. In general, the inverse does not hold, be
ause dueto re
ursion, method graphs 
an 
ontain nodes that are never rea
hable at thebehavioural level.Theorem 36 (Simulation Corresponden
e) If A1 ≤s A2 then A1 ≤b A2.PROOF. LetR be a stru
tural simulation between A1 andA2. We liftR fromthe stru
tural level to Rb on the behavioural level by de�ning ((v, σ), (v′, σ′)) ∈
Rb if and only if (v, v′) ∈ R, |σ| = |σ′| and (σ(i), σ′(i)) ∈ R for all 0 ≤ i < |σ|.It is easy to 
he
k that Rb is a behavioural simulation between A1 and A2.
2As a 
onsequen
e, in the set of applets satisfying a given stru
tural formula
φ[Σ], the maximal applet for this formula (with respe
t to stru
tural simula-tion) θI(φ[Σ]) is also maximal with respe
t to behavioural simulation.4.4 Behavioural Maximal AppletsDe�ning the maximal applet behaviour for a given behavioural formula is moreproblemati
. As in the stru
tural 
ase, in general, the maximal model of aformula in behavioural simulation logi
 is not a legal applet behaviour. Unlikethe stru
tural 
ase, however, one 
annot axiomatise applet behaviour withinbehavioural simulation logi
 (in order to use the maximal model 
onstru
tionfor generating maximal applet behaviours), sin
e simulation logi
 is only ableof 
apturing regular properties and not the 
ontext-free properties exhibitedby Pushdown Automata. 28



Furthermore, a maximal applet behaviour would in general be in�nite-state;therefore, a maximal behaviour 
onstru
tion has to return a �nite represen-tation of this behaviour. The obvious (but not only) 
hoi
e for su
h a rep-resentation would be an applet stru
ture. Given a formula in behaviouralsimulation logi
, the problem then redu
es to �nding an applet whi
h satis�esthe formula and whi
h behaviourally simulates all other applets satisfying theformula. However, in general su
h a maximal applet is not unique.Example 37 Consider the behavioural formula [m1 callm2] r over an inter-fa
e I = ({m1, m2}, {m1, m2}). The formula gives rise to two maximal applets:(1) the maximal applet for I, but without edges labelled m2 whose sour
e is anon-return entry node of m1 (representable as θI(¬m1 ∨ r∨ [m2] ff)), i.e.,the applet where m1 
an never 
all m2 immediately; and(2) the maximal applet for I, but where every entry point of m2 is valuated r(representable as θI(¬m2 ∨ r)), i.e., the applet where m2 always returnsimmediately.Every applet satisfying the formula is behaviourally simulated by one of thesetwo applets; however, neither of the two applets simulates the other.We are 
urrently investigating under what 
onditions and how su
h a 
olle
-tion of maximal applets 
an be 
hara
terised exa
tly, by means of a translationfrom behavioural properties into 
olle
tions of stru
tural properties. Prelimi-nary results are presented by Gurov and Huisman in [11℄.5 Compositional Veri�
ationThe results of the pre
eding se
tions form the basis for 
ompositional veri�-
ation of applets using maximal models.5.1 Stru
tural PropertiesIn the realm of stru
tural properties, i.e., when global guarantees and lo
alassumptions are all given as stru
tural formulae, we obtain a 
ompositionalveri�
ation prin
iple of the desired form, embodied by the following rule:
(struct − comp)

A |=s φ θI(φ) ⊎ B |=s ψ

A ⊎ B |=s ψ
A : IThis prin
iple states that in order to show that a 
omposed applet A⊎B hasa stru
tural property ψ, it is su�
ient to �nd a stru
tural property φ whi
h is29



satis�ed by A and for whi
h θI(φ)⊎B |=s ψ. The rule is sound and 
omplete.The proof of this rule follows 
losely the (slightly more involved) proof for rule
(compos) presented below (Theorem 39), and is therefore omitted. Verifyingthe premises is a
hieved by standard, �nite-state model 
he
king.Sin
e applet 
omposition is 
ommutative, one 
an apply the 
ompositionalreasoning prin
iple also with respe
t to applet B in the se
ond premise of therule to yield a further de
omposition of the global property.5.2 Behavioural PropertiesAs explained above, de
omposition of global behavioural properties is moreproblemati
, as behavioural properties in general do not give rise to uniquemaximal applets. We 
an represent the set of applets satisfying the lo
al as-sumption by a model that behaviourally simulates these applets, but this ne
-essarily leads to approximative (i.e., sound but in
omplete) solutions, sin
esu
h a model 
annot be guaranteed to be a legal applet behaviour itself. How-ever, by restri
ting lo
al assumptions to stru
tural properties, we obtain a
omplete 
ompositional veri�
ation rule, thus avoiding the possibility of falsenegatives. This rule exploits the result that stru
tural simulation implies be-havioural simulation (Theorem 36).Let A : I and B : J be applets su
h that I ∪ J is 
losed and let φ and ψbe formulae of stru
tural and behavioural simulation logi
, respe
tively. Wepropose a 
ompositional veri�
ation prin
iple embodied by the following rule:

(compos)
A |=s φ θI(φ) ⊎ B |=b ψ

A⊎ B |=b ψ
A : IWe establish soundness and 
ompleteness of the rule with the help of thefollowing result, whi
h 
hara
terises its se
ond premise.Proposition 38 Let B : J be an applet and I an interfa
e su
h that I ∪ J is
losed. Then θI(φ) ⊎ B |=b ψ if and only if for all A : I with A |=s φ we have

A ⊎ B |=b ψ.PROOF. �⇒� Suppose θI(φ) ⊎ B |=b ψ, A : I and A |=s φ. Then 
ertainlyalso R(A) : I and so we get A ≤s θI(φ) by Theorem 32(2). From Corollary 28and Theorem 36 we derive that A ⊎ B ≤b θI(φ) ⊎ B. Hen
e, A ⊎ B |=b ψ byCorollary 17. �⇐� By Theorem 32(2) we have θI(φ) : I and θI(φ) |=s φ, thus
θI(φ) ⊎ B |=b ψ. 2 30



Theorem 39 Rule (compos) is sound and 
omplete.PROOF. Soundness is immediate by Proposition 38. For 
ompleteness sup-pose A ⊎ B |=b ψ and set φ = χ(A). By Theorem 9 we have A |=b χ(A).To establish the se
ond premise of the rule, we use Proposition 38 and show
C ⊎ B |=b ψ for an arbitrary C : I with C |=s X (A). We use Theorem 9 toderive C ≤s A. The result then follows by Theorem 36 and Corollaries 17 and28. 2Again, sin
e applet 
omposition is 
ommutative, one 
an apply the 
omposi-tional reasoning prin
iple (compos) also with respe
t to applet B in the se
ondpremise of the rule to yield a further de
omposition of the global property.Note that by taking B to be the empty applet ∅J− , (compos) redu
es to a rulerelating behavioural properties to stru
tural ones:

(stru
t-beh) A |=s φ θI(φ) |=b ψ

A |=b ψ
A : IThus, given applet A : I, the satisfa
tion of behavioural property ψ 
an beredu
ed to the satisfa
tion of stru
tural property φ if and only if the maximalapplet with respe
t to I and φ (behaviourally) satis�es property ψ.6 Interfa
e Abstra
tionSo far we have only 
onsidered applets where all provided methods are publi
,meaning that they 
an be 
alled from the outside. However, in pra
ti
e thepubli
 methods will be implemented using private methods whi
h are hiddenfrom the outside world. Thus, when one wishes to 
he
k that an a
tual ap-plet implementation (using private methods) satis�es a spe
i�ed property, oneneeds to abstra
t away from the private methods, whi
h are not observablefrom the outside. In parti
ular, in a 
ompositional veri�
ation setting, lo
alassumptions (and global guarantees) will typi
ally be expressed at the pub-li
 interfa
e level of an applet, while the 
on
rete applet implementation willuse private methods. For the 
ase study presented in Se
tion 8, the ability todistinguish between publi
 and private method is 
ru
ial to make veri�
ationfeasible.Given an applet A with interfa
e I = (I+, I−) and a set of publi
 methods

M ⊆ I+, we de�ne the publi
 interfa
e of A by Î(M) = (M, I− − (I+ −M)).The methods in the set I+ −M are 
alled private methods of A.We introdu
e the notion of interfa
e behaviour, whi
h � intuitively speaking �31



proje
ts the applet behaviour onto the observable methods de
lared in thepubli
 interfa
e. For the purpose of pra
ti
al veri�
ation, we present the in-terfa
e abstra
tion of an applet, produ
ed by an inlining algorithm, whi
h over-approximates the applet's interfa
e behaviour by inlining its private methods.We also show that, under the (very 
ommon) restri
tion that an applet islast-
all re
ursive, an inlined applet is weakly simulation equivalent to theinterfa
e behaviour of the original applet. We then propose a modi�ed prin
i-ple for 
ompositional veri�
ation based on the interfa
e abstra
tion of appletsand the maximal model obtained for the publi
 interfa
e of the 
orrespondingapplet.
6.1 Interfa
e BehaviourThe next se
tion de�nes an inlining algorithm that transforms a 
on
reteapplet implementation into an applet that 
ontains only method 
alls to publi
methods. We want to prove that for any 
losed applet, every behaviour of the
on
rete applet is also a behaviour of the inlined applet. However, for this tohold, we have to abstra
t the 
on
rete behaviour to the level of publi
 methods.Therefore, we introdu
e the notion of interfa
e behaviour of an applet withrespe
t to a set of publi
 methods M .First, we de�ne the top publi
 method with respe
t toM , whi
h for a given 
allsta
k σ is the �rst publi
 method to whi
h a node in the 
all sta
k belongs. For
onvenien
e, below we will often write the states of the behavioural model as asimple sequen
e of states, i.e., v · σ, instead of (v, σ). We use reverse indexingto denote the ith element from the ba
k of a sequen
e, so that (v · σ)|σ| = v(where |σ| denotes the length of sequen
e σ), and σ0 is the last element of σ.Let λMeth(v) denote the method to whi
h node v belongs.

top_indexM(σ) = max{i | 0 ≤ i < |σ| ∧ λMeth(σi) ∈M}

topM(σ) = λMeth(σtop_indexM (σ))Using these de�nitions, we 
an de�ne a relabelling ρM of transition labels tothe publi
 level. Labels for 
alls and returns between publi
 methods are leftun
hanged. A 
all from a private to a publi
 method is relabelled as a 
allfrom the top publi
 method in the pending 
all sta
k. A return from a publi
to a private method is relabelled as a return to the top publi
 method. All32



other transitions get labelled as silent a
tions.
ρM((v, σ), ℓ) =







































ℓ if ℓ = m1{call/ret}m2 ∧ m1, m2 ∈ M

topM(σ) callm2 if ℓ = m1 callm2 ∧ m1 6∈M,m2 ∈M

m1 ret topM(σ) if ℓ = m1 retm2 ∧ m1 ∈M,m2 6∈ M

ε otherwiseNow we are ready to de�ne the interfa
e behaviour of applet A with respe
tto a set of publi
 methods M .De�nition 40 (Interfa
e behaviour) Let A : I be a 
losed applet withbehaviour b(A) = ((S, L,→, A, λ), E). Let M ⊆ I+ be a set of publi
 methods.The interfa
e behaviour of A with respe
t to M is de�ned as
bM (A) = ((S, LM ,→M , AM , λM), EM)where

• LM = {m1 l m2 | m1, m2 ∈M ∧ l ∈ {call, ret}} ∪ {ǫ}

• →M= {((v, σ), ℓ, (v′, σ′)) | ∃a ∈ L. (v, σ)
a
→ (v′, σ′) ∧ ρM((v, σ), a) = ℓ }

• AM = M ∪ {r}

• λM = (v, σ) 7→ {topM(v · σ)} ∪ if(v ∈M ∧ v |= r) then {r} else ∅

• EM = {v | v ∈ E ∧ λMeth(v) ∈M}.The interfa
e behaviour of an applet also de�nes a Pushdown Automaton.Proposition 41 The interfa
e behaviour of A with respe
t to I+ is identi
alto its behaviour, i.e., bI+

(A) = b(A).We de�ne behavioural interfa
e simulation A ≤M
b B as bM (A) ≤ bM(B), andweak behavioural interfa
e simulation A ≤M

b,w B as bM(A) ≤w bM(B). Noti
ethat A and B need not have the same interfa
es � we only require M ⊆ I+
AandM ⊆ I+

B . Similarly, for any formula φ in simulation logi
 over LMand AM ,we de�ne behavioural interfa
e satisfa
tion A |=M
b φ as bM (A) |= φ, and weakbehavioural interfa
e satisfa
tion A |=M

b,w φ as bM (A) |=w φ.6.2 The Inlining TransformationNext we de�ne an inlining algorithm αM that, given a set of publi
 methodsM ,transforms an applet graph by inlining all private 
alls. Re
ursive 
alls toprivate methods are not inlined, but 
reate loops in the resulting graph. We33



prove that the interfa
e behaviour of the original applet A is simulated by thebehaviour of the inlined applet αM(A), thus (by Corollary 17) all properties φof the latter, i.e., αM(A) |=b φ, are also properties of the former, i.e., A |=M
b φ.Moreover, we prove that if the applet is last-
all re
ursive, the two behavioursare weakly simulation equivalent � thus both applets satisfy exa
tly the sameobservable properties at the publi
 interfa
e level.Noti
e that the inlining algorithm does not require the applet to be 
losed: ittreats all external methods as publi
.6.2.1 The Inlining AlgorithmThe algorithm is applied to ea
h publi
 method and (re
ursively) inlines all
alls to private methods. Intuitively, 
onstru
ting the transformed (or inlined)graph for a publi
 method m 
orresponds to exe
uting the interfa
e behaviourof m, where method 
alls to publi
 methods are skipped and re
ursion isrepla
ed by iteration. The nodes of the inlined applet 
an thus be seen asstates of the (interfa
e) behaviour of the original applet, modulo an abstra
tionfun
tion whi
h repla
es re
ursion by iteration.During the inlining, ea
h edge that represents internal transfer or a 
all to apubli
 method is left un
hanged. Ea
h edge that represents a 
all to a privatemethod is repla
ed by two internal edges: one from the 
alling point to theentry point of the method; and another from the return point of the methodto the destination of the 
alling edge. If a method has several entry or returnpoints, several internal edges are 
reated. The private method is inlined re-
ursively. Ea
h node is repla
ed by a sequen
e denoting the fragment of the
all sta
k from the a
tivation of the publi
 method up to the 
urrent node(ex
ept for the 
ase of a re
ursive 
all). Sin
e we keep tra
k of the pending
all sta
k, we 
an re
ognise re
ursive 
alls to private methods. In that 
ase,the appropriate initial fragment of the 
all sta
k is used to de
ide the exa
tnew edges.For the formal de�nition of the inlining algorithm, we need some new notions.Let A : I be an applet and M ⊆ I+ be a set of publi
 methods. An M-frameis a sequen
e of nodes σ of whi
h only λMeth(σ0) is inM . AnM-frame is 
allednormal, if all nodes in the frame belong to di�erent methods. The nodes of theinlined applet are represented by normalM-frames derived from the behaviourof the original applet. The abstra
tion fun
tion mentioned above (repla
ingre
ursion by iteration) is formalised by means of the (normalising) 
onditionalrewrite rule σ · v ·σ′ · v′ · σ′′ →֒ σ · v · σ′′ if λMeth(v) = λMeth(v

′) and σ′ · v′ · σ′′ isa normal M-frame. Let ν(σ) denote the normal form of σ with respe
t to therule. Note that if σ is an M-frame, then ν(σ) is a normalM-frame. Moreover,for any M-frame σ we have topM(σ) = λMeth(σ0).34



Further, for method m we de�ne Int(m) and Call(M,m), denoting the sets ofits internal edges and 
all edges with respe
t to methods in a set M , respe
-tively.
Int(m) = {(v, ε, v′) | v −→m v′ ∧ v |= ¬r}

Call(M,m) = {(v,m′, v′) | v
m′

−→m v′ ∧ v |= ¬r ∧ m′ ∈M}The de�nition of the inlining algorithm uses auxiliary fun
tions η and ζ . Thefun
tion η 
onsiders all edges related to a method: it returns internal andpubli
 
all edges with renamed nodes � using the pending 
all sta
k, and
alls fun
tion ζ on private 
all edges. Fun
tion ζ adds edges to the entrypoint, and from the return point of the private method, using the pending
all sta
k argument, and if ne
essary normalising the result (this uses the fa
tthat the pending 
all sta
k is always a normalised M-frame). Then it 
he
ksif the private 
all is non-re
ursive, in whi
h 
ase the private method is inlinedre
ursively.De�nition 42 (Inlined applet) Let A : I be an applet, and let (M,P ) be apartitioning of I+ into publi
 and private methods, respe
tively. We de�ne theinlined applet
αM(A) = ((V ′, L′,→′, A′, λ′), E ′)where

• V ′ = {w ∈ V + | w is a normal M-frame},
• L′ = (I− − P ) ∪ {ε},
• →′=

⋃

m∈M η(m, ǫ) where
η(m, σ) = {(v · σ, ℓ, v′ · σ) | (v, ℓ, v′) ∈ Int(m) ∪ Call(I− − P,m)}

∪
⋃

{ζ(σ, (v,m′, v′)) | (v,m′, v′) ∈ Call(P,m)}

ζ(σ, (v,m′, v′)) = {(v · σ, ε, ν(e · v′ · σ)) | e |= m′ ∧ e ∈ E}

∪ {(ν(rt · v′ · σ), ε, v′ · σ) | rt |= (m′ ∧ r)}

∪ if ¬∃i. (0 ≤ i ≤ |σ| ∧ (v′ · σ)i |= m′)

then η(m′, v′ · σ) else ∅

• A′ = M ∪ {r}

• λ′ = σ 7→ {λMeth(σ0)} ∪ if (|σ| = 1 ∧ σ0 |= r) then {r} else ∅

• E ′ = {v ∈ E | λMeth(v) ∈M}.Before dis
ussing properties of the inlining algorithm, we �rst show an exam-ple.Example 43 Suppose we have an applet as depi
ted in the left-hand 
olumn35
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ements
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PSfrag repla
ements
m

m

v0

v1, r

v2 · v1
v4 · v3 · v1

v5 · v3 · v1 v6 · v3 · v1

v7 · v3 · v1

v3 · v1Figure 5. Example applet before and after inliningof Figure 5. Inlining this applet with the publi
 method set {m} results in theapplet depi
ted in the right-hand 
olumn of Figure 5. Noti
e that all internaland publi
 
all edges are preserved, while private method 
alls are repla
edby two edges: to the entry and from the return point of the 
alled method,respe
tively.6.2.2 PropertiesWe state several useful properties of the inlining algorithm. First of all, theinlining algorithm 
omputes an applet having as interfa
e the publi
 interfa
eof the original applet.Proposition 44 Let A : I be an applet and M ⊆ I+ a set of publi
 methods.Then αM(A) is an applet with interfa
e Î(M), i.e., αM(A) : Î(M).By Proposition 41 we thus get:
bM(αM(A)) = b(αM(A))Sin
e the inlining transformation αM only inlines provided methods not inM ,

αI+ is the identity operation.Proposition 45 Let A : I be an applet. Then αI+(A) = A.Finally, the inlining algorithm enjoys the following distributivity property.Proposition 46 Let A : IA and B : IB be applets su
h that I+
A and I+

B aredisjoint and let MA ⊆ I+
A and MB ⊆ I+

B be sets of publi
 methods su
h that
I−A ⊆ I+

A ∪MB and I−B ⊆ I+
B ∪MA. Then

αMA∪MB
(A ⊎ B) = αMA

(A) ⊎ αMB
(B)36



6.2.3 Simulation ResultsAs already mentioned, the interfa
e behaviour of the original applet is over-approximated by the inlining algorithm, i.e., every exe
ution of the interfa
ebehaviour of A is an exe
ution of the behaviour of αM(A). This is due to the
lose 
orresponden
e between the interfa
e behaviour of A and the stru
tureof αM(A). We provide an �inlining� transformation α′
M on the states of bM(A)by de�ning α′

M (v, σ) = (hd(γ), tl(γ)), where γ = βM(v · σ) and where βM(σ)denotes the sequen
e of normalised M-frames. Noti
e that we always have
hd(hd(γ)) = hd(v · σ). We show that α′

M is a simulation relating the originalinterfa
e behaviour with the inlined behaviour.Theorem 47 Let A : I be a 
losed applet, and let M ⊆ I+. Then bM (A) ≤
b(αM (A)).PROOF. We show by 
o-indu
tion that α′

M is a simulation between bM(A)and b(αM(A)), i.e., we show that (1) the valuations of (v, σ) in bM (A) and
α′

M(v, σ) in b(αM(A)) agree, and (2) if (v, σ)
l
−→(v′, σ′) in bM(A), then we have

α′
M (v, σ)

l
−→ α′

M (v′, σ′) in b(αM(A)). The result then follows sin
e α′
M mapsthe entry states of bM(A) to entry states of b(αM(A)) (in fa
t, the entry states
oin
ide, and α′

M maps every entry state to itself). It is easy to 
he
k that thevaluations agree and that the transitions are simulated. For the full proof werefer to our te
hni
al report [37℄. 2Noti
e that in general we do not have behavioural simulation equivalen
e. Theinlining 
onstru
tion introdu
es transfer edges for 
alls to and returns fromprivate methods. Be
ause of the latter, the behaviour of the inlined applet 
an
ontain a silent transition 
orresponding to a return from a private methodin the original applet, even when the inlined applet has not yet followed asilent transition 
orresponding to a 
all to this private method in the origi-nal applet. For instan
e, the exe
ution (v0, ε) → (v2.v1, ε) → (v4.v3.v1, ε) →

(v7.v3.v1, ε) → (v3.v1, ε) → (v6.v3.v1, ε)
m call m
−−−−→ (v0, v7.v3.v1) of the inlined ap-plet in Figure 5 does not 
orrespond to any exe
ution in the original applet.The inlining transformation thus introdu
es new behaviours. Noti
e however,that these new behaviours are only observable in applets whi
h are not last-
allre
ursive.A set of methods is re
ursive if every method in the set 
ontains a (rea
hable)
all edge to some method in the set. A 
all edge is re
ursive if the 
alling andthe 
alled methods belong to some minimal (and thus, mutually) re
ursivemethod set. A program is 
alled last-
all re
ursive if from any destinationnode of any re
ursive 
all edge, only transfer edges are rea
hable. In addition,37



we shall assume that a return node is rea
hable from every su
h destinationnode.For last-
all re
ursive applets, we prove the reverse 
orresponden
e for observ-able behaviours.Theorem 48 Let A : I be a 
losed last-
all re
ursive applet, and let M ⊆ I+.Then b(αM(A)) ≤w b
M (A).PROOF. Consider a state (w, γ) in b(αM(A)), where λMeth(hd(w)) /∈M and

hd(w) |= r. For last-
all re
ursive applets, the inlining transformation αM hasthe property that for any su
h w, the nodes w′ su
h that ν(hd(w) ·w′) = w but
hd(w) · w′ 6= w and whi
h are stru
turally rea
hable from w in αM(A) form(together with w) a strongly 
onne
ted 
omponent and are equivalent withrespe
t to stru
tural simulation. As a 
onsequen
e, in b(αM (A)), all states
(w′, γ) for a given γ also form a strongly 
onne
ted 
omponent and are weaksimulation equivalent. Modulo su
h �return� equivalen
e 
lasses, we show by
o-indu
tion that (α′

M)−1 is a weak simulation between b(αM(A)) and bM(A).More exa
tly, we show that (1) the valuations of α′
M(v, σ) and (v, σ) agree,and (2) if α′

M(v, σ)
l
−→ (w′, γ′) is a transition in b(αM (A)) other than a (silent)transition within a return equivalen
e 
lass, then (v, σ)

l
⇒ (v′, σ′) in bM(A)for some v′and σ′ su
h that α′

M(v′, σ′) = (w′, γ′) (in most 
ases we even showthe 
orresponding strong transition). The result then follows sin
e α′
M mapsentry states of b(αM(A)) to entry states of bM(A). It is easy to 
he
k that thevaluations agree and that the transitions are simulated. For the full proof weagain refer to [37℄. 2Sin
e weak simulation 
ontains simulation we have the following.Corollary 49 Let A : I be a 
losed last-
all re
ursive applet, and letM ⊆ I+.Then bM (A) ≃w b(αM (A)).6.3 Interfa
e Abstra
tion and Compositional ReasoningUsing the results obtained above, we 
an state several veri�
ation prin
iplesthat 
an be used to prove properties of applet interfa
e behaviour. We �rstpresent two abstra
tion prin
iples, and then show how these 
an be 
ombinedwith our 
ompositional veri�
ation prin
iple from Se
tion 5.38



6.3.1 Abstra
tion RulesLet A : I be a 
losed applet, and let M ⊆ I+. With the results establishedabove, we 
an justify the following abstra
tion prin
iple (abstra
t), where ψ isa behavioural interfa
e formula.(abstra
t) αM(A) |=b ψ

A |=M
b ψTheorem 50 Rule (abstra
t) is sound.PROOF. Follows from the de�nition of behavioural satisfa
tion, Theorem 47,Corollary 17, and the de�nition of behavioural interfa
e satisfa
tion. 2When A is last-
all re
ursive, we 
an even provide a faithful abstra
tion prin-
iple (weak-abstra
t) for properties of the observable behaviour by using trans-formation δ mentioned in Se
tion 3.4.(weak-abstra
t) αM(A) |=b δ(ψ)

A |=M
b,w ψTheorem 51 For last-
all re
ursive applets A rule (weak-abstra
t) is soundand 
omplete.PROOF. Follows from the de�nition of behavioural satisfa
tion, Proposi-tion 20(ii), Corollary 49, Corollary 23, and the de�nition of weak behaviouralinterfa
e satisfa
tion, all of whi
h are equivalen
es. 26.3.2 Compositional ReasoningLet A :IA and B : IB be applets su
h that IA ∩ IB = ∅ and let MA ⊆ I+

A and
MB ⊆ I+

B be sets of publi
 methods su
h that I−A ⊆ I+
A∪MB and I−B ⊆ I+

B ∪MA.The latter 
ondition says that ea
h applet only 
alls its own methods and theothers' publi
 methods and implies that their 
omposition is 
losed. We 
om-bine the 
ompositional veri�
ation prin
iple (
ompos) from Se
tion 5 with theabstra
tion prin
iple (abstra
t) to obtain the following abstra
t 
ompositionalveri�
ation prin
iple:
(abstra
t-
ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b ψ

A ⊎ B |=MA∪MB

b ψNoti
e that the maximal model 
onstru
tion is based on the publi
 interfa
e
Î(MA) = (MA, I

−
A − (I+

A −MA)) of applet A.39



Theorem 52 Rule (abstra
t-
ompos) is sound.PROOF. Follows from the soundness of (abstra
t) and (
ompos) together withProposition 46. 2Similarly as for the abstra
tion prin
iple, we 
an state a faithful 
ompositionalveri�
ation prin
iple (weak-abstra
t-
ompos) for properties of the observableinterfa
e behaviour of applets whi
h are last-
all re
ursive:
(weak-abstra
t-
ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψTheorem 53 Rule (weak-abstra
t-
ompos) is sound and 
omplete for last-
allre
ursive applets A and B.Noti
e that rule (weak-abstra
t-
ompos) is also sound for applets that are notlast-
all re
ursive: last-
all re
ursiveness is only needed to ensure 
ompleteness.Our s
enario for se
ure post-issuan
e loading of applets is based on the ver-i�
ation prin
iple embodied by these rules and its derivatives. In parti
ular,a 
ombined appli
ation of rules (weak-abstra
t-
ompos) and (
ompos) yieldsthe rule (w(eak)-a(bstra
t)-
(ompos)-2), whi
h we apply in our 
ase study inSe
tion 8:
(wa
-2) αMA

(A) |=s φ αMB
(B) |=s ξ θÎ(MA)(φ) ⊎ θÎ(MB)(ξ) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψHere, an appli
ation of rule (
ompos) has introdu
ed a se
ond maximal modelfor the publi
 interfa
e of B and stru
tural property ξ. Noti
e that this rule issound and 
omplete for last-
all re
ursive applets.7 A Tool Set for Compositional Veri�
ationTo support our 
ompositional veri�
ation method, we have developed a toolset implementing the various algorithms presented above and providing trans-lations into the input formats of appropriate, existing model 
he
kers. Figure 6gives a general overview of the tool set.As input we have for ea
h applet either an implementation (in Java byte
ode),or a stru
tural property, restri
ting its possible implementations, plus a publi
interfa
e, spe
ifying the methods provided and required by the applet. Forthese inputs, we 
onstru
t an applet representation a

ording to De�nition 27.40
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Figure 6. Tool Set for Compositional Applet Veri�
ationIn 
ase we have the applet implementation, we use the Applet Analyser toextra
t the 
on
rete applet graph. The Applet Analyser is a stati
 analysistool, built on top of the SOOT Java Optimisation Framework [12℄. The byte
ode of an applet is transformed into Jimple basi
 blo
ks, while abstra
tingaway variables, method parameters, and 
alls to API methods. We use SOOT'sstandard 
lass hierar
hy analysis to produ
e a safe over-approximation of the
all graph. If, for example, the stati
 analysis 
annot determine the re
eiverof a virtual method 
all, a 
all edge is generated for every possible methodimplementation. Next we use the Inliner, whi
h is an O
aml implementation ofthe inlining algorithm of De�nition 42. The Inliner takes the extra
ted methodgraph and the publi
 interfa
e as input, and produ
es the graph at the publi
interfa
e level.In 
ase we have a stru
tural property, we use the Maximal Model Constru
tor.This is an O
aml implementation of the SNF transformation as de�ned in Se
-tion 3.3, whi
h we use to 
onstru
t maximal models. The stru
tural propertiesand the applet interfa
e are used to produ
e an applet graph that simulatesall possible implementations of applets respe
ting the formula.If required, the resulting applets 
an be 
omposed with the ⊎ operator, whi
his basi
ally a 
on
atenation of the textual graph representations. Sin
e theapplet analyser appends pa
kage names to the method names, there are noname 
on�i
ts to be resolved here. Using the Model Generator the result-ing applet graphs are translated into models whi
h serve as input for di�er-ent model 
he
kers. If we want to 
he
k stru
tural properties, we exploit thefa
t that applet graphs 
an be viewed as �nite Kripke stru
tures. Therefore,stru
tural properties 
an be expressed in temporal logi
s and they 
an be
he
ked using standard model 
he
king tools su
h as the Con
urren
y Work-ben
h (CWB) [38℄. The Kripke stru
tures of the CWB are labelled transitionsystems generated from CCS pro
ess de�nitions. For this purpose, we use theModel Generator to 
onvert applet graphs into a representation as CCS pro-
esses. Sin
e CCS does not have the notion of valuation, atomi
 propositions
p assigned to a node in an applet are represented by probes, that is, self-loops41



labelled by p. The translation also produ
es a set of pro
ess 
onstants 
orre-sponding to the entry nodes of the respe
tive applet. To model 
he
k an appletgraph against a stru
tural safety property, all initial states have to be 
he
kedindividually. We en
ode the properties to be 
he
ked as µ-
al
ulus formulae,repla
ing atomi
 propositions p by 〈p〉 true. Sin
e CWB supports parametrisedformulae, our spe
i�
ation patterns 
an be en
oded dire
tly.If for a 
omposed system we want to verify whether it respe
ts a behaviouralsafety property, we use the fa
t that the behaviour of an applet is an in�nitestate model generated by a Pushdown Automaton (PDA) given as a set ofprodu
tion rules indu
ed by the applet. The model 
he
king problem for this
lass of models is exponential both in the size of the formula and in the numberof 
ontrol states of the PDA [10℄. Ideally we would like to use an existing model
he
ker for PDAs (PDA MC). Unfortunately, there is 
urrently no e�
ient toolavailable for model 
he
king (alternation-free) modal µ-
al
ulus properties ofPDAs. We experimented with Alfred [39℄, a demonstrator tool implementingthe model 
he
king algorithm of Bouajjani et al. [40℄, and we are 
urrentlydeveloping su
h a model 
he
ker.8 Case StudyTo evaluate its validity, we apply our 
ompositional veri�
ation method toa realisti
 smart 
ard 
ase study, whi
h illustrates typi
al unwanted appletintera
tions. The appli
ation, an ele
troni
 purse, has been provided by smart
ard produ
er Gemplus as a test 
ase for formal methods. Even though it isnot a
tually used by Gemplus, it demonstrates all the relevant issues relatedto smart 
ard appli
ations. In this se
tion, we introdu
e the ele
troni
 purse
ase study, present the lo
al and global spe
i�
ations for the di�erent applets,and des
ribe their veri�
ation using the tool set presented above.8.1 Illi
it Applet Intera
tions in the Ele
troni
 PurseThe Gemplus ele
troni
 purse 
ase study PACAP [41℄ is developed to providea realisti
 
ase study for applying formal methods to Java Card appli
ations.It de�nes three appli
ations: CardIssuer, Purse and Loyalty. Typi
ally, a 
ardwill 
ontain one 
ard issuer and one purse applet, but several loyalty applets.The 
ase study has been previously used in 
onne
tion with several otherformal te
hniques. For example, fun
tional sour
e 
ode level spe
i�
ationshave been given and 
he
ked with automati
 and intera
tive veri�
ation te
h-niques [42℄. The 
ase study also has been used to illustrate an approa
h wheredi�erent priva
y levels are assigned to information, and model 
he
king is used42



to ensure that the information �ow respe
ts the restri
tions imposed by thesepriva
y levels [43℄. The property des
ribed in the latter work motivates theproperty we study here. However, our te
hnique is more general, allowing theveri�
ation of arbitrary behavioural 
ontrol-�ow safety properties.The property that we verify for this 
ase study is only 
on
erned with Purseand Loyalty, we shall therefore not dis
uss CardIssuer any further. If the
ard holder wishes to join a loyalty program, the appropriate applet 
an beloaded on the 
ard. Subsequently, the purse and the di�erent loyalties willex
hange information about the pur
hases made, so that the loyalty points 
anbe 
redited. Current versions of Java Card use sharable interfa
es to ex
hangethis kind of information. Even though in the future this is likely to 
hange,for our te
hniques to be appli
able it is not relevant how this 
ommuni
ationexa
tly takes pla
e, as long as it is in terms of method 
alls (rather than interms of shared state). The goal of our 
ase study is to ensure that no illi
itintera
tions 
an happen between the various applets on the 
ard. The 
ode ofthe appli
ation is last-
all re
ursive, thus our veri�
ation will be exa
t, and theinlining step will not introdu
e any new observable interfa
e behaviours. Inthis parti
ular 
ase study, we 
an verify 
orre
tness of the de
omposition, thuswe rely only on soundness of the 
ompositional veri�
ation prin
iple. However,if 
orre
tness of the de
omposition 
ould not be veri�ed, the 
ompleteness forlast-
all re
ursive applets would tell us that our lo
al assumption is too weak.To understand the property whi
h we verify here, let us look 
loser at how thepurse and the loyalties 
ommuni
ate about the pur
hases made with the 
ard.The ele
troni
 purse keeps a log table of all 
redit and debit transa
tions,and the loyalty applets 
an request the (relevant) information stored in thistable. Further, loyalties might have so-
alled partner loyalties, whi
h meansthat a user 
an add up the points obtained with the di�erent loyalty programs.Therefore, ea
h loyalty should keep tra
k of its lo
al balan
e and its extendedbalan
e. If the user wishes to know how many loyalty points are availableexa
tly, the loyalty applet will ask for the relevant entries of the purse logtable in order to update its balan
e, and it will also ask the balan
es of partnerloyalties in order to 
ompute the extended balan
e.For e�
ien
y reasons, the log table is of �xed length, arranged as a ring. If thelog table is full, existing entries will be repla
ed by new transa
tions. In orderto ensure that loyalties do not miss any of the logged transa
tions, they 
ansubs
ribe to the so-
alled logFull servi
e. This servi
e signals all subs
ribedloyalties that the log table will be overwritten soon, and that therefore theyshould update their balan
es. Typi
ally, loyalties will have to pay for thisservi
e.Suppose we have an ele
troni
 purse, whi
h 
ontains besides the ele
troni
purse itself two partner loyalties, say L1 and L2. Further, suppose that L1 has43



subs
ribed to the logFull servi
e, while L2 has not. If in rea
tion to the logFullmessage L1 always 
alls an interfa
e method of L2 (say to ask for its balan
ewhen 
omputing the extended balan
e), L2 
an impli
itly dedu
e that the logtable might be full. A mali
ious implementation of L2 might therefore requestthe information stored in the log table before returning the value of its lo
albalan
e to L1. If loyalties have to pay for the logFull servi
e, su
h 
ontrol �owis unwanted, sin
e the owner of the Purse applet will not want other loyaltiesto get this information for free.This is a typi
al example of an illi
it applet intera
tion, that our 
ompositionalveri�
ation te
hnique 
an dete
t. Below, we show how the absen
e of this par-ti
ular undesired s
enario 
an be spe
i�ed and veri�ed algorithmi
ally. We use
ompositional reasoning to redu
e the global behavioural property expressingthe absen
e of the s
enario des
ribed above to lo
al stru
tural properties ofthe purse and loyalty applet 
lasses. We assume there is only one purse ap-plet on the 
ard, but we allow an arbitrary number of loyalty applets on the
ard. However, sin
e all loyalty applets have the same interfa
e, we 
an apply
lass-based analysis, and treat all loyalty instan
es in a similar way. The 
asestudy provides implementations for the purse and the loyalty applet. These are
he
ked against the 
orresponding stru
tural properties. Noti
e that a typi
aluse of the 
ard initially only will have the purse applet installed on the 
ard.After the 
ard has been issued, new loyalty applets will be installed wheneverthe 
ard holder wishes to join a loyalty program. Every time a new loyalty ap-plet is installed, it will have to be veri�ed against the stru
tural spe
i�
ationof the loyalty applet.8.2 Spe
i�
ationThis se
tion presents the formalisation of the global and lo
al se
urity proper-ties that we need for our example. The following se
tion then shows how thetool set is used for the veri�
ation of the de
omposition and of the implemen-tations with respe
t to the lo
al properties.8.2.1 Spe
i�
ation PatternsSin
e writing spe
i�
ations in the modal µ-
al
ulus is known to be di�
ult(even in the simulation logi
 fragment), we de�ne a 
olle
tion of 
ommonlyused spe
i�
ation patterns (inspired by the Bandera Spe
i�
ation Patternproje
t [44℄). In our experien
e, all relevant behavioural 
ontrol-�ow safetyproperties 
an be expressed using a small set of su
h patterns � however, itis important to remember that one 
an always fall ba
k on the full expres-siveness of simulation logi
. We present several spe
i�
ation patterns, both at44



stru
tural and behavioural level, whi
h are all used in the 
ase study at hand.From now on we shall adopt the 
onvention of denoting stru
tural propertiesby σ and behavioural ones by φ.Stru
tural Spe
i�
ation Patterns We shall use Everywhere with the ob-vious formalisation:
Everywhere σ = νY. σ ∧ [ε, I−]Y

= Y [Y = σ ∧ [ε, I−]Y ]as well as the following patterns, for method sets M andM ′ of an applet withinterfa
e I:
M HasNoCallsTo M ′ = (

∧

m∈M ¬m) ∨ (Everywhere [M ′] ff)

HasNoOutsideCalls M = M HasNoCallsTo (I− −M)The �rst pattern spe
i�es that method graphs in the set M do not 
ontainedges labelled with elements of the set M ′. The se
ond spe
i�es a 
losed setof methods M , i.e., methods in M only 
ontain 
alls to methods in M .Behavioural Spe
i�
ation Patterns Pattern Always is standard:
Always φ = νZ. φ ∧ [Lb]Z

= Z[Z = φ ∧ [Lb]Z]For spe
ifying that a property φ is to hold within a 
all to method m, we usethe Within pattern formalised as follows:
Within m φ = ¬m ∨ (Always φ)More pre
isely, this pattern states that φ always holds as soon as m is 
alled.However, sin
e we do not use this pattern inside other formulae, the givendes
ription is 
orre
t. Noti
e that this is a typi
al behavioural pattern: thenotion of Within a method invo
ation en
ompasses all methods that mightbe invoked during the 
all to m. This rea
hability notion 
annot be dire
tlyexpressed at the stru
tural level.Finally, for applet A : (I+, I−) and method set M , we de�ne:

CanNotCall AM =
∧

m∈I+

∧

m′∈M

[mcall m′] ffThis pattern holds for state (v, σ) if no 
all to a method in M is possible.45



8.2.2 The Se
urity PropertiesWe express the se
urity properties at the publi
 level, that is, stru
tural prop-erties refer to the interfa
e abstra
tion (i.e., inlined version) and behaviouralproperties to the interfa
e behaviour of applets. As mentioned above, 
om-muni
ation between applets takes pla
e via so-
alled sharable interfa
es. ThePurse applet de�nes a sharable interfa
e SIP for 
ommuni
ation with loy-alty applets, 
ontaining the methods getTransa
tion, isThereTransa
tion, get-InvEx
hangeRateIntPart and getInvEx
hangeRateDe
Part. The Loyalty ap-plet de�nes two sharable interfa
es: one, SILP , for 
ommuni
ation with aPurse, 
ontaining the methods logFull and ex
hangeRate, and one, SILL, for
ommuni
ation with other loyalty applets, 
ontaining methods getBalan
e andgetDebit. If we de�ne SIL = SILP ∪ SILL, then we 
an identify the followingpubli
 interfa
es: IP = (SIP , SIP ∪SIL) for Purse, and IL = (SIL, SIP ∪SIL)for Loyalty.The Global Se
urity Property To guarantee that no loyalty will get theopportunity to 
ir
umvent subs
ribing to the logFull servi
e, we require thatif the Purse 
alls the logFull method of a loyalty, within this 
all the loyaltydoes not 
ommuni
ate with other loyalties. However, as the logFull method issupposed to 
all the Purse for its transa
tions, we also have to ex
lude indire
t
ommuni
ations, via the Purse. We require the following global property ofthe interfa
e behaviour:A 
all to Loyalty.logFull does not trigger any 
alls to any other loyalty.This property 
an be formalised with the help of behavioural patterns:
φ = Within Loyalty.logFull

(CanNotCall Loyalty SIL ∧ CanNotCall Purse SIL)Thus, if a loyalty re
eives a logFull message, it 
annot 
all any other loyalty(be
ause it 
annot 
all any of its sharable interfa
e methods), and in addition,if the Purse is (re)a
tivated within the 
all to logFull, it 
annot 
all any loyaltyapplet.Property De
omposition We apply rule (wa
-2) from Se
tion 6.3 andtherefore introdu
e lo
al stru
tural properties for the inlined versions of Purseand Loyalty. Here we explain the formalisation of the lo
al properties; below wedes
ribe how we a
tually verify that these are su�
ient to guarantee the globalbehavioural property. Within Loyalty.logFull, the Loyalty applet has to 
all themethods Purse.isThereTransa
tion and Purse.getTransa
tion, but it shouldnot make any other external 
alls (where 
alls to sharable interfa
e methods46



of Loyalty are 
onsidered external). Noti
e that sin
e we are performing 
lass-based analysis, we 
annot distinguish between 
alls to interfa
e methods ofother instan
es, and those of the same instan
e. Thus, a natural stru
turalproperty for Loyalty would be, informally:From any entry point of Loyalty.logFull, the only rea
hable external 
allsare 
alls to Purse.isThereTransa
tion and Purse.getTransa
tion.Thus, within a 
all to Loyalty.logFull the Purse applet 
an only be a
ti-vated via Purse.isThereTransa
tion or Purse.getTransa
tion. For Purse we
an therefore propose the following informal stru
tural property:From any entry point of Purse.isThereTransa
tion or Purse.getTransa
tion,no edge labelled by an external 
all is rea
hable.Using the stru
tural spe
i�
ation patterns, we 
an spe
ify these properties asfollows.
σL = {Loyalty .logFull} HasNoCallsTo

(SIP ∪ SIL) − {Purse.isThereTransaction,Purse.getTransaction}

σP = HasNoOutsideCalls {Purse.isThereTransaction} ∧

HasNoOutsideCalls {Purse.getTransaction}Noti
e that these spe
i�
ations are expressed with respe
t to the inlined ver-sions of the applets. Ex
luding external 
alls from a method at the publi
level is equivalent to ex
luding external 
alls from any private method that
an be 
alled transitively from the publi
 method at the implementation level- a property whi
h is not dire
tly expressible (at the implementation level) inour logi
 (
f. Huisman et al. [30℄).8.3 Veri�
ationAfter the global and lo
al se
urity properties have been spe
i�ed, we have toshow that: (1) the lo
al properties are su�
ient to establish the global se
urityproperty, and (2) the implementations of the di�erent applets respe
t the lo
alproperties. In order to do this, we identify the following (independent) tasks,
onsidered in detail below.(1) Verifying the 
orre
tness of the property de
omposition by:(a) building θIP
(σP ) and θIL

(σL), the maximal applets for σP and σL,respe
tively; and(b) model 
he
king θIP
(σP ) ⊎ θIL

(σL) |=b δ(φ).(2) Verifying the lo
al stru
tural properties by:47



(a) extra
ting the applet graphs P of the Purse and L of the Loyalty ;(b) 
omputing αSIP
(P ) and αSIL

(L) using the inlining algorithm; and(
) model 
he
king αSIP
(P ) |=s σP and αSIL

(L) |=s σL.We then apply rule (wa
-2) to 
on
lude that P ⊎ L |=SIP∪SIL

b,w φ as required.8.3.1 Veri�
ation of the Property De
ompositionTo illustrate the pro
edure of 
onstru
ting a maximal applet, we present insome detail the 
onstru
tion of the maximal applet for σL; for σP the 
on-stru
tion is similar. First, we write σL as a modal equation system, wherewe use lf to abbreviate Loyalty.logFull, gT for Purse.getTransa
tion, iTT forPurse.isThereTransa
tion, and M for (SIP ∪ SIL) − {iTT, gT}:
σL = ¬lf ∨ Y [Y = [M ] ff ∧[ε, gT , iTT ]Y ]Next, we build the interfa
e formula φIL

for interfa
e IL (re
all that the maxi-mal applet for σL is the maximal model for σL∧φIL
). For 
larity of presentationwe shall make here the simplifying assumption that SIL = {lf }; the a
tual
ase study has naturally been performed for the full sharable interfa
e. Thus

φIL
= Xlf [Xlf = [ε, lf , SIP ]Xlf ∧ lf ]. We then form the 
onjun
tion σL ∧ φIL

,whi
h by introdu
ing a new variable Z yields:
Z















Z = (¬lf ∨ Y ) ∧Xlf

Y = [M ]ff ∧ [ε, gT , iTT ]Y

Xlf = [ε, lf , SIP ]Xlf ∧ lf













The next step is to transform this formula into SNF. First, in Phase I ofthe transformation, ea
h equation is transformed into a disjun
tion of statenormal forms. Suppose we start with the equation de�ning Z.(1) Make equation strongly guarded, by rewriting with the original equations:
Z = (¬lf ∨ ([M ] ff ∧[ε, gT , iTT ]Y )) ∧ [ε, lf , SIP ]Xlf ∧ lf(2) Put equation into DNF and simplify:

Z = [M ] ff ∧[ε, gT , iTT ]Y ∧ [ε, lf , SIP ]Xlf ∧ lf(3) Group and 
omplete boxes. No boxes are missing, thus we only groupthem (remember M = (SIP ∪ SIL) − {gT , iTT} = (SIP ∪ {lf }) −
{gT , iTT}):

Z = [M ] ff ∧[ε, gT , iTT ](Y ∧Xlf ) ∧ lf48



(4) Introdu
e new equations for formulae under boxes. Sin
e the map h doesnot yet 
ontain an entry for {Y,Xlf }, we 
hoose a fresh variable U andadd ({Y,Xlf }, U) to h. The equation de�ning Z be
omes
Z = [M ] ff ∧[ε, gT , iTT ]U ∧ lfwhile we introdu
e the new equation U = Y ∧Xlf .(5) Finally, 
omplete the equation by adding missing literals and put theformula into DNF again. Here, only literal r is missing. Adding this gives:

Z = ([M ] ff ∧[ε, gT , iTT ]U ∧ lf ∧ r)∨

([M ] ff ∧[ε, gT , iTT ]U ∧ lf ∧ ¬r)The equations de�ning Y and Xlf are handled in a similar way. The only stepthat has some e�e
t is step 5, whi
h introdu
es the missing literal r. Moreinteresting is how Phase I is applied to the new equation U = Y ∧Xlf .(1) Rewriting into strongly guarded form yields:
U = [M ] ff ∧[ε, gT , iTT ]Y ∧ [ε, lf , SIP ]Xlf ∧ lf(2) Formula φU is already in DNF and 
annot be simpli�ed.(3) Grouping boxes results in the following equation:

U = [M ] ff ∧[ε, lf , SIP ](Y ∧Xlf ) ∧ lf(4) The map h 
ontains the pair ({Y,Xlf }, U), so we repla
e Y ∧Xlf by U .
U = [M ] ff ∧[ε, gT , iTT ]U ∧ lf(5) Literal 
ompletion again introdu
es r.

U = ([M ] ff ∧[ε, gT , iTT ]U ∧ lf ∧ r)∨

([M ] ff ∧[ε, gT , iTT ]U ∧ lf ∧ ¬r)After applying Phase I to all equations, Phase II introdu
es a new equationfor ea
h disjun
t and repla
es ea
h old variable by the disjun
tion of the newvariables. For example, the equation de�ning U gets repla
ed by:
U1 = [M ] ff ∧[ε, gT , iTT ](U1 ∨ U2) ∧ lf ∧ r

U2 = [M ] ff ∧[ε, gT , iTT ](U1 ∨ U2) ∧ lf ∧ ¬rThe remaining equations are treated similarly. Noti
e that also Z in X getsrepla
ed by {Z1, Z2}, where Z1 and Z2 are the equations repla
ing Z.49



(a)                                                        (b)                                                     (c)

PSfrag repla
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Figure 7. Maximal applets for σL and σPDuring the optimisation in Phase III, we �nd that the equations for Z1 and U1,and Z2 and U2 are dupli
ates of ea
h other. Therefore, we remove the equationsfor Z1 and Z2, and repla
e {Z1, Z2} in X by {U1, U2}. Further, the equations
Y1, Y2, Xlf 1 and Xlf 2 (repla
ing Y and Xlf in Phase II), are not rea
hable fromany variable in X = {U1, U2}. Hen
e, the �nal result is (U1 ∨ U2)[Σ], where

Σ =







U1 = [M ]ff ∧ [ε, gT , iTT ](U1 ∨ U2) ∧ lf ∧ r

U2 = [M ]ff ∧ [ε, gT , iTT ](U1 ∨ U2) ∧ lf ∧ ¬r





The spe
i�
ation extra
ted from this modal equation system (whi
h is in sim-ulation normal form) is the maximal applet θIL
(σL) for σL. It is shown inFigure 7(a). The method graph has two nodes; both of them are entry pointsof the method, but only one is labelled as a return point. The edges are labelledonly with internal a
tions and 
alls to getTransa
tion and isThereTransa
tion.As mentioned above, in the 
omputation above we simpli�ed SIL to {lf}. Ifwe do the 
omputation for the 
omplete shareable interfa
e SIL, we �nd thatfor all other methods m in SIL, the method graph is a maximal method graphwithout restri
tions, as in Figure 7(b). If we do the same 
omputation for

σP , we �nd the method graph for isThereTransa
tion in the maximal modelfor the Purse as in Figure 7(
), i.e., the method 
an only 
all itself or makeinternal transitions. The method graph for getTransa
tion is similar, withall edges labelled with getTransa
tion or ε, while the method graphs for theother methods provided by the Purse are maximal method graphs, withoutany restri
tions.Using our implementation of the maximal model 
onstru
tion in O
aml, 
om-puting the maximal applets for σL and σP takes less than a se
ond. Table 2shows the relevant information.On
e the maximal applets θIP
(σP ) and θIL

(σL) are 
onstru
ted, we produ
etheir 
omposition θIP
(σP )⊎θIL

(σL), and we use the Model Generator to trans-late the applet graph to a PDA representation, serving as input to a PDAmodel 
he
ker. 50



θIL
(σL) θIP

(σP )#nodes 8 8#edges 120 88
onstr. time 0.05 s. 0.05 s.Table 2Size and timing for maximal applet 
onstru
tion
#
lasses #methods #nodes #edges extr.time inlinetime mod.gen.tim

e
verif.timeLoyalty 11 237 3 782 4 372 5.6 se
. 0.6 se
. 2.8 se
. 10.1 se
.Purse 15 367 5 882 7 205 7.5 se
. 0.6 se
. 0.6 se
 3.6 se
.Table 3Statisti
s on applet graph extra
tion and veri�
ation.8.3.2 Corre
tness of the Lo
al Stru
tural PropertiesWe use the Applet Analyser to extra
t applet graphs and the appropriate setof entry points from the byte 
ode of the loyalty and purse implementations.Table 3 provides statisti
s on the extra
ted applet graphs.Next, we applied the implementation of the inlining algorithm to the extra
tedapplet graphs, whi
h took 0.6 se
onds on both Loyalty and Purse. Sin
e theapplets are last-
all re
ursive, the inlining does not introdu
e any new observ-able interfa
e behaviours. Even though theoreti
ally the worst-
ase blowupin the number of nodes of the inlined applets, determined by the number ofnormal M-frames, is exponential in the number of private methods, in pra
-ti
e this is not likely to happen. In our 
ase, we even observed a redu
tionin size of the graphs due to the following two fa
ts: �rst, the 
all dependen
ygraph is sparse and, se
ond, the inlining fo
uses on intera
tion between ap-plets, and thus any 
ode that is not rea
hable by a shareable interfa
e methodis abstra
ted away by the inlining (as it is not relevant to the property we areinterested in).Finally, we used the Model Generator to translate the inlined applet graphsinto input for CWB, and we veri�ed the stru
tural properties. Table 3 alsoprovides statisti
s for the model generation and veri�
ation time.Remark Initially, we did not distinguish between publi
 and private meth-ods when we performed the 
ase study (see [30℄). This gave signi�
ant per-51



forman
e problems: the maximal applets 
ontained implementations for (and
alls to) all private methods as well, whi
h resulted in huge stru
tures. More-over, without the distin
tion between publi
 and private methods we had to
ompute the transitive 
losure of method 
alls to be able to express the lo
alstru
tural spe
i�
ations, whi
h resulted in a non-robust spe
i�
ation: for ex-ample splitting a private method into two would break the lo
al spe
i�
ation.Adding the distin
tion between publi
 and private methods thus resulted ina 
on
eptually 
leaner 
ompositional veri�
ation method, with a drasti
allyimproved performan
e.9 Con
lusionWe have developed a 
ompositional veri�
ation method for sequential pro-grams with pro
edures. The method is parti
ularly suited for supporting these
ure dynami
 loading of applets onto smart 
ards and other smart de-vi
es, but dynami
ally re
on�guring distributed systems based on remotepro
edure 
all 
ommuni
ation also provides a suitable appli
ation area forthe method. Using our veri�
ation method, se
ure dynami
 loading 
an bea
hieved through the following s
enario:(1) Spe
ify global se
urity property φ (at stru
tural or behavioural publi
level).(2) For any initially unavailable applet A with publi
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