
Compositional Veri�ation of SequentialPrograms with ProeduresDilian Gurov a,1, Marieke Huisman b,2, Christoph Sprenger c,3

aKTH, Stokholm, Sweden
bINRIA Sophia Antipolis, Frane

cETH Zurih, SwitzerlandAbstratWe present a method for algorithmi, ompositional veri�ation of ontrol-�ow-based safety properties of sequential programs with proedures. The appliationof the method involves three steps: (1) deomposing the desired global propertyinto loal properties of the omponents, (2) proving the orretness of the prop-erty deomposition by using a maximal model onstrution, and (3) verifying thatthe omponent implementations obey their loal spei�ations. We onsider safetyproperties of both the struture and the behaviour of program ontrol �ow. Ourompositional veri�ation method builds on a tehnique proposed by Grumberg andLong that uses maximal models to redue ompositional veri�ation of �nite-stateparallel proesses to standard model heking. We present a novel maximal modelonstrution for the fragment of the modal µ-alulus with boxes and greatest �xedpoints only, and adapt it to ontrol-�ow graphs modelling omponents desribed ina sequential proedural language. We extend our veri�ation method to programswith private proedures by de�ning an abstration, presented as an inlining transfor-mation. All algorithms have been implemented in a tool set automating all requiredveri�ation steps. We validate our approah on an eletroni purse ase study.Key words: program veri�ation, ontrol-�ow behaviour, ompositional reasoning,modal µ-alulus, safety properties, maximal model, private proeduresEmail addresses: dilian�nada.kth.se (Dilian Gurov),marieke.huisman�sophia.inria.fr (Marieke Huisman),hristoph.sprenger�inf.ethz.h (Christoph Sprenger).
1 Corresponding author. This author's work was partially funded by the SEFROSprojet of the Swedish Researh Counil VR, and by the IST FP6 programme of theEC, under the IST-FP6-STREP-27004 S3MS projet.
2 This work was funded in part by the IST programme of the EC, FET under theIST-2005-015905 MOBIUS projet.
3 This work was partially supported by the Zurih Information Seurity Center. ItPreprint submitted to Elsevier Siene 1st May 2008

1 IntrodutionMotivation Over the last years, omputer systems have beome inreasinglydynami: they are omposed of various ommuniating omponents that anjoin the system or be put together dynamially. Typial examples are mobilesmart devies (mobile phones, smart ards, television set top boxes, PDAset.) and dynamially reon�guring distributed systems. When allowing thedynami addition of new omponents, one wishes to ensure that this will nothave any negative impat on the global behaviour of the system. In partiularwhen the system ontains privay-sensitive information, as is for example thease for smart ards ontaining health are information or eletroni purses,strong seurity guarantees are required. With the aeptane of evaluationshemes suh as Common Criteria (see [1℄), industry has ome to realise thatthe way to ahieve suh high guarantees is to adopt the use of formal methodsin industrial pratie.The tehniques developed here are appliable in any ontext onerned withinterproedural ontrol-�ow properties of omponents ommuniating via pro-edure alls. Interesting properties of suh omponents inlude for exampletype safety, memory onsumption, and illiit data or ontrol �ow. Here weonentrate on the last ategory of properties. More preisely, we study sequen-tial (i.e., single-threaded) programs and propose a spei�ation and veri�a-tion method for safety properties of inter-proedural ontrol �ow, i.e., prop-erties desribing safe sequenes of proedure invoations. Typial examplesof ontrol-�ow safety properties are: �m1 never alls m2�, �m1 is never alledwhen m2 is alled�, �m1 is only alled afterm2 is alled�, and �m1 is only alledfrom within m2� (see Chugunov et al. [2℄ for a formalisation).So far, most researh on formal veri�ation in this area has foused on theorretness or seurity of a single program omponent (e.g., [3,4,5℄). However,in the ontext of mobile ode we also need tehniques to support veri�ationof systems for whih it is not known in advane what its omponents willbe. In suh situations one needs ompositional veri�ation tehniques, thatis tehniques where one states minimal requirements for the omponents thatan beome available later, and then veri�es (at loading time) that the ompo-nents atually respet these requirements. Only then, existing omponents ansafely ommuniate with new omponents, without orrupting the orretnessor seurity of the whole system. In partiular, suh tehniques an support theseure post-issuane loading of new appliations onto smart devies. To avoidfalse negatives, i.e., rejeting omponents that are atually seure, suh om-positional veri�ation tehniques should not only be sound, but also omplete.Completeness is also ruial to avoid typial soial engineering attaks, whererepresents the views of the authors. 2

the devie user gets so frustrated with the system repeatedly rejeting newomponents, that he/she will simply aept all, without atually inspetingwhether they passed veri�ation or not.Approah Our veri�ation method is ompositional : it allows global guar-antees of a system to be veri�ed even if the implementations of some ompo-nents are not yet available at veri�ation time. This is ahieved by abstratingthe missing omponents by logial assumptions. These assumptions an beveri�ed later, when the implementations beome available. Suh a veri�ationapproah is embodied by the following proof priniple:
⊢ A : φ X : φ ⊢ X ⊗ B : ψ

⊢ A⊗B : ψwhere A and B are omponents, and X is a omponent variable. This prinipleredues the problem of showing that the omposition of omponents A and Bsatis�es ψ, where the implementation of A is not yet known, to three tasks:(1) deompose the global property ψ by �nding a suitable loal property φof omponent A,(2) prove orretness of the deomposition, i.e., verify that for any ompo-nent X satisfying φ, X omposed with B satis�es ψ (seond premise),and(3) when the implementation of A beomes available, verify that it satis�esthe loal property φ (�rst premise).Notie that this rule an be applied repeatedly, to replae several omponentsby assumptions.The ompositionality of the method supports di�erent senarios for seureon�guration of omponents on a devie (or platform), where the tasks abovean potentially be delegated to di�erent authorities. In one suh senario, thedevie issuer (or platform provider) spei�es both the global guarantee (e.g., aseurity poliy) and the loal assumptions, and veri�es � using the tehniquesdesribed in this paper � that the deomposition is orret, meaning that theloal spei�ation is su�ient to establish the global spei�ation. Eah timea new omponent is to be added (i.e., loaded on the devie), an algorithmprovided by the devie issuer heks whether the omponent implementationsatis�es the required spei�ation. An alternative senario is that the devieissuer only provides the global guarantee (and loal assumptions for its ownomponents), and leaves it to the omponent provider to ome up with anappropriate loal spei�ation for eah omponent to be added. As in theprevious senario, an algorithm provided by the devie issuer heks the om-ponent against the loal spei�ation upon loading, but now also the propertydeomposition needs to be veri�ed at loading time, potentially on-devie.3

Task (1) above is a manual one and requires insight into the system, whilethe other two an be automated in our approah. We show how Task (2)and Task (3) an be algorithmially redued to problems for whih standardalgorithmi tehniques exist.The approah that we take to handle Task (2) is inspired by the pioneeringwork on automati modular veri�ation by Grumberg and Long [6℄. To hekwhether X : φ |= X ⊗ B : ψ holds we replae X by a maximal model θ(φ)and then verify |= θ(φ) ⊗ B : ψ algorithmially. The maximal model θ(φ)represents all models satisfying φ in the sense that it simulates exatly thosemodels and thus satis�es preisely the properties enjoyed by all these models.For this tehnique to be sound and appliable it is required that maximalmodels exist for the hosen logi and simulation relation, ⊗ preserves simu-lation, and logial properties are preserved by simulation. In earlier work [7℄,we explored dedutive veri�ation of orretness of deompositions based on aproof system. The logi onsidered there was more expressive, but the intera-tive nature of the approah required onsiderable time and expertise from theuser, rendering the approah less preferable in many situations as omparedto algorithmi solutions like the one presented here.We are interested in safety properties of both the struture and the behaviourof programs. Sine the same behaviour an be brought about by di�erentstrutures, a behavioural property language allows properties to be expressedin a more abstrat fashion. However, as a rule, behavioural properties requireomputationally more expensive veri�ation tehniques. Still, they an oftenbe (equivalently) reformulated on the strutural level, with the advantage ofallowing more e�ient veri�ation. To support both kinds of properties, wedistinguish between a strutural and a behavioural level of programs. Bothstruture and behaviour are ast via the abstrat notion of model (or la-belled Kripke struture). Then, strutural properties are interpreted over the(�nite-state) ontrol-�ow graphs themselves, while behavioural properties areinterpreted over the (in�nite-state) behaviours indued by the strutures. Thelogi we employ to express suh properties is a modal logi with box modalitiesand simultaneous greatest �xed points (written in equational form), whih isexpressively equivalent to the fragment of the modal mu-alulus with boxmodalities and greatest �xed points only [8℄. The fragment is known to beadequate for expressing safety properties (f. [9℄). Beause of the lose rela-tionship between logial satisfation and simulation between models, and theompositional properties of simulation, this logi, whih for onveniene weterm simulation logi, is partiularly suitable for ompositional veri�ationvia maximal models. We instantiate simulation logi and simulation at boththe strutural and the behavioural levels.The methods provided by an applet are frequently implemented using inter-nal, private methods. Sine the private methods annot be expeted to be4

known before the applet is implemented, we introdue publi interfaes, whihhide private methods. Aordingly, the (publi) interfae behaviour of an ap-plet abstrats from (internal) alls to the private methods of an applet. Tohandle Task (3) for programs with private proedures, we de�ne an inliningtransformation that reursively inlines all alls to private proedures. Thistransformation over-approximates the interfae behaviour, and redues thetask to showing that the inlined program respets property φ. For the latter,we apply standard algorithmi veri�ation tehniques.Contributions The main ontribution of the present paper is a sound andomplete ompositional veri�ation priniple for sequential programs with pro-edures, for properties expressed in simulation logi, and its adaptation toprograms with private proedures. In more detail, the ontributions are asfollows.(1) Program Model.Most of the existing work on ompositional model hek-ing fouses on the veri�ation of parallel ompositions of �nite-state pro-esses. We extend ompositional model heking to an important lass ofin�nite-state programs, namely sequential programs with proedures. Inthe rest of this paper, we refer to programs as applets and to proeduresas methods, but we would like to stress that our tehnique is appliable tomany di�erent kinds of programs with proedures. We represent appletsas olletions of method ontrol-�ow graphs equipped with interfaes ofprovided and required methods. Applet omposition forms the disjointunion of the respetive olletions of method graphs and allows the om-posed applets to ommuniate via method invoation. Applets orrespondto a sublass of pushdown proesses, with potentially in�nite-state be-haviour (f. Burkart et al. [10℄).(2) Maximal Model Constrution. We establish a logial haraterisation ofthe standard notion of simulation between models and, vie versa, abehavioural haraterisation of logial satisfation in terms of maximalmodels. In partiular, we present a novel maximal model onstrution,onsisting of a step-wise transformation of the formula into a semanti-ally equivalent normal form, whih is isomorphi to a maximal modelfor the formula. In ontrast to more expressive logis, the maximal mod-els for simulation logi formulae are representable as standard transitionsystems. To the best of our knowledge, this is the �rst maximal modelonstrution for (a variant of) the modal µ-alulus, whih inludes thefull expressive power of simultaneous greatest �xed points.(3) Maximal Applet Constrution. When tailoring the maximal model teh-nique to applets, we require that the maximal model for a given propertyis itself an applet. This is neessary for ompleteness of the tehnique.Sine the veri�ation of |= θ(φ)⊗B : ψ is deidable in our setup, omplete-ness guarantees that if the veri�ation of the orretness of deomposition5

fails, there is indeed an applet F among the set of models suh that Fsatis�es φ but F ⊗ B does not satisfy ψ. Completeness is thus essentialin that it eliminates the possibility of false negatives. Therefore, in ase
|= θ(φ) ⊗ B : ψ fails, we know that we have to strengthen φ and iteratethe proess.To adapt the maximal model tehnique to strutural properties, we �rstgive a logial haraterisation of interfaes by de�ning, for a given inter-fae I a strutural formula φI whih is satis�ed exatly by those mod-els representing applet strutures with this interfae, and then de�nethe maximal applet for a given interfae I and strutural property φ by
θI(φ) = θ(φI ∧ φ). Sine θ(φI ∧ φ) satis�es both φ and φI , this guaran-tees that the resulting maximal model is indeed an applet struture withinterfae I satisfying the strutural formula φ.However, for behavioural properties there is in general no unique max-imal applet: di�erent applets, inomparable by simulation, might existthat satisfy the same property. It is ongoing work to investigate underwhat onditions and how this olletion of maximal applets an be har-aterised exatly. Preliminary results in this diretion are presented byGurov and Huisman in [11℄.(4) Compositional Veri�ation. Our haraterisation results, together withresults linking the strutural and behavioural levels, give rise to a om-positional veri�ation priniple of the shape suggested above, where theglobal guarantee an be either strutural or behavioural, but the loalassumptions are always strutural. We establish the soundness and om-pleteness of the priniple, and adapt existing algorithmi tehniques fordealing with the resulting veri�ation sub-tasks.(5) Interfae Abstration. We extend our ompositional veri�ation methodto interfae properties of applets, i.e., properties of the interfae be-haviour. We de�ne an abstration whih redues the set of methods of agiven applet to the set of its publi methods, while over-approximatingthe interfae behaviour of the applet. This abstration is based on inliningof private methods. We show the abstration to be sound with respet tointerfae properties: every interfae property that holds for the behaviourof the inlined applet also holds for the interfae behaviour of the originalapplet. Sine the abstration transformation may introdue new interfaebehaviours, ompleteness, on the other hand, does not hold in general.However, for the ase when the onrete implementation is last-all re-ursive (that is, reursive alls are not followed in the ontrol-�ow graphby any other method alls), the abstration tehnique is omplete withrespet to observable interfae properties: if suh a property does nothold of the inlined applet it does not hold of the original applet either.Last-all reursion is a generalisation of the notion of tail reursion, wherereursive alls are the last statements of their methods. In pratie, forindustrial ode it is very ommon to be last-all reursive.(6) Tool support and real-life ase study. To support our ompositional veri-6

�ation tehnique, we have developed a tool set. This tool set integratesour own implementations in Oaml of the maximal applet onstrutionand the inlining algorithm with an implementation of a model extra-tor, build on top of the SOOT framework [12℄, and a number of externalmodel heking tools. We have validated this tool set on an industrialase study, namely an eletroni purse smart ard applet for whih wehave veri�ed the absene of ertain illiit ontrol �ows between Purseand Loyalty applets. In partiular, we ensured that di�erent Loyalty ap-plets on the ard annot ommuniate information about the transationlog table � that is needed to orretly ompute the points in the loyaltyprogram � among themselves, instead they all need to register (and pay)to get this information diretly from the Purse. In this ase study, theinlining tehnique proved to be an essential ingredient that enabled theompositional veri�ation of the otherwise too large model.Our ontributions span the omplete spetrum from the theoretial underpin-nings of the ompositional applet veri�ation tehnique (our prinipal ontri-bution) to its support by a tool set and its appliation to an industrial asestudy.Related Work The work presented here is related to several di�erent re-searh areas.Program Model. The program model used in the present paper has been in-spired by the work of Besson et al. [4℄, who verify stak properties for Javaprograms. Typially, the behaviour of programs with reursion is modelled asPushdown Automata (as, e.g., in [3,13℄).Reursive state mahines were introdued by Alur et al. [5℄ as a formalismapable of modelling the ontrol �ow of sequential imperative programs on-taining reursive proedure alls. This program model is losely related to ourown, but is �ner in that alls and returns relate individual entry and returnnodes, thus allowing the e�et of data to be modelled. The authors develope�ient algorithms for (global) model heking of reursive state mahinesagainst LTL and CTL* properties, and investigate their omplexity.Temporal Logi. Related to the above program models is the temporal logiof alls and returns CaRet proposed by Alur et al. [14℄. This logi allows tospeify properties in terms of method alls and returns, thus inreasing the ex-pressiveness of temporal logi while retaining deidability of model heking.A speial veri�ation strategy is de�ned, that is able to �jump over� internalomputations. An extension of this logi was reently presented by Alur etal. [15℄. Among other modalities, it introdues the useful �within� modality,whih is not expressible in simulation logi. While these logis may be more ad-7

equate than simulation logi for speifying behavioural properties of programswith proedures, they would (arguably) require more involved tehniques forompositional veri�ation.Compositional Veri�ation. There is a wealth of methods for ompositionalveri�ation of onurrent programs, most notably assumption/ommitmentbased reasoning about proesses with synhronous message passing, and therely/guarantee method for shared-variable onurreny. A systemati overviewof these and related proof methods, some of whih have been adapted tosupport algorithmi veri�ation is given by De Roever et al. [16℄. However,these tehniques do not address programs with reursive proedures.Laster and Grumberg [17℄ present a ompositional method for sequential pro-grams written in a high-level While language (without proedures). Their teh-nique partitions the program text into a sequene of sequentially omposedsubprograms, whih an be model heked individually using assumptions onthe properties holding at the ut points.Alur and Grosu [18℄ present an assume-guarantee style ompositional veri�a-tion priniple for a hierarhi extension of reative state mahines. However,their approah does not address programs with reursion.Ly [19℄ also proposes a ompositional method for deiding ontrol-�ow proper-ties of proedural programs based on loal strutural assumptions and globalbehavioural guarantees. The author generalises our deidability results tomonadi seond-order logi for programs whose ontrol-�ow graphs have abounded tree-width. To the best of our knowledge, so far this approah hasnot been implemented in a tool.The method of partial model heking introdued by Andersen [20℄ is basedon a redution proedure that removes the top-level operator from a proessalgebra term and omputes a new property for the redued term. To verifythat the produt P ×Q of two proesses has some property φ, the redution�divides� the property φ by Q to yield φ/Q, whih an be e�etively omputedonly if Q is �nite.Maximal Models for Compositional Veri�ation. The original maximal modeltehnique by Grumberg and Long [6℄ was designed for ACTL, the universalfragment of CTL, and later extended to ACTL*, the universal fragment ofCTL*, by Kupferman and Vardi [21℄. These works study synhronous par-allel ompositions of sequential proesses under fairness assumptions. Sinewe are interested in safety properties of sequential programs, we do not needto add fairness to our models. Simulation logi and ACTL* are expressivelyinomparable: liveness properties suh as GFp (�in�nitely often p�) are ex-pressible in ACTL*, but not in simulation logi, while the µ-alulus formula
νX. p ∧ [−][−]X (�p holds on every other level of the omputation tree�) is8

easily translated to simulation logi (whih is in equational form), but is notexpressible in ACTL*. Our transformational approah to the maximal modelonstrution is loser to an implementation than the automata-theoreti on-strutions in the ited papers, sine it already inludes ertain optimisations,e.g., removal of dupliate and unreahable equations.Charaterisation results onneting logis and behavioural preorders similarto ours are desribed by Boudol and Larsen [22℄ (see also [23℄), who on-strut maximal models in the form of modal transition systems with respetto the re�nement preorder for Hennessy-Milner logi (HML) [24℄. Simulationlogi and HML are expressively inomparable: existential properties are notexpressible in simulation logi, while o-reursive properties (suh as invari-ants) are not expressible in HML. Sine HML does not inlude �xed points,the onstruted maximal models are essentially �nite forests. Apart from theabsene of diamond modalities in simulation logi, our onstrution an beseen as an extension of Larsen and Boudol's with greatest �xed points. Theextension of HML with greatest �xed points (or, equivalently, simulation logiwith diamond modalities) requires more general models than modal transitionsystems: a �nite maximal modal transition system does not exist for all for-mulae of this logi. This is shown by Dams and Namjoshi [25℄, who introduefous transition systems, generalising modal transition systems, in order toonstrut linear-size maximal models for properties expressed by alternatingtree automata (thus subsuming the full modal µ-alulus). In [26℄ the sameauthors propose to diretly use µ-automata obtained from modal µ-alulusformulae as maximal models, for whih they de�ne an appropriate notion ofsimulation. All natural extensions of simulation logi require models with morestruture than transition systems to apture maximal models. In our work, wewere interested in safety properties, for whih simulation logi and transitionsystems are an appropriate hoie.Bouajjani et al. [9℄ de�ne maximal models for a o-reursive modal logi ex-pressing safety properties. Their logi has an expressive power similar to ours,but is somewhat less standard as it inludes a onnetive orresponding tonon-deterministi hoie.A more reent appliation of the maximal model tehnique is presented byGoldman and Katz [27℄ in the ontext of modular veri�ation of aspets. Whilelose in spirit to our veri�ation priniple, the priniple presented by the au-thors is for a more ompliated omposition operator. The priniple is basedon the maximal model of the aspet property (whih is not neessary a legalaspet behaviour) and is therefore sound, but not omplete.Organisation The paper is strutured as follows. First, Setion 2 presentsthe theoretial foundation for our work: it de�nes the models and logi that9

we onsider, together with appropriate notions of simulation and satisfation.Next, Setion 3 presents our novel maximal model onstrution, and showshow logial satisfation of a formula is equivalent to simulation by the orre-sponding maximal model. Setion 4 then disusses how our results instantiateto applets, at strutural and at behavioural level, and Setion 5 presents theompositional veri�ation priniple. Setion 6 presents the inlining abstrationthat we use to be able to verify interfae properties over applets with privatemethods. Finally, Setions 7 and 8 illustrate how our approah is implementedas a tool set and is applied to an industrial ase study, while Setion 9 drawsonlusions and presents future work.This paper is a ombination and extension of several results presented earlier.The maximal model onstrution and ompositional veri�ation priniple arepresented in [28℄. The abstration tehnique for applets with private methodsis presented in [29℄. The ase study was presented in [30℄, but without takingthe di�erene between publi and private methods into aount.2 Models, Simulation and LogiThis setion desribes the theoretial foundation for our treatment of ontrol-�ow struture and behaviour of programs with reursive proedures. First, wede�ne the (abstrat) models that we study, together with the standard notionof simulation. Further, we de�ne the logi that we use to express our programproperties. Finally, we transfer all these notions to the so-alled weak setting,where not all ations are observable.2.1 Model and SimulationFirst we de�ne models, spei�ations and simulation. These notions are stan-dard up to some minor variations.De�nition 1 (Model, Spei�ation) A model is a struture M = (S, L,→
, A, λ), where S is a set of states, →⊆ S×L×S is a labelled transition relationwith labels taken from L, and λ : S → P(A) is a valuation assigning to eahstate a set of atomi propositions taken from A. A spei�ation S is a pair
(M, E), where M is a model and E ⊆ S is a set of entry states.The reahable part of a spei�ation S = (M, E) is de�ned by R(S) =
(M′, E), where M′ is obtained from M by deleting all states and transitionsnot reahable from any entry state in E.Example 2 Figure 1 shows the graphial representation of the spei�ation10

PSfrag replaements
s1 s2

s3

p, q p

ε

ε

a
a

aFigure 1. Example spei�ation S = (M, E)

S = (M, E), where M = ({s1, s2, s3}, {a, ε},→, {p, q}, {s1 7→ {p, q}, s2 7→
{p}, s3 7→ ∅}) with → = {(s1, ε, s2), (s2, a, s1), (s2, a, s3), (s3, a, s1), (s3, ε, s2)}and E = {s1, s2}. As usual, entry states are depited through additional in-oming edges without soure.De�nition 3 (Simulation) A simulation is a binary relation R on S suhthat whenever (s, t) ∈ R then λ(s) = λ(t), and whenever s a

−→ s′ then thereis some t′ ∈ S suh that t a
−→ t′ and (s′, t′) ∈ R. We say that t simulates s,written s ≤ t, if there is a simulation R suh that (s, t) ∈ R.Simulation on two modelsM1 andM2 is de�ned as simulation on their disjointunion M1⊎M2. The transitions of M1⊎M2 are de�ned by ini(s)

a
−→ ini(s

′) if
s

a
−→ s′ in Mi and its valuation by λ(ini(s)) = λi(s), where ini (for i ∈ {1, 2})injets Si into S1 ⊎ S2. Simulation is extended to spei�ations (M1, E1) and

(M2, E2) by de�ning (M1, E1) ≤ (M2, E2) if there is a simulation R on M1⊎
M2 suh that for eah s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R.Spei�ation S1 is simulation equivalent to S2, written S1 ≃ S2, if S1 ≤ S2 and
S2 ≤ S1. We extend disjoint union to spei�ations (by (M1, E1)⊎(M2, E2) =
(M1 ⊎M2, E1 ⊎E2)) and show that simulation is preserved by disjoint union.Theorem 4 If S1 ≤ T1 and S2 ≤ T2 then S1 ⊎ S2 ≤ T1 ⊎ T2.2.2 Simulation LogiWe de�ne simulation logi in two steps: �rst we de�ne a basi modal logi, andthen we add reursion by means of equation systems. This results in a logithat is equally expressive as the modal µ-alulus with boxes and greatest �xedpoints only (f. Beki£ [31℄). However, the use of equation systems failitatesthe de�nition of a normal form, where the orrespondene between formulaeand spei�ations is immediate. In partiular, this allows to ompute maximalmodels by transforming the equations into this normal form.Let V be a ountably in�nite set of propositional variables. Basi simulationlogi is a variant of Hennessy-Milner logi [24℄ without diamond modalities:

φ ::= ff | tt | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ11

where p ∈ A, a ∈ L and X ∈ V. The interpretation ‖φ‖ρ of a basi formula
φ is de�ned with respet to a model M and an environment ρ interpretingthe propositional variables. The de�nition is standard (f. Stirling [32℄); inpartiular, for the box modality we have s ∈ ‖[a]φ‖ρ if and only if for all t ∈ Ssuh that s a

−→ t we have t ∈ ‖φ‖ρ. Formulae like p or ¬p are alled literals.We use n-ary versions of onjuntion and disjuntion, setting ∨

∅ = ff (false)and ∧

∅ = tt (true). As usual, for �nite K ⊆ L, we write [K]φ for ∧

a∈K [a]φand [−]φ for [L]φ.To make the logi expressive enough to haraterise all �nite models, we fol-low Larsen [23℄ and add reursion to basi simulation logi by introduingmodal equation systems. A modal equation system Σ is a �nite set of de�ningequations of the shape X = φX , where X is a propositional variable and φXis a formula of basi simulation logi. The de�ned variables X are pairwisedistint and bound in Σ, while all other variables are free. For a simpler pre-sentation, we restrit our attention here to losed equation systems withoutfree variables.Sine the onsidered equations systems are losed, it is su�ient to work withenvironments ρ : bv(Σ) → P(S) mapping the bound variables of Σ to setsof states. The equations in Σ indue a map ΨΣ : P(S)bv(Σ) → P(S)bv(Σ) onsuh environments ρ de�ned by ΨΣ(ρ)(X) = ‖φX‖ρ. A solution of Σ is anenvironment ρ suh that all equations in Σ are satis�ed (that is, ΨΣ(ρ) =
ρ), and is thus a �xed point of ΨΣ. Environments are ordered by point-wiseinlusion. The semantis of a modal equation system Σ with respet to amodel M, denoted ‖Σ‖, is its greatest solution. By the Knaster-Tarski �xedpoint theorem [33℄ a greatest solution always exists, sine ΨΣ is a monotonefuntion on the omplete lattie of environments ordered by point-wise setinlusion.De�nition 5 (Simulation Logi) A (losed) formula of simulation logihas the shape φ[Σ], where φ is a formula of basi simulation logi and Σis a (losed) modal equation system suh that all variables ourring in φare bound in Σ. The semantis of φ[Σ] with respet to model M is de�nedby ‖φ[Σ]‖ = ‖φ‖‖Σ‖. We say a spei�ation (M, E) satis�es φ[Σ], written
(M, E) |= φ[Σ], if E ⊆ ‖φ[Σ]‖.Example 6 Consider the formula φ = (X ∨ Y)[Σ], where

Σ =

X = [ε]Y ∧ [a]X ∧ p

Y = [ε] (X ∧ Y) ∧ ¬q

 .Let us determine the semantis of this formula with respet to the spei�ation
S in Figure 1. The greatest �xed point ‖Σ‖ of ΨΣ with respet to S an beomputed in the standard way by iteration of ΨΣ starting with ρ0 = {X 7→12

S, Y 7→ S}, where S = {s1, s2, s3}. This yields ‖Σ‖ = {X 7→ {s1}, Y 7→ {s2}}.So, E = ‖X ∨ Y ‖‖Σ‖ = {s1, s2}, and hene spei�ation S satis�es φ.Heneforth, we often omit the equation system Σ from φ[Σ] if no onfusionan arise. We say that φ1 is a logial onsequene of φ0, written φ0 ⊑ φ1, iffor all spei�ations S, S |= φ0 implies S |= φ1. The formula φ0 is logiallyequivalent to φ1, written φ0 ≡ φ1, if φ0 ⊑ φ1 and φ1 ⊑ φ0.Simulation logi is equally expressive as the modal µ-alulus [8℄ without dia-mond modalities and least �xed points. The translation from this fragment ofthe modal µ-alulus to simulation logi is straightforward and replaes eah�xed point by an equation. As an example, the formula νX.p1∧(νY.X∧[a] (p2∨
Y)) is translated into the equivalent formulaX[X = p1∧Y, Y = X∧[a] (p2∨Y)]of simulation logi. The translation in the other diretion is based on Beki£'spriniple (f. [34,31℄), whih expresses a �xed point in a produt lattie interms of a vetor of omponent-wise �xed points.2.3 Weak Simulation and LogiOften, one is only interested in the observable behaviour of systems. To ahievethis, one an identify a distinguished ation ε ∈ A, alled the silent ation,and de�ne weak transitions s a

⇒ t in terms of the usual (strong) transitions asfollows: s ε
⇒ t whenever s(ε

−→)∗t, and s a
⇒ t whenever s ε

⇒
a
−→

ε
⇒ t for all a 6= ε.Weak simulation ≤w (weak simulation equivalene ≃w) is then de�ned as sim-ulation (simulation equivalene) with respet to weak transitions. Similarly,we an interpret the box modality of simulation logi over the weak transitionsrather than the strong transitions of models. To distinguish the two interpre-tations, we shall rede�ne the notion of satisfation and write S |=w φ in thatase. Thus, S |=w [a]φ holds if and only if all states that an be reahed fromsome entry state of S by a transition labelled a, preeded and followed by anarbitrary number of ε-steps, satisfy φ.Example 7 Consider again the spei�ation in Figure 1. Then (M, {s1}) |=w

[ε] p, but not (M, {s3}) |=w [a] q, sine s3
a
⇒ s2 but s2 does not satisfy theatomi proposition q.3 Representation ResultsThis setion relates simulation logi to simulation by de�ning two mappings,

χ and θ. The mapping χ translates eah �nite spei�ation into a formula,while θ translates formulae into (�nite) spei�ations. The latter map is �rst13

de�ned on formulae in so-alled simulation normal form (SNF), and is thenextended to all formulae by showing how any formula an be transformed intoan equivalent one in SNF. We show that χ logially haraterises simulationand θ behaviourally haraterises logial satisfation. These two maps forma Galois onnetion between �nite spei�ations ordered by simulation andformulae ordered by logial onsequene. Similar results for somewhat di�erentsettings appear in [22,23,9℄. In this paper, we present a novel proedure toonstrut maximal models, whih is similar to the onstrution by Boudol andLarsen [22℄, but handles greatest �xed points. In ontrast to onstrutions forother branhing-time logis [6,21℄, we do not diretly build the model, butproeed by a step-wise transformation of the formula into an equivalent onein SNF, whih is isomorphi to the desired maximal model. Moreover, unlikein onstrutions for more expressive logis [25,26℄, our maximal models arerepresentable as standard transition systems. To the best of our knowledge,this is the �rst maximal model onstrution for a fragment of the modal µ-alulus inluding the full expressive power of greatest �xed points.3.1 Charateristi FormulaeFirst we de�ne the mapping from �nite spei�ations to formulae. A �nitespei�ation (M, E) is translated into its harateristi formula χ(M, E) =
φE[ΣM], where φE =

∨

s∈E Xs and ΣM de�nes Xs for eah s ∈ S by
Xs =

∧

a∈L

[a]

∨

s
a

−→t

Xt

 ∧
∧

p∈λ(s)

p ∧
∧

q∈A−λ(s)

¬qReall that ∨

∅ = ff (false) and ∧

∅ = tt (true).Example 8 Consider the spei�ation S displayed in Figure 1. Its harater-isti formula is χ(S) = (Xs1
∨Xs2

)[Σ], where
Σ =

Xs1
= [a] ff ∧ [ε]Xs2

∧ p ∧ q

Xs2
= [a] (Xs1

∨Xs3
) ∧ [ε] ff ∧ p ∧ ¬q

Xs3
= [a]Xs1

∧ [ε]Xs2
∧ ¬p ∧ ¬q

.

We have a variation of an earlier result by Larsen [23℄, stating that spei�-ation S1 is simulated by the �nite spei�ation S2 whenever S1 satis�es theharateristi formula of S2.Theorem 9 Let S1, S2 be spei�ations and suppose S2 is �nite. Then S1 ≤
S2 if and only if S1 |= χ(S2). 14

Note that using in�nite equation systems this theorem generalises to �nitelybranhing S2.3.2 Maximal ModelsThe next step is to de�ne the inverse mapping. Not all formulae orresponddiretly to a spei�ation, but those in simulation normal form do.De�nition 10 (Simulation normal form) A formula φ[Σ] of simulationlogi is in simulation normal form (SNF) if φ has the form ∨

X for some�nite set X ⊆ bv(Σ) and all equations in Σ are in the following state normalform
X =

∧

a∈L

[a]
(

∨

YX,a

)

∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬qwhere eah YX,a ⊆ bv(Σ) is a �nite set of variables and eah BX ⊆ A is a setof atomi propositions.Notie that any harateristi formula χ(S) is in SNF. From a formula (
∨

X)[Σ]in SNF we derive the spei�ation θ((
∨

X)[Σ]) = ((S, L,→, A, λ), E) where
S = bv(Σ), E = X and, for eah X ∈ bv(Σ), the equation for X indues thetransitions {X a

−→ Y | Y ∈ YX,a} and the valuation λ(X) = BX .Lemma 11 χ and θ are eah others inverse up to equivalene, that is,(1) θ(χ(S)) ∼= S for �nite S (where ∼= denotes isomorphism), and(2) χ(θ(φ)) ≡α φ for φ in SNF (where ≡α denotes α-onvertibility).Here, isomorphism means a label-and-valuation-preserving bijetion betweenthe respetive states and transitions.For φ in SNF, the spei�ation θ(φ) is amaximal model of φ with respet to thesimulation preorder, in the sense that it simulates exatly those spei�ationsthat satisfy formula φ.Theorem 12 For φ in SNF, we have S ≤ θ(φ) if and only if S |= φ.PROOF. Follows from Theorem 9 by Lemma 11(2). 23.3 Transformation to SNFWe now present a step-wise transformation of any simulation logi formulainto a logially equivalent formula in SNF. Before desribing the transforma-15

tion in detail, we introdue some auxiliary notions. First, we use a slightlynon-standard variant of disjuntive normal form: we say that a formula φof basi simulation logi is in disjuntive normal form (DNF) if it is a dis-juntion of onjuntions of box formulae and literals, i.e., it has the shape
φ =

∨

i(
∧

j [aij]ψij ∧
∧

Li) where Li are sets of literals and ψij arbitrary formu-lae in basi simulation logi. Furthermore, the onjuntive deomposition c(ψ)of a formula ψ into its onjunts is given by c(ψ) = {ψ1, . . . , ψm} suh that no
ψi is a onjuntion and ψ =

∧

i ψi (modulo assoiativity and ommutativity).Note that c(tt) = ∅. The elements of c(ψ) are alled onjuntive omponentsof ψ.We all an ourrene of a subformula top-level if it is not under the sope ofa box operator. We say that Y is unguarded in φX , written X ⊲ Y , if thereis a top-level ourrene of Y in φX . A modal equation system Σ (or formula
φ[Σ]) is weakly guarded if the relation ⊲ is ayli, and strongly guarded if ⊲ isempty.Example 13 Consider the modal equation system

Σ =

X = [a]X ∨ (q ∧ Y)

Y = [b] (X ∧ [a]Y) ∧ p

Variable X is guarded in φX (the only ourrene of X is under the sope ofa box operator), but Y is not (it ours on the top-level). Both X and Y areguarded in φY . Hene, ⊲ = {(X, Y)} being ayli but not empty, Σ is weaklyguarded but not strongly guarded.Any weakly guarded formula an be transformed into a strongly guarded oneby repeatedly rewriting eah unguarded ourrene of a variable by its de�ningequation. Moreover, using a result of Walukiewiz [35℄ we an also show thatany formula of simulation logi an be transformed into an equivalent weaklyguarded one (and thus into a strongly guarded one).After these auxiliary de�nitions, we are ready to present the transformation.It onsists of three phases:Phase I transforms eah equation into a disjuntion of formulae in state nor-mal form, where only single variables appear under modalities,Phase II splits top-level disjuntions in eah equation into a set of new equa-tions, one for eah disjunt, yielding an equation system in state normalform, andPhase III is an optimisation phase removing unreahable and redundantequations.The transformation into SNF uses a partial funtion h that keeps trak how16

sets of formulae are mapped to variables. This map avoids the repeated in-trodution of new equations for the same formula, whih is essential for thetermination of the transformation. If h maps a set of formulae Ψ to variable
X, this means that an equation X =

∧

Ψ (suh that c(∧ Ψ) = Ψ) has beenintrodued earlier and that variable X should be used instead of introduingany further equation for ∧

Ψ.Before going into the details, let us illustrate the basi ideas on a simpleexample. A more elaborate transformation example appears in Setion 8.3.1.Example 14 Let φ = [b] ff ∧ p be interpreted as a formula over L = {a, b}and A = {p}. This formula holds for spei�ations, where eah initial statesatis�es p and has no outgoing b transition. We �rst translate φ to (
∨

X0)[Σ0]with X0 = {X} and Σ0 = {X = [b] ff ∧ p}. In the following, the numbers inparentheses refer to the transformation steps detailed below.The equation for X is already strongly guarded (I.1) and in DNF (I.2). Next,we add the missing box [a] using the equivalene tt ≡ [a] tt (I.3), yielding
X = [a] tt ∧ [b] ff ∧ p. In the next step (I.4), we introdue new variables forthe formulae under the boxes: Y = tt and Z = ff. This is reorded in h withtwo new entries: (∅, Y) (sine tt =

∧

∅) and ({ff}, Z). The equation for Xbeomes
X = [a]Y ∧ [b]Z ∧ pwhih is already in state normal form. We proeed with Y = tt. Again, the �rststep with an e�et adds the missing boxes (I.3), produing Y = [a] tt ∧ [b] tt.Next, sine c(tt) = ∅ and h(∅) = Y , we know that Y stands for tt, so wereplae the subformulae tt under the boxes by Y , yielding Y = [a]Y ∧ [b] Y . Toget a disjuntion of state normal forms, we add the missing literals in positiveand negative form, yielding

Y = ([a]Y ∧ [b] Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p).The third equation Z = ff (= ∨

∅) is already a (trivial) disjuntion of statenormal forms. Note that X remains unhanged in Phase I. Thus, at the endof Phase I we have the following equation system.
Σ =

X = [a]Y ∧ [b]Z ∧ p

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b] Y ∧ ¬p)

Z = ff

Next, Phase II splits eah top-level disjuntion into a set of new equationsand substitutes the disjuntion of new variables for the original variable. Con-retely, all ourrenes of Y are replaed by Y1 ∨ Y2 and Z = ff (= ∨

∅) is17

PSfrag replaements
Y1 Y2

X

p

p

aa

a, b a, b
a, b

a, b

Figure 2. Maximal model for φ = [b]ff ∧ psubstituted bak into φX , yielding
Σ =

X = [a] (Y1 ∨ Y2) ∧ [b] ff ∧ p

Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p

Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p

Sine X is not split into several equations, X = {X} remains unhanged.Phase III is the identity transformation in this example as there are no un-reahable or dupliate equations. Thus, the �nal result is X[Σ], whih is insimulation normal form. The derived maximal model θ(X[Σ]) is displayed inFigure 2. Indeed, it simulates exatly all those spei�ations where eah initialstate satis�es p and has no outgoing b transition.We now desribe the atual transformation in detail. We assume without lossof generality that the initial formula has the shape X0[Σ0], where Σ0 is weaklyguarded (sine any formula an be transformed into a weakly guarded one).We initialise X = {X0}, Σ = Σ0 and h = ∅.Phase I (Disjuntion of state normal forms)This phase transforms eah equation into a disjuntion of formulae in statenormal form. Its steps are applied one to eah equation inluding the newones introdued in step I.4 below.(1) (Strong guardedness) Make equation strongly guarded by repeated rewrit-ing of unguarded ourrenes of variables using the original system Σ0.(2) (DNF) Put equation into disjuntive normal form and remove inonsis-tent disjunts (those where ff or both p and ¬p appear).(3) (Box grouping and ompletion) Group boxes together using [a]φ1∧[a]φ2 ≡
[a] (φ1 ∧ φ2) and add missing boxes to eah disjunt using tt ≡ [a] tt suhthat there is a box formula for eah a ∈ L. The resulting equation shapeis

X =
∨

i

(
∧

a∈L

[a]ψia ∧
∧

Li)(4) (Modal depth redution) Apply the following to eah top-level box sub-formula [a]ψia where ψia is not a variable. If (c(ψia), Y) ∈ h for some18

variable Y then replae [a]ψia by [a]Y ; otherwise, hoose a fresh variable
Z 6∈ bv(Σ), add the new equation Z = ψia to Σ, replae [a]ψia by [a]Zand extend h to h ∪ {(c(ψia), Z)}. The equation shape is then

X =
∨

i

(
∧

a∈L

[a]Zia ∧
∧

Li)(5) (Literal ompletion) Replae equation X = φ by X = φ ∧
∧

p∈A(p ∨ ¬p),then repeat step (2) to put equation bak into DNF. The equation shapeis (for Bi ⊆ A)
X =

∨

i

(
∧

a∈L

[a]Zia ∧
∧

p∈Bi

p ∧
∧

q∈A−Bi

¬q)Note that step (I.4) might introdue unguarded ourrenes of variables inthe newly added equations. Thus, the rewriting step (I.1) is needed to bringthese equations into strongly guarded form. For the termination of Phase I, itis ruial to use the original equation system Σ0 and not the urrent Σ in thisstep, beause this limits the set of subformulae introdued by the rewriting tothose already ourring in Σ0. This in turn guarantees that subsequent modaldepth redutions in step (I.4) eventually �nd already existing variables for thesubformulae under the box operator.Phase II (Push disjuntions inside)This phase eliminates the top-level disjuntions by introduing a new equationfor eah disjunt, thus pushing these disjuntions under box modalities. It isapplied one to eah equation in Σ.(1) Remove an equation of shape X =
∨n

i=1 φi with n 6= 1 from Σ; note thatthis inludes the ase X = ff (for n = 0).(2) Add a new equation Xi = φi for eah non-variable disjunt φi and sub-stitute ∨n
i=1Xi for X in all equations of Σ (where Xi is either identialto φi or Xi is the fresh variable introdued for φi).(3) If X ∈ X then replae X by (X − {X}) ∪ {X1, . . . , Xn}.The resulting equation is in state normal form.Phase III (Optimisation)This optimisation phase iteratively removes unreahable and dupliate equa-tions.(1) Remove equations Z = ψ from Σ in ase Z an not be reahed from anyvariable in X via variable dependenies (X depends on Y if Y ours in

φX). 19

(2) If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ suh that ψ1[Z1/Z2] =
ψ2[Z1/Z2], then remove Z2 = ψ2 from Σ and substitute Z1 for Z2 in theremaining equations as well as in X .Theorem 15 The algorithm above terminates and transforms any formula

φ of simulation logi into an equivalent formula snf(φ) in simulation normalform.PROOF. (Sketh; full proof in [36℄) Let Xi, Σi and hi denote the values of
X , Σ and h after i transformation steps. We onentrate in this sketh onPhase I, whih preserves the following two invariants:J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡ Y [Σ0], andJ2. if (Ψ, Z) ∈ hi then Ψ ⊆ Ψ0, where Ψ0 is de�ned as the set of onjuntiveomponents of subformulae appearing under some box modality in Σ0, thatis, Ψ0 =

⋃

{c(ψ) | ∃a. [a]ψ is a subformula of Σ0}.Preservation of the semantis by the transformation steps follows from J1 andthe fat that X is onstant in Phase I. To see that Phase I terminates, note�rst that step I.1 terminates, beause Σ0 is weakly guarded (by assumption)and all steps preserve weak guardedness. Overall non-termination of Phase Idue to the introdution of equations in step I.4 is ruled out by J2: sine Ψ0 is�nite, the map h eventually �lls up and thus Phase I terminates. 2We extend the mapping θ to all formulae of simulation logi by de�ning θ(φ) =
θ(snf(φ)). Sine snf preserves the semantis, Theorem 12 an be extended toall formulae, showing that θ(φ) is the maximal model of φ with respet to thesimulation preorder.Theorem 16 S ≤ θ(φ) if and only if S |= φ.We onlude with two important onsequenes of Theorems 9 and 16. The�rst one is that simulation preserves logial properties.Corollary 17 S1 ≤ S2 and S2 |= φ imply S1 |= φ.The seond orollary expresses that the maps χ and θ form a Galois onnetionbetween the preorder (S,≤) of (isomorphism lasses of) �nite spei�ationsordered by simulation and be the preorder (L,⊑) of formulae of simulationlogi ordered by logial onsequene.Corollary 18 χ and θ are monotone and, for �nite spei�ations S, S ≤ θ(φ)if and only if χ(S) ⊑ φ. 20

3.4 Representation results for weak simulationA natural question is whether the results of the previous subsetion an be usedto relate weak simulation and simulation logi in the same way as simulationand simulation logi are related by the transformation θ (and its adjoint map
χ). Note that applying θ on a formula of simulation logi interpreted over weaktransitions would only give us a model in terms of weak transitions, withoutthe underlying strong transitions. However, there is a standard translation offormulae interpreted over weak transitions into equivalent formulae interpretedover strong transitions [32℄. This translation, let us denote it by δ, is easilyadapted to our setting. It has the property that S |=w φ exatly when S |=
δ(φ). We show that θ ◦ δ provides the desired transformation relating weaksimulation and simulation logi.To this end, we �rst introdue the notion of saturated model, i.e., a modelin whih s a

−→ t whenever s a
⇒ t. We show that for all formulae φ, θ (δ (φ)) issimulation equivalent to its saturation, and therefore it is su�ient for a modelto be weakly simulated by θ (δ (φ)) in order to satisfy φ when interpreted overweak transitions.De�nition 19 (Saturation) Let M = (S, L,→, A, λ) be a model. The sat-uration of M is the model sat(M) = (S, L,→s, A, λ) in whih s a

−→s t exatlywhen s a
⇒ t for all a. The saturation of a spei�ation (M, E) is the spei�-ation sat(M, E) = (sat(M), E).Thus, sat(M) is the least saturated model with respet to the subset orderingon the powerset of S×L×S, ontaining M. For instane, in the model givenin Figure 1 above, we have to add the transition s1

a
−→ s3 and ε-self-loops tosaturate the model. We have s a

⇒s t in sat(S) whenever s a
−→s t in sat(S)whenever s a

⇒ t in S. As onsequenes, we have the following properties ofweak simulation and simulation logi.Proposition 20 We have(i) S1 ≤w S2 i� S1 ≤ sat(S2), and(ii) S |=w φ i� sat(S) |=w φ i� S |= δ(φ).Lemma 21 sat(θ (δ (φ))) ≃ θ (δ (φ)).PROOF. Clearly, θ (δ (φ)) ≤ sat(θ (δ (φ))) holds; it remains to show theother diretion. From re�exivity of≤ and Theorem 16 we know that θ (δ (φ)) |=
δ(φ). Then, by Proposition 20(ii), sat(θ (δ (φ))) |= δ(φ), and again by Theo-rem 16, sat(θ (δ (φ))) ≤ θ (δ (φ)). 221

These results allow the following haraterisation of simulation logi, in thestyle of Theorem 16.Theorem 22 S ≤w θ (δ (φ)) if and only if S |=w φ.PROOF. By Proposition 20(i) and Lemma 21 the following statements areequivalent: (a) S ≤w θ (δ (φ)), (b) S ≤ sat(θ (δ (φ))), and () S ≤ θ (δ (φ)).Theorem 16 together with Proposition 20(ii) then establish the result. 2Corollary 23 S1 ≤w S2 and S2 |=w φ imply S1 |=w φ.4 Program ModelThis setion uses the notions developed above to formally de�ne applet stru-ture and behaviour, strutural and behavioural simulation logi, and maximalapplets. The next setion then shows how these support ompositional veri�-ation of ontrol-�ow-based safety properties of applets.4.1 Applet StrutureWe model the ontrol struture of an applet as a olletion of method spei-�ations. We �rst de�ne the notion of applet interfae as the sets of methodswhih are provided and alled by an applet. We shall need this notion foronstruting maximal applets. Let Meth be an in�nite set of method names(not ontaining the speial symbols r and ε).De�nition 24 (Applet interfae) An applet interfae is a pair I = (I+, I−),where I+, I− ⊆ Meth are �nite sets of names of provided and required meth-ods, respetively. We say I is losed if I− ⊆ I+. The omposition of two inter-faes I1 = (I+
1 , I

−
1) and I2 = (I+

2 , I
−
2) is de�ned by I1∪I2 = (I+

1 ∪I+
2 , I

−
1 ∪I−2).Next, we de�ne method spei�ations, whih are the basi building bloks ofapplets. Eah method is desribed by its ontrol-�ow graph and a set of entrypoints.De�nition 25 (Method spei�ation) A method graph for m ∈ Methover a set M of method names is a �nite model Mm = (Vm, Lm,→m, Am, λm),where Vm is the set of ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r},

m ∈ λm(v) for all v ∈ Vm, i.e., eah node is tagged with the method name. Amethod spei�ation for m ∈ Meth over M is a spei�ation (Mm, Em) suhthat Mm is a method graph for m over M .22

PSfrag replaements
mmv1

v2

v3

p ε m, rm, rv4Figure 3. A method graphThe nodes labelled with the distinguished atomi proposition r are the returnpoints of m.Example 26 Figure 3 shows the method graph for the following Java-likemethod m:void m() {if () {p()} else x = 3}An applet is a olletion of method spei�ations.De�nition 27 (Applet) Applets A with interfae I, written A : I, are in-dutively de�ned by
• 0M : (∅,M), where 0M is the empty applet over M de�ned by 0M =

((∅,M ∪ {ε},∅, {r},∅),∅),
• (Mm, Em) : ({m},M) if (Mm, Em) is a method spei�ation for m over M ,
• A1 ⊎A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.An applet A : I is losed if its interfae I is losed.This de�nition requires that eah provided method m ∈ I+ of an applet A : Ihas to be implemented in a method graph for m. The interfae of an appletan be derived from its implementation: a straightforward indution showsthat if A is an applet built from a model over L and A then its interfae is
(A−{r}, L−{ε}). We write S : I for an arbitrary spei�ation S to mean that
S is (isomorphi to) an applet with interfae I. Note that, up to isomorphism,applet omposition ⊎ is assoiative and ommutative with neutral element 0∅.We have developed a tool to extrat applet graphs from Java Card byte ode.The tool is based on the SOOT framework (see Setion 7).4.1.1 Strutural Simulation and LogiStrutural simulation on applets oinides with simulation on the spei�a-tions de�ning the applets. For onveniene we write A1 ≤s A2 instead of
A1 ≤ A2 to denote strutural simulation. Sine applet omposition orre-sponds to disjoint union, strutural simulation is preserved by applet ompo-23

sition (f. Theorem 4).Corollary 28 If A1 ≤s B1 and A2 ≤s B2 then A1 ⊎ A2 ≤s B1 ⊎ B2.We also instantiate (weak) simulation logi to this level. For an applet A : Iand a formula φ of simulation logi over L = I− ∪ {ε} and A = I+ ∪ {r} wewrite for larity A |=s φ instead of A |= φ and A |=s,w φ instead of A |=w φ.4.2 Maximal Applet StruturesIn general, the maximal model of a given formula in strutural simulation logiis not a legal applet struture. What we are interested in, then, is omputinga maximal applet for the formula, i.e., an applet struture whih satis�esthe formula and whih struturally simulates all other applets satisfying theformula. This problem, however, an only be solved for a �xed applet interfae:one an axiomatise applet strutures within strutural simulation logi for agiven interfae. This allows the maximal model onstrution presented aboveto be used for omputing a maximal applet for a given formula in struturalsimulation logi.De�nition 29 (Interfae formula) Let I = (I+, I−) be an applet interfae.De�ne φI [ΣI], the interfae formula for I, by
φI =

∨

m∈I+ Xm

ΣI = {Xm = [I−, ε]Xm ∧ pm | m ∈ I+}

pm = m ∧
∧

{¬m′ | m′ ∈ I+, m′ 6= m}The formula φI [ΣI] axiomatises the basi struture of an applet with inter-fae I, namely, eah initial node belongs to a unique method m and no tran-sition leaves m. Note that ΣI is not in SNF (proposition r is missing).The maximal applet with respet to a formula φ and interfae I is de�ned asthe maximal model of φ onjoined with the interfae formula for I.De�nition 30 (Maximal applet) The maximal applet with respet to in-terfae I and formula φ[Σ] is de�ned as θI(φ[Σ]) = θ(φ ∧ φI [Σ,ΣI]) (where itis assumed without loss of generality that the bound variables of Σ and ΣI aredisjoint).Example 31 The interfae formula for interfae I = ({m1, m2}, {m1, m3})24

PSfrag replaements m1

m1 m2

m2

m1, r m2, r

m1, m3, ε

m1, m3, ε

m1, m3, ε

m1, m3, ε

m1, m3, ε m1, m3, ε

m1, m3, ε

m1, m3, ε

Figure 4. Maximal applet for interfae I = ({m1,m2}, {m1,m3}) and φ = ttis given by the formula φI [ΣI], where φI = Xm1
∨Xm2

and
ΣI =

Xm1
= [m1, m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1, m3, ε]Xm2

∧m2 ∧ ¬m1

The maximal applet for interfae I (and formula φ = tt) is shown in Figure 4.The following result reords the main properties of interfae formulae andmaximal applets.Theorem 32 Let I be an applet interfae. For any spei�ation S = (M, E)over labels L = I−∪{ε} and atomi propositions A = I+∪{r} we have (where
R denotes the reahable part of a spei�ation, as de�ned on page 10)(1) S |=s φI if and only if R(S) : I, and(2) S ≤s θI(φ) if and only if S |=s φ and R(S) : I.
PROOF. (1) (Sketh) �⇒� By an indution on the size of I+. The restri-tion to the reahable part of S is required, beause the formula φI does notonstrain the unreahable parts of S. �⇐� By inspetion of the de�nitionof applets. (2) Using the de�nition of θI(φ) and Theorem 16 we know that
S ≤s θI(φ) is equivalent to S |=s φ and S |=s φI . The result then follows from(1). 2

Point (1) of the theorem essentially expresses that the formula φI haraterisesthose spei�ations that are applets with interfae I, while point (2) extendsTheorem 16 from spei�ations to applets. As a onsequene of (2) we have
θI(φ) |= φI and θI(φ) : I, sine all nodes of θI(φ) are reahable by onstrution.25

4.3 Applet BehaviourNext, we hange our fous to the behavioural level, where we �rst de�ne theoperational semantis of a losed applet. Sine our ompositional veri�ationmethod is based on strutural assumptions, there is no need to ompose ap-plets on the behavioural level, so an operational semantis of losed applets issu�ient. This is in ontrast with previous work on semi-automati omposi-tional applet veri�ation [7℄ where the use of behavioural assumptions requireda more involved open semantis of applets.Applet behaviour an be desribed in terms of Pushdown Automata. We alsopresent an equivalent formulation of applet behaviour, de�ning it diretly interms of a model. Applet behaviour is losely onneted with applet struture,in the sense that simulation of applet struture immediately arries over tosimulation of applet behaviours. This will be exploited in the next setion,when presenting the ompositional veri�ation priniple.4.3.1 Applet Behaviour as Pushdown AutomatonPushdown Automata provide a natural exeution model for programs withreursion. They form a well-studied lass of in�nite state systems for whihmany important problems like bisimulation equivalene and model hekingare deidable (see e.g., [10,5℄ for analysis tehniques and [3,2℄ for appliations).Applet behaviour an be desribed diretly in terms of Pushdown Automata.De�nition 33 (PDA) A non-deterministi Pushdown Automaton is a tuple
P = (Q,Σ,Γ,∆, Q′,⊥) where Q is a set of ontrol states, Σ a �nite inputalphabet, Γ a �nite stak alphabet, Q′ ⊆ Q are the start states, ⊥ ∈ Γ isthe initial stak symbol, and ∆ ⊆ (Q × Γ) × Σ × (Q × Γ∗) a set of labelledprodutions (or rewrite rules) of the shape (q1, A)

a
→֒ (q2, γ).A on�guration of a PDA is a pair (q, γ) ∈ Q× Γ∗. The set of on�gurations

Q′ × {⊥} are alled initial on�gurations. The set of produtions indues alabelled transition relation on on�gurations as the least relation whih on-tains the initial on�gurations and is losed under the pre�x rewrite rule:
(q1, A · γ′)

a
−→ (q2, γ · γ

′) whenever (q1, A)
a
→֒ (q2, γ) ∈ ∆.Applet behaviour is indued from the applet PDA through the pre�x rewriterule. The onnetion between applet struture and applet PDA is establishedthrough the following de�nition.De�nition 34 (Applet PDA) Let A = (M, E) : (I+, I−) be a losed appletsuh that M = (V, L,→, A, λ). Then PA = (V, Lb, V ∪ {⊥},∆, E,⊥) is the26

[transfer℄ (v, σ)
τ
−→ (v′, σ) if v

ε
−→m v′, v |= ¬r[all℄ (v1, σ)

m1 call m2−−−−−−→ (v2, v
′
1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1
v′1, v1 |= ¬r,

v2 |= m2, v2 ∈ E[return℄ (v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1Table 1Applet Transition RulesPDA indued by A where

Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}

∆ = {(v, v⊥)
ε
→֒ (v′, v⊥) | v |= ¬r ∧ v →m v′}

∪ {(v1, v⊥)
m1 all m2

→֒ (v2, v
′
1 · v⊥) | v1 |= ¬r ∧ v1

m2−→m1
v′1

∧ v2 |= m2 ∧ v2 ∈ E}

∪ {(v2, v1)
m2 retm1

→֒ (v1, ε) | v2 |= r ∧ v2 |= m2 ∧ v1 |= m1}where v⊥ ranges over V ∪ {⊥}.Note that the valuation λ also applies to PDA ontrol states and is lifted toon�gurations by de�ning λ̂((v, v⊥)) = λ(v).4.3.2 Applet Behaviour by Transition RulesAn alternative approah is to desribe applet behaviour expliitly as a spei-�ation, by de�ning appropriate transition rules.De�nition 35 (Behaviour) Let A = (M, E) : (I+, I−) be a losed ap-plet suh that M = (V, L,→, A, λ). The behaviour of A is desribed bythe spei�ation b(A) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) is de-�ned by Sb = V × V ∗, that is, states are pairs of ontrol points and staks,
Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}, →b is de�ned by thetransition rules of Table 1, Ab = A and λb((v, σ)) = λ(v). The set of initialstates Eb is de�ned by Eb = E × {ε}.A simple inspetion of the rules in Table 1 and De�nition 34 shows thatthe behaviour indued by the applet PDA through the pre�x rewrite rule isisomorphi to the expliitly desribed applet behaviour.27

4.3.3 Behavioural Simulation and LogiApplet A1 behaviourally simulates applet A2, written A1 ≤b A2, if b(A1) ≤
b(A2). Similarly, we instantiate simulation logi on the behavioural level. Be-havioural properties are more abstrat than strutural ones as they do not referto the program ontrol struture. We de�ne behavioural satisfation A |=b ψas b(A) |= ψ for applets A : I and ψ a formula of simulation logi over Lb and
Ab. Similarly, weak behavioural satisfation A |=b,w ψ is de�ned as b(A) |=w ψ.Sine applet behaviour oinides with behaviour of a Pushdown Automaton,verifying goals of the shape A |=b ψ (or A |=b,w ψ) an be redued to PDAmodel heking, for whih standard algorithms exist.4.3.4 Simulation CorrespondeneThe notions of applet struture and behaviour have been de�ned so as toensure that any two applets related by strutural simulation are also relatedby behavioural simulation. In general, the inverse does not hold, beause dueto reursion, method graphs an ontain nodes that are never reahable at thebehavioural level.Theorem 36 (Simulation Correspondene) If A1 ≤s A2 then A1 ≤b A2.PROOF. LetR be a strutural simulation between A1 andA2. We liftR fromthe strutural level to Rb on the behavioural level by de�ning ((v, σ), (v′, σ′)) ∈
Rb if and only if (v, v′) ∈ R, |σ| = |σ′| and (σ(i), σ′(i)) ∈ R for all 0 ≤ i < |σ|.It is easy to hek that Rb is a behavioural simulation between A1 and A2.
2As a onsequene, in the set of applets satisfying a given strutural formula
φ[Σ], the maximal applet for this formula (with respet to strutural simula-tion) θI(φ[Σ]) is also maximal with respet to behavioural simulation.4.4 Behavioural Maximal AppletsDe�ning the maximal applet behaviour for a given behavioural formula is moreproblemati. As in the strutural ase, in general, the maximal model of aformula in behavioural simulation logi is not a legal applet behaviour. Unlikethe strutural ase, however, one annot axiomatise applet behaviour withinbehavioural simulation logi (in order to use the maximal model onstrutionfor generating maximal applet behaviours), sine simulation logi is only ableof apturing regular properties and not the ontext-free properties exhibitedby Pushdown Automata. 28

Furthermore, a maximal applet behaviour would in general be in�nite-state;therefore, a maximal behaviour onstrution has to return a �nite represen-tation of this behaviour. The obvious (but not only) hoie for suh a rep-resentation would be an applet struture. Given a formula in behaviouralsimulation logi, the problem then redues to �nding an applet whih satis�esthe formula and whih behaviourally simulates all other applets satisfying theformula. However, in general suh a maximal applet is not unique.Example 37 Consider the behavioural formula [m1 callm2] r over an inter-fae I = ({m1, m2}, {m1, m2}). The formula gives rise to two maximal applets:(1) the maximal applet for I, but without edges labelled m2 whose soure is anon-return entry node of m1 (representable as θI(¬m1 ∨ r∨ [m2] ff)), i.e.,the applet where m1 an never all m2 immediately; and(2) the maximal applet for I, but where every entry point of m2 is valuated r(representable as θI(¬m2 ∨ r)), i.e., the applet where m2 always returnsimmediately.Every applet satisfying the formula is behaviourally simulated by one of thesetwo applets; however, neither of the two applets simulates the other.We are urrently investigating under what onditions and how suh a olle-tion of maximal applets an be haraterised exatly, by means of a translationfrom behavioural properties into olletions of strutural properties. Prelimi-nary results are presented by Gurov and Huisman in [11℄.5 Compositional Veri�ationThe results of the preeding setions form the basis for ompositional veri�-ation of applets using maximal models.5.1 Strutural PropertiesIn the realm of strutural properties, i.e., when global guarantees and loalassumptions are all given as strutural formulae, we obtain a ompositionalveri�ation priniple of the desired form, embodied by the following rule:
(struct − comp)

A |=s φ θI(φ) ⊎ B |=s ψ

A ⊎ B |=s ψ
A : IThis priniple states that in order to show that a omposed applet A⊎B hasa strutural property ψ, it is su�ient to �nd a strutural property φ whih is29

satis�ed by A and for whih θI(φ)⊎B |=s ψ. The rule is sound and omplete.The proof of this rule follows losely the (slightly more involved) proof for rule
(compos) presented below (Theorem 39), and is therefore omitted. Verifyingthe premises is ahieved by standard, �nite-state model heking.Sine applet omposition is ommutative, one an apply the ompositionalreasoning priniple also with respet to applet B in the seond premise of therule to yield a further deomposition of the global property.5.2 Behavioural PropertiesAs explained above, deomposition of global behavioural properties is moreproblemati, as behavioural properties in general do not give rise to uniquemaximal applets. We an represent the set of applets satisfying the loal as-sumption by a model that behaviourally simulates these applets, but this ne-essarily leads to approximative (i.e., sound but inomplete) solutions, sinesuh a model annot be guaranteed to be a legal applet behaviour itself. How-ever, by restriting loal assumptions to strutural properties, we obtain aomplete ompositional veri�ation rule, thus avoiding the possibility of falsenegatives. This rule exploits the result that strutural simulation implies be-havioural simulation (Theorem 36).Let A : I and B : J be applets suh that I ∪ J is losed and let φ and ψbe formulae of strutural and behavioural simulation logi, respetively. Wepropose a ompositional veri�ation priniple embodied by the following rule:

(compos)
A |=s φ θI(φ) ⊎ B |=b ψ

A⊎ B |=b ψ
A : IWe establish soundness and ompleteness of the rule with the help of thefollowing result, whih haraterises its seond premise.Proposition 38 Let B : J be an applet and I an interfae suh that I ∪ J islosed. Then θI(φ) ⊎ B |=b ψ if and only if for all A : I with A |=s φ we have

A ⊎ B |=b ψ.PROOF. �⇒� Suppose θI(φ) ⊎ B |=b ψ, A : I and A |=s φ. Then ertainlyalso R(A) : I and so we get A ≤s θI(φ) by Theorem 32(2). From Corollary 28and Theorem 36 we derive that A ⊎ B ≤b θI(φ) ⊎ B. Hene, A ⊎ B |=b ψ byCorollary 17. �⇐� By Theorem 32(2) we have θI(φ) : I and θI(φ) |=s φ, thus
θI(φ) ⊎ B |=b ψ. 2 30

Theorem 39 Rule (compos) is sound and omplete.PROOF. Soundness is immediate by Proposition 38. For ompleteness sup-pose A ⊎ B |=b ψ and set φ = χ(A). By Theorem 9 we have A |=b χ(A).To establish the seond premise of the rule, we use Proposition 38 and show
C ⊎ B |=b ψ for an arbitrary C : I with C |=s X (A). We use Theorem 9 toderive C ≤s A. The result then follows by Theorem 36 and Corollaries 17 and28. 2Again, sine applet omposition is ommutative, one an apply the omposi-tional reasoning priniple (compos) also with respet to applet B in the seondpremise of the rule to yield a further deomposition of the global property.Note that by taking B to be the empty applet ∅J− , (compos) redues to a rulerelating behavioural properties to strutural ones:

(strut-beh) A |=s φ θI(φ) |=b ψ

A |=b ψ
A : IThus, given applet A : I, the satisfation of behavioural property ψ an beredued to the satisfation of strutural property φ if and only if the maximalapplet with respet to I and φ (behaviourally) satis�es property ψ.6 Interfae AbstrationSo far we have only onsidered applets where all provided methods are publi,meaning that they an be alled from the outside. However, in pratie thepubli methods will be implemented using private methods whih are hiddenfrom the outside world. Thus, when one wishes to hek that an atual ap-plet implementation (using private methods) satis�es a spei�ed property, oneneeds to abstrat away from the private methods, whih are not observablefrom the outside. In partiular, in a ompositional veri�ation setting, loalassumptions (and global guarantees) will typially be expressed at the pub-li interfae level of an applet, while the onrete applet implementation willuse private methods. For the ase study presented in Setion 8, the ability todistinguish between publi and private method is ruial to make veri�ationfeasible.Given an applet A with interfae I = (I+, I−) and a set of publi methods

M ⊆ I+, we de�ne the publi interfae of A by Î(M) = (M, I− − (I+ −M)).The methods in the set I+ −M are alled private methods of A.We introdue the notion of interfae behaviour, whih � intuitively speaking �31

projets the applet behaviour onto the observable methods delared in thepubli interfae. For the purpose of pratial veri�ation, we present the in-terfae abstration of an applet, produed by an inlining algorithm, whih over-approximates the applet's interfae behaviour by inlining its private methods.We also show that, under the (very ommon) restrition that an applet islast-all reursive, an inlined applet is weakly simulation equivalent to theinterfae behaviour of the original applet. We then propose a modi�ed prini-ple for ompositional veri�ation based on the interfae abstration of appletsand the maximal model obtained for the publi interfae of the orrespondingapplet.
6.1 Interfae BehaviourThe next setion de�nes an inlining algorithm that transforms a onreteapplet implementation into an applet that ontains only method alls to publimethods. We want to prove that for any losed applet, every behaviour of theonrete applet is also a behaviour of the inlined applet. However, for this tohold, we have to abstrat the onrete behaviour to the level of publi methods.Therefore, we introdue the notion of interfae behaviour of an applet withrespet to a set of publi methods M .First, we de�ne the top publi method with respet toM , whih for a given allstak σ is the �rst publi method to whih a node in the all stak belongs. Foronveniene, below we will often write the states of the behavioural model as asimple sequene of states, i.e., v · σ, instead of (v, σ). We use reverse indexingto denote the ith element from the bak of a sequene, so that (v · σ)|σ| = v(where |σ| denotes the length of sequene σ), and σ0 is the last element of σ.Let λMeth(v) denote the method to whih node v belongs.

top_indexM(σ) = max{i | 0 ≤ i < |σ| ∧ λMeth(σi) ∈M}

topM(σ) = λMeth(σtop_indexM (σ))Using these de�nitions, we an de�ne a relabelling ρM of transition labels tothe publi level. Labels for alls and returns between publi methods are leftunhanged. A all from a private to a publi method is relabelled as a allfrom the top publi method in the pending all stak. A return from a publito a private method is relabelled as a return to the top publi method. All32

other transitions get labelled as silent ations.
ρM((v, σ), ℓ) =

ℓ if ℓ = m1{call/ret}m2 ∧ m1, m2 ∈ M

topM(σ) callm2 if ℓ = m1 callm2 ∧ m1 6∈M,m2 ∈M

m1 ret topM(σ) if ℓ = m1 retm2 ∧ m1 ∈M,m2 6∈ M

ε otherwiseNow we are ready to de�ne the interfae behaviour of applet A with respetto a set of publi methods M .De�nition 40 (Interfae behaviour) Let A : I be a losed applet withbehaviour b(A) = ((S, L,→, A, λ), E). Let M ⊆ I+ be a set of publi methods.The interfae behaviour of A with respet to M is de�ned as
bM (A) = ((S, LM ,→M , AM , λM), EM)where

• LM = {m1 l m2 | m1, m2 ∈M ∧ l ∈ {call, ret}} ∪ {ǫ}

• →M= {((v, σ), ℓ, (v′, σ′)) | ∃a ∈ L. (v, σ)
a
→ (v′, σ′) ∧ ρM((v, σ), a) = ℓ }

• AM = M ∪ {r}

• λM = (v, σ) 7→ {topM(v · σ)} ∪ if(v ∈M ∧ v |= r) then {r} else ∅

• EM = {v | v ∈ E ∧ λMeth(v) ∈M}.The interfae behaviour of an applet also de�nes a Pushdown Automaton.Proposition 41 The interfae behaviour of A with respet to I+ is identialto its behaviour, i.e., bI+

(A) = b(A).We de�ne behavioural interfae simulation A ≤M
b B as bM (A) ≤ bM(B), andweak behavioural interfae simulation A ≤M

b,w B as bM(A) ≤w bM(B). Notiethat A and B need not have the same interfaes � we only require M ⊆ I+
AandM ⊆ I+

B . Similarly, for any formula φ in simulation logi over LMand AM ,we de�ne behavioural interfae satisfation A |=M
b φ as bM (A) |= φ, and weakbehavioural interfae satisfation A |=M

b,w φ as bM (A) |=w φ.6.2 The Inlining TransformationNext we de�ne an inlining algorithm αM that, given a set of publi methodsM ,transforms an applet graph by inlining all private alls. Reursive alls toprivate methods are not inlined, but reate loops in the resulting graph. We33

prove that the interfae behaviour of the original applet A is simulated by thebehaviour of the inlined applet αM(A), thus (by Corollary 17) all properties φof the latter, i.e., αM(A) |=b φ, are also properties of the former, i.e., A |=M
b φ.Moreover, we prove that if the applet is last-all reursive, the two behavioursare weakly simulation equivalent � thus both applets satisfy exatly the sameobservable properties at the publi interfae level.Notie that the inlining algorithm does not require the applet to be losed: ittreats all external methods as publi.6.2.1 The Inlining AlgorithmThe algorithm is applied to eah publi method and (reursively) inlines allalls to private methods. Intuitively, onstruting the transformed (or inlined)graph for a publi method m orresponds to exeuting the interfae behaviourof m, where method alls to publi methods are skipped and reursion isreplaed by iteration. The nodes of the inlined applet an thus be seen asstates of the (interfae) behaviour of the original applet, modulo an abstrationfuntion whih replaes reursion by iteration.During the inlining, eah edge that represents internal transfer or a all to apubli method is left unhanged. Eah edge that represents a all to a privatemethod is replaed by two internal edges: one from the alling point to theentry point of the method; and another from the return point of the methodto the destination of the alling edge. If a method has several entry or returnpoints, several internal edges are reated. The private method is inlined re-ursively. Eah node is replaed by a sequene denoting the fragment of theall stak from the ativation of the publi method up to the urrent node(exept for the ase of a reursive all). Sine we keep trak of the pendingall stak, we an reognise reursive alls to private methods. In that ase,the appropriate initial fragment of the all stak is used to deide the exatnew edges.For the formal de�nition of the inlining algorithm, we need some new notions.Let A : I be an applet and M ⊆ I+ be a set of publi methods. An M-frameis a sequene of nodes σ of whih only λMeth(σ0) is inM . AnM-frame is allednormal, if all nodes in the frame belong to di�erent methods. The nodes of theinlined applet are represented by normalM-frames derived from the behaviourof the original applet. The abstration funtion mentioned above (replaingreursion by iteration) is formalised by means of the (normalising) onditionalrewrite rule σ · v ·σ′ · v′ · σ′′ →֒ σ · v · σ′′ if λMeth(v) = λMeth(v

′) and σ′ · v′ · σ′′ isa normal M-frame. Let ν(σ) denote the normal form of σ with respet to therule. Note that if σ is an M-frame, then ν(σ) is a normalM-frame. Moreover,for any M-frame σ we have topM(σ) = λMeth(σ0).34

Further, for method m we de�ne Int(m) and Call(M,m), denoting the sets ofits internal edges and all edges with respet to methods in a set M , respe-tively.
Int(m) = {(v, ε, v′) | v −→m v′ ∧ v |= ¬r}

Call(M,m) = {(v,m′, v′) | v
m′

−→m v′ ∧ v |= ¬r ∧ m′ ∈M}The de�nition of the inlining algorithm uses auxiliary funtions η and ζ . Thefuntion η onsiders all edges related to a method: it returns internal andpubli all edges with renamed nodes � using the pending all stak, andalls funtion ζ on private all edges. Funtion ζ adds edges to the entrypoint, and from the return point of the private method, using the pendingall stak argument, and if neessary normalising the result (this uses the fatthat the pending all stak is always a normalised M-frame). Then it heksif the private all is non-reursive, in whih ase the private method is inlinedreursively.De�nition 42 (Inlined applet) Let A : I be an applet, and let (M,P) be apartitioning of I+ into publi and private methods, respetively. We de�ne theinlined applet
αM(A) = ((V ′, L′,→′, A′, λ′), E ′)where

• V ′ = {w ∈ V + | w is a normal M-frame},
• L′ = (I− − P) ∪ {ε},
• →′=

⋃

m∈M η(m, ǫ) where
η(m, σ) = {(v · σ, ℓ, v′ · σ) | (v, ℓ, v′) ∈ Int(m) ∪ Call(I− − P,m)}

∪
⋃

{ζ(σ, (v,m′, v′)) | (v,m′, v′) ∈ Call(P,m)}

ζ(σ, (v,m′, v′)) = {(v · σ, ε, ν(e · v′ · σ)) | e |= m′ ∧ e ∈ E}

∪ {(ν(rt · v′ · σ), ε, v′ · σ) | rt |= (m′ ∧ r)}

∪ if ¬∃i. (0 ≤ i ≤ |σ| ∧ (v′ · σ)i |= m′)

then η(m′, v′ · σ) else ∅

• A′ = M ∪ {r}

• λ′ = σ 7→ {λMeth(σ0)} ∪ if (|σ| = 1 ∧ σ0 |= r) then {r} else ∅

• E ′ = {v ∈ E | λMeth(v) ∈M}.Before disussing properties of the inlining algorithm, we �rst show an exam-ple.Example 43 Suppose we have an applet as depited in the left-hand olumn35

PSfrag replaements
m

m

aa

a

a

b

b

v0

v1, r

v2

v3, r

v4

v5 v6

v7, r

PSfrag replaements
m

m

v0

v1, r

v2 · v1
v4 · v3 · v1

v5 · v3 · v1 v6 · v3 · v1

v7 · v3 · v1

v3 · v1Figure 5. Example applet before and after inliningof Figure 5. Inlining this applet with the publi method set {m} results in theapplet depited in the right-hand olumn of Figure 5. Notie that all internaland publi all edges are preserved, while private method alls are replaedby two edges: to the entry and from the return point of the alled method,respetively.6.2.2 PropertiesWe state several useful properties of the inlining algorithm. First of all, theinlining algorithm omputes an applet having as interfae the publi interfaeof the original applet.Proposition 44 Let A : I be an applet and M ⊆ I+ a set of publi methods.Then αM(A) is an applet with interfae Î(M), i.e., αM(A) : Î(M).By Proposition 41 we thus get:
bM(αM(A)) = b(αM(A))Sine the inlining transformation αM only inlines provided methods not inM ,

αI+ is the identity operation.Proposition 45 Let A : I be an applet. Then αI+(A) = A.Finally, the inlining algorithm enjoys the following distributivity property.Proposition 46 Let A : IA and B : IB be applets suh that I+
A and I+

B aredisjoint and let MA ⊆ I+
A and MB ⊆ I+

B be sets of publi methods suh that
I−A ⊆ I+

A ∪MB and I−B ⊆ I+
B ∪MA. Then

αMA∪MB
(A ⊎ B) = αMA

(A) ⊎ αMB
(B)36

6.2.3 Simulation ResultsAs already mentioned, the interfae behaviour of the original applet is over-approximated by the inlining algorithm, i.e., every exeution of the interfaebehaviour of A is an exeution of the behaviour of αM(A). This is due to thelose orrespondene between the interfae behaviour of A and the strutureof αM(A). We provide an �inlining� transformation α′
M on the states of bM(A)by de�ning α′

M (v, σ) = (hd(γ), tl(γ)), where γ = βM(v · σ) and where βM(σ)denotes the sequene of normalised M-frames. Notie that we always have
hd(hd(γ)) = hd(v · σ). We show that α′

M is a simulation relating the originalinterfae behaviour with the inlined behaviour.Theorem 47 Let A : I be a losed applet, and let M ⊆ I+. Then bM (A) ≤
b(αM (A)).PROOF. We show by o-indution that α′

M is a simulation between bM(A)and b(αM(A)), i.e., we show that (1) the valuations of (v, σ) in bM (A) and
α′

M(v, σ) in b(αM(A)) agree, and (2) if (v, σ)
l
−→(v′, σ′) in bM(A), then we have

α′
M (v, σ)

l
−→ α′

M (v′, σ′) in b(αM(A)). The result then follows sine α′
M mapsthe entry states of bM(A) to entry states of b(αM(A)) (in fat, the entry statesoinide, and α′

M maps every entry state to itself). It is easy to hek that thevaluations agree and that the transitions are simulated. For the full proof werefer to our tehnial report [37℄. 2Notie that in general we do not have behavioural simulation equivalene. Theinlining onstrution introdues transfer edges for alls to and returns fromprivate methods. Beause of the latter, the behaviour of the inlined applet anontain a silent transition orresponding to a return from a private methodin the original applet, even when the inlined applet has not yet followed asilent transition orresponding to a all to this private method in the origi-nal applet. For instane, the exeution (v0, ε) → (v2.v1, ε) → (v4.v3.v1, ε) →

(v7.v3.v1, ε) → (v3.v1, ε) → (v6.v3.v1, ε)
m call m
−−−−→ (v0, v7.v3.v1) of the inlined ap-plet in Figure 5 does not orrespond to any exeution in the original applet.The inlining transformation thus introdues new behaviours. Notie however,that these new behaviours are only observable in applets whih are not last-allreursive.A set of methods is reursive if every method in the set ontains a (reahable)all edge to some method in the set. A all edge is reursive if the alling andthe alled methods belong to some minimal (and thus, mutually) reursivemethod set. A program is alled last-all reursive if from any destinationnode of any reursive all edge, only transfer edges are reahable. In addition,37

we shall assume that a return node is reahable from every suh destinationnode.For last-all reursive applets, we prove the reverse orrespondene for observ-able behaviours.Theorem 48 Let A : I be a losed last-all reursive applet, and let M ⊆ I+.Then b(αM(A)) ≤w b
M (A).PROOF. Consider a state (w, γ) in b(αM(A)), where λMeth(hd(w)) /∈M and

hd(w) |= r. For last-all reursive applets, the inlining transformation αM hasthe property that for any suh w, the nodes w′ suh that ν(hd(w) ·w′) = w but
hd(w) · w′ 6= w and whih are struturally reahable from w in αM(A) form(together with w) a strongly onneted omponent and are equivalent withrespet to strutural simulation. As a onsequene, in b(αM (A)), all states
(w′, γ) for a given γ also form a strongly onneted omponent and are weaksimulation equivalent. Modulo suh �return� equivalene lasses, we show byo-indution that (α′

M)−1 is a weak simulation between b(αM(A)) and bM(A).More exatly, we show that (1) the valuations of α′
M(v, σ) and (v, σ) agree,and (2) if α′

M(v, σ)
l
−→ (w′, γ′) is a transition in b(αM (A)) other than a (silent)transition within a return equivalene lass, then (v, σ)

l
⇒ (v′, σ′) in bM(A)for some v′and σ′ suh that α′

M(v′, σ′) = (w′, γ′) (in most ases we even showthe orresponding strong transition). The result then follows sine α′
M mapsentry states of b(αM(A)) to entry states of bM(A). It is easy to hek that thevaluations agree and that the transitions are simulated. For the full proof weagain refer to [37℄. 2Sine weak simulation ontains simulation we have the following.Corollary 49 Let A : I be a losed last-all reursive applet, and letM ⊆ I+.Then bM (A) ≃w b(αM (A)).6.3 Interfae Abstration and Compositional ReasoningUsing the results obtained above, we an state several veri�ation priniplesthat an be used to prove properties of applet interfae behaviour. We �rstpresent two abstration priniples, and then show how these an be ombinedwith our ompositional veri�ation priniple from Setion 5.38

6.3.1 Abstration RulesLet A : I be a losed applet, and let M ⊆ I+. With the results establishedabove, we an justify the following abstration priniple (abstrat), where ψ isa behavioural interfae formula.(abstrat) αM(A) |=b ψ

A |=M
b ψTheorem 50 Rule (abstrat) is sound.PROOF. Follows from the de�nition of behavioural satisfation, Theorem 47,Corollary 17, and the de�nition of behavioural interfae satisfation. 2When A is last-all reursive, we an even provide a faithful abstration prin-iple (weak-abstrat) for properties of the observable behaviour by using trans-formation δ mentioned in Setion 3.4.(weak-abstrat) αM(A) |=b δ(ψ)

A |=M
b,w ψTheorem 51 For last-all reursive applets A rule (weak-abstrat) is soundand omplete.PROOF. Follows from the de�nition of behavioural satisfation, Proposi-tion 20(ii), Corollary 49, Corollary 23, and the de�nition of weak behaviouralinterfae satisfation, all of whih are equivalenes. 26.3.2 Compositional ReasoningLet A :IA and B : IB be applets suh that IA ∩ IB = ∅ and let MA ⊆ I+

A and
MB ⊆ I+

B be sets of publi methods suh that I−A ⊆ I+
A∪MB and I−B ⊆ I+

B ∪MA.The latter ondition says that eah applet only alls its own methods and theothers' publi methods and implies that their omposition is losed. We om-bine the ompositional veri�ation priniple (ompos) from Setion 5 with theabstration priniple (abstrat) to obtain the following abstrat ompositionalveri�ation priniple:
(abstrat-ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b ψ

A ⊎ B |=MA∪MB

b ψNotie that the maximal model onstrution is based on the publi interfae
Î(MA) = (MA, I

−
A − (I+

A −MA)) of applet A.39

Theorem 52 Rule (abstrat-ompos) is sound.PROOF. Follows from the soundness of (abstrat) and (ompos) together withProposition 46. 2Similarly as for the abstration priniple, we an state a faithful ompositionalveri�ation priniple (weak-abstrat-ompos) for properties of the observableinterfae behaviour of applets whih are last-all reursive:
(weak-abstrat-ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψTheorem 53 Rule (weak-abstrat-ompos) is sound and omplete for last-allreursive applets A and B.Notie that rule (weak-abstrat-ompos) is also sound for applets that are notlast-all reursive: last-all reursiveness is only needed to ensure ompleteness.Our senario for seure post-issuane loading of applets is based on the ver-i�ation priniple embodied by these rules and its derivatives. In partiular,a ombined appliation of rules (weak-abstrat-ompos) and (ompos) yieldsthe rule (w(eak)-a(bstrat)-(ompos)-2), whih we apply in our ase study inSetion 8:
(wa-2) αMA

(A) |=s φ αMB
(B) |=s ξ θÎ(MA)(φ) ⊎ θÎ(MB)(ξ) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψHere, an appliation of rule (ompos) has introdued a seond maximal modelfor the publi interfae of B and strutural property ξ. Notie that this rule issound and omplete for last-all reursive applets.7 A Tool Set for Compositional Veri�ationTo support our ompositional veri�ation method, we have developed a toolset implementing the various algorithms presented above and providing trans-lations into the input formats of appropriate, existing model hekers. Figure 6gives a general overview of the tool set.As input we have for eah applet either an implementation (in Java byteode),or a strutural property, restriting its possible implementations, plus a publiinterfae, speifying the methods provided and required by the applet. Forthese inputs, we onstrut an applet representation aording to De�nition 27.40

CCS process

CWB

PDA

Model

YES/NO

YES/NO

Concrete

model

Inliner

Applet Graphs
Public

Implementation

PDA MC

Structural

Public Interface

Behavioural

specification

specification

Applet Graph

Maximal

constructor

Applet
Analyser

generator

Figure 6. Tool Set for Compositional Applet Veri�ationIn ase we have the applet implementation, we use the Applet Analyser toextrat the onrete applet graph. The Applet Analyser is a stati analysistool, built on top of the SOOT Java Optimisation Framework [12℄. The byteode of an applet is transformed into Jimple basi bloks, while abstratingaway variables, method parameters, and alls to API methods. We use SOOT'sstandard lass hierarhy analysis to produe a safe over-approximation of theall graph. If, for example, the stati analysis annot determine the reeiverof a virtual method all, a all edge is generated for every possible methodimplementation. Next we use the Inliner, whih is an Oaml implementation ofthe inlining algorithm of De�nition 42. The Inliner takes the extrated methodgraph and the publi interfae as input, and produes the graph at the publiinterfae level.In ase we have a strutural property, we use the Maximal Model Construtor.This is an Oaml implementation of the SNF transformation as de�ned in Se-tion 3.3, whih we use to onstrut maximal models. The strutural propertiesand the applet interfae are used to produe an applet graph that simulatesall possible implementations of applets respeting the formula.If required, the resulting applets an be omposed with the ⊎ operator, whihis basially a onatenation of the textual graph representations. Sine theapplet analyser appends pakage names to the method names, there are noname on�its to be resolved here. Using the Model Generator the result-ing applet graphs are translated into models whih serve as input for di�er-ent model hekers. If we want to hek strutural properties, we exploit thefat that applet graphs an be viewed as �nite Kripke strutures. Therefore,strutural properties an be expressed in temporal logis and they an beheked using standard model heking tools suh as the Conurreny Work-benh (CWB) [38℄. The Kripke strutures of the CWB are labelled transitionsystems generated from CCS proess de�nitions. For this purpose, we use theModel Generator to onvert applet graphs into a representation as CCS pro-esses. Sine CCS does not have the notion of valuation, atomi propositions
p assigned to a node in an applet are represented by probes, that is, self-loops41

labelled by p. The translation also produes a set of proess onstants orre-sponding to the entry nodes of the respetive applet. To model hek an appletgraph against a strutural safety property, all initial states have to be hekedindividually. We enode the properties to be heked as µ-alulus formulae,replaing atomi propositions p by 〈p〉 true. Sine CWB supports parametrisedformulae, our spei�ation patterns an be enoded diretly.If for a omposed system we want to verify whether it respets a behaviouralsafety property, we use the fat that the behaviour of an applet is an in�nitestate model generated by a Pushdown Automaton (PDA) given as a set ofprodution rules indued by the applet. The model heking problem for thislass of models is exponential both in the size of the formula and in the numberof ontrol states of the PDA [10℄. Ideally we would like to use an existing modelheker for PDAs (PDA MC). Unfortunately, there is urrently no e�ient toolavailable for model heking (alternation-free) modal µ-alulus properties ofPDAs. We experimented with Alfred [39℄, a demonstrator tool implementingthe model heking algorithm of Bouajjani et al. [40℄, and we are urrentlydeveloping suh a model heker.8 Case StudyTo evaluate its validity, we apply our ompositional veri�ation method toa realisti smart ard ase study, whih illustrates typial unwanted appletinterations. The appliation, an eletroni purse, has been provided by smartard produer Gemplus as a test ase for formal methods. Even though it isnot atually used by Gemplus, it demonstrates all the relevant issues relatedto smart ard appliations. In this setion, we introdue the eletroni pursease study, present the loal and global spei�ations for the di�erent applets,and desribe their veri�ation using the tool set presented above.8.1 Illiit Applet Interations in the Eletroni PurseThe Gemplus eletroni purse ase study PACAP [41℄ is developed to providea realisti ase study for applying formal methods to Java Card appliations.It de�nes three appliations: CardIssuer, Purse and Loyalty. Typially, a ardwill ontain one ard issuer and one purse applet, but several loyalty applets.The ase study has been previously used in onnetion with several otherformal tehniques. For example, funtional soure ode level spei�ationshave been given and heked with automati and interative veri�ation teh-niques [42℄. The ase study also has been used to illustrate an approah wheredi�erent privay levels are assigned to information, and model heking is used42

to ensure that the information �ow respets the restritions imposed by theseprivay levels [43℄. The property desribed in the latter work motivates theproperty we study here. However, our tehnique is more general, allowing theveri�ation of arbitrary behavioural ontrol-�ow safety properties.The property that we verify for this ase study is only onerned with Purseand Loyalty, we shall therefore not disuss CardIssuer any further. If theard holder wishes to join a loyalty program, the appropriate applet an beloaded on the ard. Subsequently, the purse and the di�erent loyalties willexhange information about the purhases made, so that the loyalty points anbe redited. Current versions of Java Card use sharable interfaes to exhangethis kind of information. Even though in the future this is likely to hange,for our tehniques to be appliable it is not relevant how this ommuniationexatly takes plae, as long as it is in terms of method alls (rather than interms of shared state). The goal of our ase study is to ensure that no illiitinterations an happen between the various applets on the ard. The ode ofthe appliation is last-all reursive, thus our veri�ation will be exat, and theinlining step will not introdue any new observable interfae behaviours. Inthis partiular ase study, we an verify orretness of the deomposition, thuswe rely only on soundness of the ompositional veri�ation priniple. However,if orretness of the deomposition ould not be veri�ed, the ompleteness forlast-all reursive applets would tell us that our loal assumption is too weak.To understand the property whih we verify here, let us look loser at how thepurse and the loyalties ommuniate about the purhases made with the ard.The eletroni purse keeps a log table of all redit and debit transations,and the loyalty applets an request the (relevant) information stored in thistable. Further, loyalties might have so-alled partner loyalties, whih meansthat a user an add up the points obtained with the di�erent loyalty programs.Therefore, eah loyalty should keep trak of its loal balane and its extendedbalane. If the user wishes to know how many loyalty points are availableexatly, the loyalty applet will ask for the relevant entries of the purse logtable in order to update its balane, and it will also ask the balanes of partnerloyalties in order to ompute the extended balane.For e�ieny reasons, the log table is of �xed length, arranged as a ring. If thelog table is full, existing entries will be replaed by new transations. In orderto ensure that loyalties do not miss any of the logged transations, they ansubsribe to the so-alled logFull servie. This servie signals all subsribedloyalties that the log table will be overwritten soon, and that therefore theyshould update their balanes. Typially, loyalties will have to pay for thisservie.Suppose we have an eletroni purse, whih ontains besides the eletronipurse itself two partner loyalties, say L1 and L2. Further, suppose that L1 has43

subsribed to the logFull servie, while L2 has not. If in reation to the logFullmessage L1 always alls an interfae method of L2 (say to ask for its balanewhen omputing the extended balane), L2 an impliitly dedue that the logtable might be full. A maliious implementation of L2 might therefore requestthe information stored in the log table before returning the value of its loalbalane to L1. If loyalties have to pay for the logFull servie, suh ontrol �owis unwanted, sine the owner of the Purse applet will not want other loyaltiesto get this information for free.This is a typial example of an illiit applet interation, that our ompositionalveri�ation tehnique an detet. Below, we show how the absene of this par-tiular undesired senario an be spei�ed and veri�ed algorithmially. We useompositional reasoning to redue the global behavioural property expressingthe absene of the senario desribed above to loal strutural properties ofthe purse and loyalty applet lasses. We assume there is only one purse ap-plet on the ard, but we allow an arbitrary number of loyalty applets on theard. However, sine all loyalty applets have the same interfae, we an applylass-based analysis, and treat all loyalty instanes in a similar way. The asestudy provides implementations for the purse and the loyalty applet. These areheked against the orresponding strutural properties. Notie that a typialuse of the ard initially only will have the purse applet installed on the ard.After the ard has been issued, new loyalty applets will be installed wheneverthe ard holder wishes to join a loyalty program. Every time a new loyalty ap-plet is installed, it will have to be veri�ed against the strutural spei�ationof the loyalty applet.8.2 Spei�ationThis setion presents the formalisation of the global and loal seurity proper-ties that we need for our example. The following setion then shows how thetool set is used for the veri�ation of the deomposition and of the implemen-tations with respet to the loal properties.8.2.1 Spei�ation PatternsSine writing spei�ations in the modal µ-alulus is known to be di�ult(even in the simulation logi fragment), we de�ne a olletion of ommonlyused spei�ation patterns (inspired by the Bandera Spei�ation Patternprojet [44℄). In our experiene, all relevant behavioural ontrol-�ow safetyproperties an be expressed using a small set of suh patterns � however, itis important to remember that one an always fall bak on the full expres-siveness of simulation logi. We present several spei�ation patterns, both at44

strutural and behavioural level, whih are all used in the ase study at hand.From now on we shall adopt the onvention of denoting strutural propertiesby σ and behavioural ones by φ.Strutural Spei�ation Patterns We shall use Everywhere with the ob-vious formalisation:
Everywhere σ = νY. σ ∧ [ε, I−]Y

= Y [Y = σ ∧ [ε, I−]Y]as well as the following patterns, for method sets M andM ′ of an applet withinterfae I:
M HasNoCallsTo M ′ = (

∧

m∈M ¬m) ∨ (Everywhere [M ′] ff)

HasNoOutsideCalls M = M HasNoCallsTo (I− −M)The �rst pattern spei�es that method graphs in the set M do not ontainedges labelled with elements of the set M ′. The seond spei�es a losed setof methods M , i.e., methods in M only ontain alls to methods in M .Behavioural Spei�ation Patterns Pattern Always is standard:
Always φ = νZ. φ ∧ [Lb]Z

= Z[Z = φ ∧ [Lb]Z]For speifying that a property φ is to hold within a all to method m, we usethe Within pattern formalised as follows:
Within m φ = ¬m ∨ (Always φ)More preisely, this pattern states that φ always holds as soon as m is alled.However, sine we do not use this pattern inside other formulae, the givendesription is orret. Notie that this is a typial behavioural pattern: thenotion of Within a method invoation enompasses all methods that mightbe invoked during the all to m. This reahability notion annot be diretlyexpressed at the strutural level.Finally, for applet A : (I+, I−) and method set M , we de�ne:

CanNotCall AM =
∧

m∈I+

∧

m′∈M

[mcall m′] ffThis pattern holds for state (v, σ) if no all to a method in M is possible.45

8.2.2 The Seurity PropertiesWe express the seurity properties at the publi level, that is, strutural prop-erties refer to the interfae abstration (i.e., inlined version) and behaviouralproperties to the interfae behaviour of applets. As mentioned above, om-muniation between applets takes plae via so-alled sharable interfaes. ThePurse applet de�nes a sharable interfae SIP for ommuniation with loy-alty applets, ontaining the methods getTransation, isThereTransation, get-InvExhangeRateIntPart and getInvExhangeRateDePart. The Loyalty ap-plet de�nes two sharable interfaes: one, SILP , for ommuniation with aPurse, ontaining the methods logFull and exhangeRate, and one, SILL, forommuniation with other loyalty applets, ontaining methods getBalane andgetDebit. If we de�ne SIL = SILP ∪ SILL, then we an identify the followingpubli interfaes: IP = (SIP , SIP ∪SIL) for Purse, and IL = (SIL, SIP ∪SIL)for Loyalty.The Global Seurity Property To guarantee that no loyalty will get theopportunity to irumvent subsribing to the logFull servie, we require thatif the Purse alls the logFull method of a loyalty, within this all the loyaltydoes not ommuniate with other loyalties. However, as the logFull method issupposed to all the Purse for its transations, we also have to exlude indiretommuniations, via the Purse. We require the following global property ofthe interfae behaviour:A all to Loyalty.logFull does not trigger any alls to any other loyalty.This property an be formalised with the help of behavioural patterns:
φ = Within Loyalty.logFull

(CanNotCall Loyalty SIL ∧ CanNotCall Purse SIL)Thus, if a loyalty reeives a logFull message, it annot all any other loyalty(beause it annot all any of its sharable interfae methods), and in addition,if the Purse is (re)ativated within the all to logFull, it annot all any loyaltyapplet.Property Deomposition We apply rule (wa-2) from Setion 6.3 andtherefore introdue loal strutural properties for the inlined versions of Purseand Loyalty. Here we explain the formalisation of the loal properties; below wedesribe how we atually verify that these are su�ient to guarantee the globalbehavioural property. Within Loyalty.logFull, the Loyalty applet has to all themethods Purse.isThereTransation and Purse.getTransation, but it shouldnot make any other external alls (where alls to sharable interfae methods46

of Loyalty are onsidered external). Notie that sine we are performing lass-based analysis, we annot distinguish between alls to interfae methods ofother instanes, and those of the same instane. Thus, a natural struturalproperty for Loyalty would be, informally:From any entry point of Loyalty.logFull, the only reahable external allsare alls to Purse.isThereTransation and Purse.getTransation.Thus, within a all to Loyalty.logFull the Purse applet an only be ati-vated via Purse.isThereTransation or Purse.getTransation. For Purse wean therefore propose the following informal strutural property:From any entry point of Purse.isThereTransation or Purse.getTransation,no edge labelled by an external all is reahable.Using the strutural spei�ation patterns, we an speify these properties asfollows.
σL = {Loyalty .logFull} HasNoCallsTo

(SIP ∪ SIL) − {Purse.isThereTransaction,Purse.getTransaction}

σP = HasNoOutsideCalls {Purse.isThereTransaction} ∧

HasNoOutsideCalls {Purse.getTransaction}Notie that these spei�ations are expressed with respet to the inlined ver-sions of the applets. Exluding external alls from a method at the publilevel is equivalent to exluding external alls from any private method thatan be alled transitively from the publi method at the implementation level- a property whih is not diretly expressible (at the implementation level) inour logi (f. Huisman et al. [30℄).8.3 Veri�ationAfter the global and loal seurity properties have been spei�ed, we have toshow that: (1) the loal properties are su�ient to establish the global seurityproperty, and (2) the implementations of the di�erent applets respet the loalproperties. In order to do this, we identify the following (independent) tasks,onsidered in detail below.(1) Verifying the orretness of the property deomposition by:(a) building θIP
(σP) and θIL

(σL), the maximal applets for σP and σL,respetively; and(b) model heking θIP
(σP) ⊎ θIL

(σL) |=b δ(φ).(2) Verifying the loal strutural properties by:47

(a) extrating the applet graphs P of the Purse and L of the Loyalty ;(b) omputing αSIP
(P) and αSIL

(L) using the inlining algorithm; and() model heking αSIP
(P) |=s σP and αSIL

(L) |=s σL.We then apply rule (wa-2) to onlude that P ⊎ L |=SIP∪SIL

b,w φ as required.8.3.1 Veri�ation of the Property DeompositionTo illustrate the proedure of onstruting a maximal applet, we present insome detail the onstrution of the maximal applet for σL; for σP the on-strution is similar. First, we write σL as a modal equation system, wherewe use lf to abbreviate Loyalty.logFull, gT for Purse.getTransation, iTT forPurse.isThereTransation, and M for (SIP ∪ SIL) − {iTT, gT}:
σL = ¬lf ∨ Y [Y = [M] ff ∧[ε, gT , iTT]Y]Next, we build the interfae formula φIL

for interfae IL (reall that the maxi-mal applet for σL is the maximal model for σL∧φIL
). For larity of presentationwe shall make here the simplifying assumption that SIL = {lf }; the atualase study has naturally been performed for the full sharable interfae. Thus

φIL
= Xlf [Xlf = [ε, lf , SIP]Xlf ∧ lf]. We then form the onjuntion σL ∧ φIL

,whih by introduing a new variable Z yields:
Z

Z = (¬lf ∨ Y) ∧Xlf

Y = [M]ff ∧ [ε, gT , iTT]Y

Xlf = [ε, lf , SIP]Xlf ∧ lf

The next step is to transform this formula into SNF. First, in Phase I ofthe transformation, eah equation is transformed into a disjuntion of statenormal forms. Suppose we start with the equation de�ning Z.(1) Make equation strongly guarded, by rewriting with the original equations:
Z = (¬lf ∨ ([M] ff ∧[ε, gT , iTT]Y)) ∧ [ε, lf , SIP]Xlf ∧ lf(2) Put equation into DNF and simplify:

Z = [M] ff ∧[ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf(3) Group and omplete boxes. No boxes are missing, thus we only groupthem (remember M = (SIP ∪ SIL) − {gT , iTT} = (SIP ∪ {lf }) −
{gT , iTT}):

Z = [M] ff ∧[ε, gT , iTT](Y ∧Xlf) ∧ lf48

(4) Introdue new equations for formulae under boxes. Sine the map h doesnot yet ontain an entry for {Y,Xlf }, we hoose a fresh variable U andadd ({Y,Xlf }, U) to h. The equation de�ning Z beomes
Z = [M] ff ∧[ε, gT , iTT]U ∧ lfwhile we introdue the new equation U = Y ∧Xlf .(5) Finally, omplete the equation by adding missing literals and put theformula into DNF again. Here, only literal r is missing. Adding this gives:

Z = ([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ r)∨

([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ ¬r)The equations de�ning Y and Xlf are handled in a similar way. The only stepthat has some e�et is step 5, whih introdues the missing literal r. Moreinteresting is how Phase I is applied to the new equation U = Y ∧Xlf .(1) Rewriting into strongly guarded form yields:
U = [M] ff ∧[ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf(2) Formula φU is already in DNF and annot be simpli�ed.(3) Grouping boxes results in the following equation:

U = [M] ff ∧[ε, lf , SIP](Y ∧Xlf) ∧ lf(4) The map h ontains the pair ({Y,Xlf }, U), so we replae Y ∧Xlf by U .
U = [M] ff ∧[ε, gT , iTT]U ∧ lf(5) Literal ompletion again introdues r.

U = ([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ r)∨

([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ ¬r)After applying Phase I to all equations, Phase II introdues a new equationfor eah disjunt and replaes eah old variable by the disjuntion of the newvariables. For example, the equation de�ning U gets replaed by:
U1 = [M] ff ∧[ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M] ff ∧[ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬rThe remaining equations are treated similarly. Notie that also Z in X getsreplaed by {Z1, Z2}, where Z1 and Z2 are the equations replaing Z.49

(a) (b) (c)

PSfrag replaements
gT , iTT , ε

gT , iTT , ε gT , iTT , ε

gT , iTT , ε

lf v1v1v1

v2v2v2 lf , r

m

m, r

SIL, SIP , ε

SIL, SIP , ε
SIL, SIP , ε

SIL, SIP , ε
iTT

iTT , ε

iTT , ε iTT , ε

iTT , ε

iTT , r

Figure 7. Maximal applets for σL and σPDuring the optimisation in Phase III, we �nd that the equations for Z1 and U1,and Z2 and U2 are dupliates of eah other. Therefore, we remove the equationsfor Z1 and Z2, and replae {Z1, Z2} in X by {U1, U2}. Further, the equations
Y1, Y2, Xlf 1 and Xlf 2 (replaing Y and Xlf in Phase II), are not reahable fromany variable in X = {U1, U2}. Hene, the �nal result is (U1 ∨ U2)[Σ], where

Σ =

U1 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬r

The spei�ation extrated from this modal equation system (whih is in sim-ulation normal form) is the maximal applet θIL
(σL) for σL. It is shown inFigure 7(a). The method graph has two nodes; both of them are entry pointsof the method, but only one is labelled as a return point. The edges are labelledonly with internal ations and alls to getTransation and isThereTransation.As mentioned above, in the omputation above we simpli�ed SIL to {lf}. Ifwe do the omputation for the omplete shareable interfae SIL, we �nd thatfor all other methods m in SIL, the method graph is a maximal method graphwithout restritions, as in Figure 7(b). If we do the same omputation for

σP , we �nd the method graph for isThereTransation in the maximal modelfor the Purse as in Figure 7(), i.e., the method an only all itself or makeinternal transitions. The method graph for getTransation is similar, withall edges labelled with getTransation or ε, while the method graphs for theother methods provided by the Purse are maximal method graphs, withoutany restritions.Using our implementation of the maximal model onstrution in Oaml, om-puting the maximal applets for σL and σP takes less than a seond. Table 2shows the relevant information.One the maximal applets θIP
(σP) and θIL

(σL) are onstruted, we produetheir omposition θIP
(σP)⊎θIL

(σL), and we use the Model Generator to trans-late the applet graph to a PDA representation, serving as input to a PDAmodel heker. 50

θIL
(σL) θIP

(σP)#nodes 8 8#edges 120 88onstr. time 0.05 s. 0.05 s.Table 2Size and timing for maximal applet onstrution
#lasses #methods #nodes #edges extr.time inlinetime mod.gen.tim

e
verif.timeLoyalty 11 237 3 782 4 372 5.6 se. 0.6 se. 2.8 se. 10.1 se.Purse 15 367 5 882 7 205 7.5 se. 0.6 se. 0.6 se 3.6 se.Table 3Statistis on applet graph extration and veri�ation.8.3.2 Corretness of the Loal Strutural PropertiesWe use the Applet Analyser to extrat applet graphs and the appropriate setof entry points from the byte ode of the loyalty and purse implementations.Table 3 provides statistis on the extrated applet graphs.Next, we applied the implementation of the inlining algorithm to the extratedapplet graphs, whih took 0.6 seonds on both Loyalty and Purse. Sine theapplets are last-all reursive, the inlining does not introdue any new observ-able interfae behaviours. Even though theoretially the worst-ase blowupin the number of nodes of the inlined applets, determined by the number ofnormal M-frames, is exponential in the number of private methods, in pra-tie this is not likely to happen. In our ase, we even observed a redutionin size of the graphs due to the following two fats: �rst, the all dependenygraph is sparse and, seond, the inlining fouses on interation between ap-plets, and thus any ode that is not reahable by a shareable interfae methodis abstrated away by the inlining (as it is not relevant to the property we areinterested in).Finally, we used the Model Generator to translate the inlined applet graphsinto input for CWB, and we veri�ed the strutural properties. Table 3 alsoprovides statistis for the model generation and veri�ation time.Remark Initially, we did not distinguish between publi and private meth-ods when we performed the ase study (see [30℄). This gave signi�ant per-51

formane problems: the maximal applets ontained implementations for (andalls to) all private methods as well, whih resulted in huge strutures. More-over, without the distintion between publi and private methods we had toompute the transitive losure of method alls to be able to express the loalstrutural spei�ations, whih resulted in a non-robust spei�ation: for ex-ample splitting a private method into two would break the loal spei�ation.Adding the distintion between publi and private methods thus resulted ina oneptually leaner ompositional veri�ation method, with a drastiallyimproved performane.9 ConlusionWe have developed a ompositional veri�ation method for sequential pro-grams with proedures. The method is partiularly suited for supporting theseure dynami loading of applets onto smart ards and other smart de-vies, but dynamially reon�guring distributed systems based on remoteproedure all ommuniation also provides a suitable appliation area forthe method. Using our veri�ation method, seure dynami loading an beahieved through the following senario:(1) Speify global seurity property φ (at strutural or behavioural publilevel).(2) For any initially unavailable applet A with publi interfae I ontainingpubli methods M , speify a loal spei�ation σA (at strutural publilevel).(3) Compute a maximal applet θI(σA), and verify that this maximal applet,omposed with the inlining of the already available applets B (with publimethods N) satis�es φ, i.e., verify θI(σA) ⊎ αN(B) |= φ. This establishesthe orretness of the deomposition.(4) When applet A beomes available, ompute its abstration αM(A) byinlining its private methods, and verify that this abstration respets theloal spei�ation, i.e., αM(A) |= σA.Notie that we restrit attention to ontrol-�ow safety properties. We haveshown appliability of this approah on an industrial ase study. To supportthe above senario, we have developed the following theoretial ontributions:(1) a logial haraterisation of simulation, and vie versa, a behaviouralharaterisation of logial satisfation (for safety properties) in terms ofmaximal models;(2) adaptation of the maximal model tehnique to proedural programs;(3) a sound and omplete ompositional veri�ation method for proeduralprograms; and 52

(4) a behaviour-preserving inlining transformation of proedural programs.Future work The program model whih forms the basis for our analyses israther abstrat. We are urrently investigating how to extend our tehniquesto �ner program models. In partiular, we are onsidering program modelsapturing multi-threading and exeptions. Our ompositional veri�ation prin-iple remains valid, as long as the notions of struture and behaviour (and theorresponding notions of simulation and logi) an be extended so that theneessary tehnial onditions still apply. However, the veri�ation problemfor the global behavioural property beomes undeidable in the presene ofmulti-threading [45℄ (when onsidering the same primitives as in e.g., Java),thus appropriate abstration tehniques have to be employed for this task(as proposed in e.g., [46,47,48℄). A further extension of signi�ant interest isadding data to the program model, so that a more preise ontrol �ow an bemodelled, and properties over data an be spei�ed. This requires again the useof appropriate abstrations in order to retain deidability of the veri�ationproblems.In priniple, our veri�ation tehnique an be extended to more expressivelogis, for example to the full modal µ-alulus. However, adding diamondmodalities and least �xed-point reursion to the logi requires a more generalnotion of model (and hene applet strutures and behaviours) in the frame-work; for example, see [26,49℄ for suh models and orresponding maximalmodel onstrutions.Further, we are investigating under what restritions one an onstrut max-imal applets for behavioural properties, thus extending the method to dealwith loal behavioural properties. The approah we take is to de�ne a transla-tion from behavioural properties into olletions of strutural properties, suhthat any applet that is simulated by a maximal applet for one of the stru-tural properties satis�es the original behavioural one. Preliminary results inthis diretion are presented in [11℄.Referenes[1℄ Common Criteria.URL http://www.ommonriteriaportal.org[2℄ G. Chugunov, L. Fredlund, D. Gurov, Model heking of multi-applet JavaCardappliations, in: Smart Card Researh and Advaned Appliation Conferene(CARDIS '02), USENIX Publiations, 2002, pp. 87�95.53

[3℄ J. Esparza, D. Hansel, P. Rossmanith, S. Shwoon, E�ient algorithms for modelheking pushdown systems, in: Computer Aided Veri�ation (CAV '00), Vol.1855 of LNCS, Springer Verlag, 2000, pp. 232�247.[4℄ F. Besson, T. Jensen, D. L. Métayer, T. Thorn, Model heking seurityproperties of ontrol �ow graphs, Journal of Computer Seurity 9(3) (2001)217�250.[5℄ R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, M. Yannakakis,Analysis of reursive state mahines, ACM TOPLAS 27 (2005) 786�818.[6℄ O. Grumberg, D. Long, Model heking and modular veri�ation, ACMTOPLAS 16(3) (1994) 843�871.[7℄ G. Barthe, D. Gurov, M. Huisman, Compositional veri�ation of seure appletinterations, in: Fundamental Approahes to Software Engineering (FASE '02),Vol. 2306 of LNCS, Springer Verlag, 2002, pp. 15�32.[8℄ D. Kozen, Results on the propositional µ-alulus, Theoretial Computer Siene27 (1983) 333�354.[9℄ A. Bouajjani, J. Fernandez, S. Graf, C. Rodriguez, J. Sifakis, Safety forbranhing time semantis, in: Automata, Languages and Programming (ICALP'91), Vol. 501 of LNCS, Springer Verlag, 1991, pp. 76�92.[10℄ O. Burkart, D. Caual, F. Moller, B. Ste�en, Veri�ation on in�nite strutures,in: J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Proess Algebra, NorthHolland, 2000, pp. 545�623.[11℄ D. Gurov, M. Huisman, Reduing behavioural to strutural properties ofprograms with proedures, Teh. Rep. TRITA-CSC-TCS 2007:3, KTH RoyalInstitute of Tehnology, Stokholm, available online atURL http://www.s.kth.se/∼dilian/Papers/tehrep-07-3.pdf (2007).[12℄ R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot - aJava Optimization Framework, in: CASCON '99, 1999, pp. 125�135.URL http://www.sable.mgill.a/soot/[13℄ A. Lal, T. W. Reps, Improving pushdown system model heking, in: ComputerAided Veri�ation (CAV '06), Vol. 4144 of LNCS, Springer Verlag, 2006, pp.343�357.[14℄ R. Alur, K. Etessami, P. Madhusudan, A temporal logi for nested alls andreturns, in: Tools and Algorithms for the Analysis and Constrution of Software(TACAS '04), Vol. 2998 of LNCS, Springer Verlag, 2004, pp. 467�481.[15℄ R. Alur, M. Arenas, P. Barelo, K. Etessami, N. Immerman, L. Libkin, First-order and temporal logis for nested words, in: Logi in Computer Siene (LICS'07), IEEE Computer Soiety, Washington, DC, USA, 2007, pp. 151�160.[16℄ W.-P. d. Roever, F. d. Boer, U. Hannemann, J. Hooman, Y. Lakhneh,M. Poel, J. Zwiers, Conurreny Veri�ation: Introdution to Compositionaland Nonompositional Methods, No. 54 in Cambridge Trats in TheoretialComputer Siene, Cambridge University Press, 2001.54

[17℄ K. Laster, O. Grumberg, Modular model heking of software, in: Proeedings ofthe 4th International Conferene on Tools and Algorithms for Constrution andAnalysis of Systems (TACAS '98), Vol. 1384 of LNCS, Springer Verlag, 1998,pp. 20�35.[18℄ R. Alur, R. Grosu, Modular re�nement of hierarhi reative mahines, ACMTOPLAS 26 (2004) 339�360.[19℄ O. Ly, Compositional veri�ation: Deidability issues using graph substitutions,in: Proeedings of the 29th Mathematial Foundations of Computer Siene(MFCS '04), Vol. 3153 of LNCS, Springer Verlag, 2004, pp. 537�549.[20℄ H. Andersen, Partial model heking (extended abstrat), in: Logi in ComputerSiene (LICS '95), IEEE Computer Soiety Press, 1995, pp. 398�407.[21℄ O. Kupferman, M. Vardi, An automata-theoreti approah to modular modelheking, ACM TOPLAS 22 (1) (2000) 87�128.[22℄ G. Boudol, K. Larsen, Graphial versus logial spei�ations, TheoretialComputer Siene 106 (1992) 3�20.[23℄ K. Larsen, Modal spei�ations, in: Automati Veri�ation Methods for FiniteState Systems, Vol. 407 of LNCS, Springer Verlag, 1989, pp. 232�246.[24℄ M. Hennessy, R. Milner, Algebrai laws for nondeterminism and onurreny,Journal of the ACM 32 (1985) 137�161.[25℄ D. Dams, K. Namjoshi, The existene of �nite abstrations for branhing timemodel heking, in: Nineteenth Annual IEEE Symposium on Logi in ComputerSiene (LICS '04), IEEE Computer Soiety Press, 2004, pp. 335�344.[26℄ D. Dams, K. Namjoshi, Automata as abstrations, in: Veri�ation, ModelCheking, and Abstrat Interpretation (VMCAI '05), Vol. 3385 of LNCS,Springer Verlag, 2005, pp. 216�232.[27℄ M. Goldman, S. Katz, MAVEN: Modular aspet veri�ation, in: Tools andAlgorithms for the Constrution and Analysis of Systems (TACAS '07), Vol.4424 of LNCS, Springer Verlag, 2007, pp. 308�322.[28℄ C. Sprenger, D. Gurov, M. Huisman, Compositional veri�ation for seureloading of smart ard applets, in: Formal Methods and Models for Co-Design(MEMOCODE '04), IEEE Computer Soiety, 2004, pp. 211�222.[29℄ D. Gurov, M. Huisman, Interfae abstration for ompositional veri�ation,in: Software Engineering and Formal Methods (SEFM '05), IEEE ComputerSoiety, 2005, pp. 414�423.[30℄ M. Huisman, D. Gurov, C. Sprenger, G. Chugunov, Cheking absene of illiitapplet interations: a ase study, in: Fundamental Approahes to SoftwareEngineering (FASE '04), Vol. 2984 of LNCS, Springer Verlag, 2004, pp. 84�98.[31℄ H. Beki£, De�nable operators in general algebras, and the theory of automataand �owharts, Teh. rep., IBM Laboratory (1967).55

[32℄ C. Stirling, Modal and Temporal Logis of Proesses, Springer Verlag, 2001.[33℄ A. Tarski, A lattie-theoretial �xpoint theorem and its appliations, Pai�Journal of Mathematis 5 (1955) 285�310.[34℄ A. Arnold, D. Niwi«ski, Rudiments of µ-alulus, Vol. 146 of Studies in Logiand the Foundations of Mathematis, Elsevier Publishing, 2001.[35℄ I. Walukiewiz, Pushdown proesses: games and model heking, in: ComputerAided Veri�ation (CAV '96), Vol. 1102 of LNCS, 1996, pp. 62�75.[36℄ C. Sprenger, D. Gurov, M. Huisman, Simulation logi, applets and ompositionalveri�ation, Teh. Rep. RR-4890, INRIA (2003).[37℄ D. Gurov, M. Huisman, Abstration over publi interfaes, Teh. Rep. RR-5330,INRIA (2004).[38℄ R. Cleaveland, J. Parrow, B. Ste�en, A semantis based veri�ation tool for �nitestate systems, in: International Symposium on Protool Spei�ation, Testingand Veri�ation, North-Holland Publishing Co., Amsterdam, The Netherlands,The Netherlands, 1990, pp. 287�302.[39℄ D. Polanský, Verifying properties of in�nite-state systems, Master's thesis,Masaryk University, Faulty of Informatis, Brno (2000).[40℄ A. Bouajjani, J. Esparza, O. Maler, Reahability analysis of pushdownautomata: Appliation to model-heking, in: International Conferene onConurreny Theory (CONCUR '97), Vol. 1243 of LNCS, 1997, pp. 135�150.[41℄ E. Bretagne, A. E. Marouani, P. Girard, J.-L. Lanet, PACAP purse and loyaltyspei�ation, Teh. Rep. V 0.4, Gemplus (2000).[42℄ C. Breunesse, N. Cataño, M. Huisman, B. Jaobs, Formal methods for smartards: an experiene report, Siene of Computer Programming 55 (1-3) (2005)53�80.[43℄ P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, G. Zanon, Cheking seureinterations of smart ard applets, Journal of Computer Seurity 10 (4) (2002)369�398.[44℄ J. Corbett, M. Dwyer, J. Hatli�, Robby, A language framework for expressinghekable properties of dynami software, in: International SPIN Workshop onSPIN Model Cheking and Software Veri�ation, Vol. 1885 of LNCS, SpringerVerlag, 2000, pp. 205�223.[45℄ G. Ramalingam, Context-sensitive synhronization-sensitive analysis isundeidable, ACM TOPLAS 22 (2) (2000) 416�430.[46℄ A. Bouajjani, J. Esparza, T. Touili, A generi approah to the stati analysis ofonurrent programs with proedures, SIGPLAN Notes 38 (1) (2003) 62�73.[47℄ A. Bouajjani, J. Esparza, S. Shwoon, J. Strej£ek, Reahability analysis ofmultithreaded software with asynhronous ommuniation, in: Foundations ofSoftware Tehnology and Theoretial Computer Siene (FSTTCS '05), Vol.3821 of LNCS, Springer Verlag, 2005, pp. 348�359.56

[48℄ S. Qadeer, J. Rehof, Context-bounded model heking of onurrent software,in: Tools and Algorithms for the Constrution and Analysis of Systems (TACAS'05), Vol. 3440 of LNCS, Springer Verlag, 2005, pp. 93�107.[49℄ I. Aktug, D. Gurov, State spae representation for veri�ation of open systems,in: Algebrai Methodology And Software Tehnology (AMAST '06), Vol. 4019of LNCS, Springer Verlag, 2006, pp. 5�20.

57

