
Compositional Veri�
ation of SequentialPrograms with Pro
eduresDilian Gurov a,1, Marieke Huisman b,2, Christoph Sprenger c,3

aKTH, Sto
kholm, Sweden
bINRIA Sophia Antipolis, Fran
e

cETH Zuri
h, SwitzerlandAbstra
tWe present a method for algorithmi
,
ompositional veri�
ation of
ontrol-�ow-based safety properties of sequential programs with pro
edures. The appli
ationof the method involves three steps: (1) de
omposing the desired global propertyinto lo
al properties of the
omponents, (2) proving the
orre
tness of the prop-erty de
omposition by using a maximal model
onstru
tion, and (3) verifying thatthe
omponent implementations obey their lo
al spe
i�
ations. We
onsider safetyproperties of both the stru
ture and the behaviour of program
ontrol �ow. Our
ompositional veri�
ation method builds on a te
hnique proposed by Grumberg andLong that uses maximal models to redu
e
ompositional veri�
ation of �nite-stateparallel pro
esses to standard model
he
king. We present a novel maximal model
onstru
tion for the fragment of the modal µ-
al
ulus with boxes and greatest �xedpoints only, and adapt it to
ontrol-�ow graphs modelling
omponents des
ribed ina sequential pro
edural language. We extend our veri�
ation method to programswith private pro
edures by de�ning an abstra
tion, presented as an inlining transfor-mation. All algorithms have been implemented in a tool set automating all requiredveri�
ation steps. We validate our approa
h on an ele
troni
 purse
ase study.Key words: program veri�
ation,
ontrol-�ow behaviour,
ompositional reasoning,modal µ-
al
ulus, safety properties, maximal model, private pro
eduresEmail addresses: dilian�nada.kth.se (Dilian Gurov),marieke.huisman�sophia.inria.fr (Marieke Huisman),
hristoph.sprenger�inf.ethz.
h (Christoph Sprenger).
1 Corresponding author. This author's work was partially funded by the SEFROSproje
t of the Swedish Resear
h Coun
il VR, and by the IST FP6 programme of theEC, under the IST-FP6-STREP-27004 S3MS proje
t.
2 This work was funded in part by the IST programme of the EC, FET under theIST-2005-015905 MOBIUS proje
t.
3 This work was partially supported by the Zuri
h Information Se
urity Center. ItPreprint submitted to Elsevier S
ien
e 1st May 2008

1 Introdu
tionMotivation Over the last years,
omputer systems have be
ome in
reasinglydynami
: they are
omposed of various
ommuni
ating
omponents that
anjoin the system or be put together dynami
ally. Typi
al examples are mobilesmart devi
es (mobile phones, smart
ards, television set top boxes, PDAset
.) and dynami
ally re
on�guring distributed systems. When allowing thedynami
 addition of new
omponents, one wishes to ensure that this will nothave any negative impa
t on the global behaviour of the system. In parti
ularwhen the system
ontains priva
y-sensitive information, as is for example the
ase for smart
ards
ontaining health
are information or ele
troni
 purses,strong se
urity guarantees are required. With the a

eptan
e of evaluations
hemes su
h as Common Criteria (see [1℄), industry has
ome to realise thatthe way to a
hieve su
h high guarantees is to adopt the use of formal methodsin industrial pra
ti
e.The te
hniques developed here are appli
able in any
ontext
on
erned withinterpro
edural
ontrol-�ow properties of
omponents
ommuni
ating via pro-
edure
alls. Interesting properties of su
h
omponents in
lude for exampletype safety, memory
onsumption, and illi
it data or
ontrol �ow. Here we
on
entrate on the last
ategory of properties. More pre
isely, we study sequen-tial (i.e., single-threaded) programs and propose a spe
i�
ation and veri�
a-tion method for safety properties of inter-pro
edural
ontrol �ow, i.e., prop-erties des
ribing safe sequen
es of pro
edure invo
ations. Typi
al examplesof
ontrol-�ow safety properties are: �m1 never
alls m2�, �m1 is never
alledwhen m2 is
alled�, �m1 is only
alled afterm2 is
alled�, and �m1 is only
alledfrom within m2� (see Chugunov et al. [2℄ for a formalisation).So far, most resear
h on formal veri�
ation in this area has fo
used on the
orre
tness or se
urity of a single program
omponent (e.g., [3,4,5℄). However,in the
ontext of mobile
ode we also need te
hniques to support veri�
ationof systems for whi
h it is not known in advan
e what its
omponents willbe. In su
h situations one needs
ompositional veri�
ation te
hniques, thatis te
hniques where one states minimal requirements for the
omponents that
an be
ome available later, and then veri�es (at loading time) that the
ompo-nents a
tually respe
t these requirements. Only then, existing
omponents
ansafely
ommuni
ate with new
omponents, without
orrupting the
orre
tnessor se
urity of the whole system. In parti
ular, su
h te
hniques
an support these
ure post-issuan
e loading of new appli
ations onto smart devi
es. To avoidfalse negatives, i.e., reje
ting
omponents that are a
tually se
ure, su
h
om-positional veri�
ation te
hniques should not only be sound, but also
omplete.Completeness is also
ru
ial to avoid typi
al so
ial engineering atta
ks, whererepresents the views of the authors. 2

the devi
e user gets so frustrated with the system repeatedly reje
ting new
omponents, that he/she will simply a

ept all, without a
tually inspe
tingwhether they passed veri�
ation or not.Approa
h Our veri�
ation method is
ompositional : it allows global guar-antees of a system to be veri�ed even if the implementations of some
ompo-nents are not yet available at veri�
ation time. This is a
hieved by abstra
tingthe missing
omponents by logi
al assumptions. These assumptions
an beveri�ed later, when the implementations be
ome available. Su
h a veri�
ationapproa
h is embodied by the following proof prin
iple:
⊢ A : φ X : φ ⊢ X ⊗ B : ψ

⊢ A⊗B : ψwhere A and B are
omponents, and X is a
omponent variable. This prin
ipleredu
es the problem of showing that the
omposition of
omponents A and Bsatis�es ψ, where the implementation of A is not yet known, to three tasks:(1) de
ompose the global property ψ by �nding a suitable lo
al property φof
omponent A,(2) prove
orre
tness of the de
omposition, i.e., verify that for any
ompo-nent X satisfying φ, X
omposed with B satis�es ψ (se
ond premise),and(3) when the implementation of A be
omes available, verify that it satis�esthe lo
al property φ (�rst premise).Noti
e that this rule
an be applied repeatedly, to repla
e several
omponentsby assumptions.The
ompositionality of the method supports di�erent s
enarios for se
ure
on�guration of
omponents on a devi
e (or platform), where the tasks above
an potentially be delegated to di�erent authorities. In one su
h s
enario, thedevi
e issuer (or platform provider) spe
i�es both the global guarantee (e.g., ase
urity poli
y) and the lo
al assumptions, and veri�es � using the te
hniquesdes
ribed in this paper � that the de
omposition is
orre
t, meaning that thelo
al spe
i�
ation is su�
ient to establish the global spe
i�
ation. Ea
h timea new
omponent is to be added (i.e., loaded on the devi
e), an algorithmprovided by the devi
e issuer
he
ks whether the
omponent implementationsatis�es the required spe
i�
ation. An alternative s
enario is that the devi
eissuer only provides the global guarantee (and lo
al assumptions for its own
omponents), and leaves it to the
omponent provider to
ome up with anappropriate lo
al spe
i�
ation for ea
h
omponent to be added. As in theprevious s
enario, an algorithm provided by the devi
e issuer
he
ks the
om-ponent against the lo
al spe
i�
ation upon loading, but now also the propertyde
omposition needs to be veri�ed at loading time, potentially on-devi
e.3

Task (1) above is a manual one and requires insight into the system, whilethe other two
an be automated in our approa
h. We show how Task (2)and Task (3)
an be algorithmi
ally redu
ed to problems for whi
h standardalgorithmi
 te
hniques exist.The approa
h that we take to handle Task (2) is inspired by the pioneeringwork on automati
 modular veri�
ation by Grumberg and Long [6℄. To
he
kwhether X : φ |= X ⊗ B : ψ holds we repla
e X by a maximal model θ(φ)and then verify |= θ(φ) ⊗ B : ψ algorithmi
ally. The maximal model θ(φ)represents all models satisfying φ in the sense that it simulates exa
tly thosemodels and thus satis�es pre
isely the properties enjoyed by all these models.For this te
hnique to be sound and appli
able it is required that maximalmodels exist for the
hosen logi
 and simulation relation, ⊗ preserves simu-lation, and logi
al properties are preserved by simulation. In earlier work [7℄,we explored dedu
tive veri�
ation of
orre
tness of de
ompositions based on aproof system. The logi

onsidered there was more expressive, but the intera
-tive nature of the approa
h required
onsiderable time and expertise from theuser, rendering the approa
h less preferable in many situations as
omparedto algorithmi
 solutions like the one presented here.We are interested in safety properties of both the stru
ture and the behaviourof programs. Sin
e the same behaviour
an be brought about by di�erentstru
tures, a behavioural property language allows properties to be expressedin a more abstra
t fashion. However, as a rule, behavioural properties require
omputationally more expensive veri�
ation te
hniques. Still, they
an oftenbe (equivalently) reformulated on the stru
tural level, with the advantage ofallowing more e�
ient veri�
ation. To support both kinds of properties, wedistinguish between a stru
tural and a behavioural level of programs. Bothstru
ture and behaviour are
ast via the abstra
t notion of model (or la-belled Kripke stru
ture). Then, stru
tural properties are interpreted over the(�nite-state)
ontrol-�ow graphs themselves, while behavioural properties areinterpreted over the (in�nite-state) behaviours indu
ed by the stru
tures. Thelogi
 we employ to express su
h properties is a modal logi
 with box modalitiesand simultaneous greatest �xed points (written in equational form), whi
h isexpressively equivalent to the fragment of the modal mu-
al
ulus with boxmodalities and greatest �xed points only [8℄. The fragment is known to beadequate for expressing safety properties (
f. [9℄). Be
ause of the
lose rela-tionship between logi
al satisfa
tion and simulation between models, and the
ompositional properties of simulation, this logi
, whi
h for
onvenien
e weterm simulation logi
, is parti
ularly suitable for
ompositional veri�
ationvia maximal models. We instantiate simulation logi
 and simulation at boththe stru
tural and the behavioural levels.The methods provided by an applet are frequently implemented using inter-nal, private methods. Sin
e the private methods
annot be expe
ted to be4

known before the applet is implemented, we introdu
e publi
 interfa
es, whi
hhide private methods. A

ordingly, the (publi
) interfa
e behaviour of an ap-plet abstra
ts from (internal)
alls to the private methods of an applet. Tohandle Task (3) for programs with private pro
edures, we de�ne an inliningtransformation that re
ursively inlines all
alls to private pro
edures. Thistransformation over-approximates the interfa
e behaviour, and redu
es thetask to showing that the inlined program respe
ts property φ. For the latter,we apply standard algorithmi
 veri�
ation te
hniques.Contributions The main
ontribution of the present paper is a sound and
omplete
ompositional veri�
ation prin
iple for sequential programs with pro-
edures, for properties expressed in simulation logi
, and its adaptation toprograms with private pro
edures. In more detail, the
ontributions are asfollows.(1) Program Model.Most of the existing work on
ompositional model
he
k-ing fo
uses on the veri�
ation of parallel
ompositions of �nite-state pro-
esses. We extend
ompositional model
he
king to an important
lass ofin�nite-state programs, namely sequential programs with pro
edures. Inthe rest of this paper, we refer to programs as applets and to pro
eduresas methods, but we would like to stress that our te
hnique is appli
able tomany di�erent kinds of programs with pro
edures. We represent appletsas
olle
tions of method
ontrol-�ow graphs equipped with interfa
es ofprovided and required methods. Applet
omposition forms the disjointunion of the respe
tive
olle
tions of method graphs and allows the
om-posed applets to
ommuni
ate via method invo
ation. Applets
orrespondto a sub
lass of pushdown pro
esses, with potentially in�nite-state be-haviour (
f. Burkart et al. [10℄).(2) Maximal Model Constru
tion. We establish a logi
al
hara
terisation ofthe standard notion of simulation between models and, vi
e versa, abehavioural
hara
terisation of logi
al satisfa
tion in terms of maximalmodels. In parti
ular, we present a novel maximal model
onstru
tion,
onsisting of a step-wise transformation of the formula into a semanti-
ally equivalent normal form, whi
h is isomorphi
 to a maximal modelfor the formula. In
ontrast to more expressive logi
s, the maximal mod-els for simulation logi
 formulae are representable as standard transitionsystems. To the best of our knowledge, this is the �rst maximal model
onstru
tion for (a variant of) the modal µ-
al
ulus, whi
h in
ludes thefull expressive power of simultaneous greatest �xed points.(3) Maximal Applet Constru
tion. When tailoring the maximal model te
h-nique to applets, we require that the maximal model for a given propertyis itself an applet. This is ne
essary for
ompleteness of the te
hnique.Sin
e the veri�
ation of |= θ(φ)⊗B : ψ is de
idable in our setup,
omplete-ness guarantees that if the veri�
ation of the
orre
tness of de
omposition5

fails, there is indeed an applet F among the set of models su
h that Fsatis�es φ but F ⊗ B does not satisfy ψ. Completeness is thus essentialin that it eliminates the possibility of false negatives. Therefore, in
ase
|= θ(φ) ⊗ B : ψ fails, we know that we have to strengthen φ and iteratethe pro
ess.To adapt the maximal model te
hnique to stru
tural properties, we �rstgive a logi
al
hara
terisation of interfa
es by de�ning, for a given inter-fa
e I a stru
tural formula φI whi
h is satis�ed exa
tly by those mod-els representing applet stru
tures with this interfa
e, and then de�nethe maximal applet for a given interfa
e I and stru
tural property φ by
θI(φ) = θ(φI ∧ φ). Sin
e θ(φI ∧ φ) satis�es both φ and φI , this guaran-tees that the resulting maximal model is indeed an applet stru
ture withinterfa
e I satisfying the stru
tural formula φ.However, for behavioural properties there is in general no unique max-imal applet: di�erent applets, in
omparable by simulation, might existthat satisfy the same property. It is ongoing work to investigate underwhat
onditions and how this
olle
tion of maximal applets
an be
har-a
terised exa
tly. Preliminary results in this dire
tion are presented byGurov and Huisman in [11℄.(4) Compositional Veri�
ation. Our
hara
terisation results, together withresults linking the stru
tural and behavioural levels, give rise to a
om-positional veri�
ation prin
iple of the shape suggested above, where theglobal guarantee
an be either stru
tural or behavioural, but the lo
alassumptions are always stru
tural. We establish the soundness and
om-pleteness of the prin
iple, and adapt existing algorithmi
 te
hniques fordealing with the resulting veri�
ation sub-tasks.(5) Interfa
e Abstra
tion. We extend our
ompositional veri�
ation methodto interfa
e properties of applets, i.e., properties of the interfa
e be-haviour. We de�ne an abstra
tion whi
h redu
es the set of methods of agiven applet to the set of its publi
 methods, while over-approximatingthe interfa
e behaviour of the applet. This abstra
tion is based on inliningof private methods. We show the abstra
tion to be sound with respe
t tointerfa
e properties: every interfa
e property that holds for the behaviourof the inlined applet also holds for the interfa
e behaviour of the originalapplet. Sin
e the abstra
tion transformation may introdu
e new interfa
ebehaviours,
ompleteness, on the other hand, does not hold in general.However, for the
ase when the
on
rete implementation is last-
all re-
ursive (that is, re
ursive
alls are not followed in the
ontrol-�ow graphby any other method
alls), the abstra
tion te
hnique is
omplete withrespe
t to observable interfa
e properties: if su
h a property does nothold of the inlined applet it does not hold of the original applet either.Last-
all re
ursion is a generalisation of the notion of tail re
ursion, wherere
ursive
alls are the last statements of their methods. In pra
ti
e, forindustrial
ode it is very
ommon to be last-
all re
ursive.(6) Tool support and real-life
ase study. To support our
ompositional veri-6

�
ation te
hnique, we have developed a tool set. This tool set integratesour own implementations in O
aml of the maximal applet
onstru
tionand the inlining algorithm with an implementation of a model extra
-tor, build on top of the SOOT framework [12℄, and a number of externalmodel
he
king tools. We have validated this tool set on an industrial
ase study, namely an ele
troni
 purse smart
ard applet for whi
h wehave veri�ed the absen
e of
ertain illi
it
ontrol �ows between Purseand Loyalty applets. In parti
ular, we ensured that di�erent Loyalty ap-plets on the
ard
annot
ommuni
ate information about the transa
tionlog table � that is needed to
orre
tly
ompute the points in the loyaltyprogram � among themselves, instead they all need to register (and pay)to get this information dire
tly from the Purse. In this
ase study, theinlining te
hnique proved to be an essential ingredient that enabled the
ompositional veri�
ation of the otherwise too large model.Our
ontributions span the
omplete spe
trum from the theoreti
al underpin-nings of the
ompositional applet veri�
ation te
hnique (our prin
ipal
ontri-bution) to its support by a tool set and its appli
ation to an industrial
asestudy.Related Work The work presented here is related to several di�erent re-sear
h areas.Program Model. The program model used in the present paper has been in-spired by the work of Besson et al. [4℄, who verify sta
k properties for Javaprograms. Typi
ally, the behaviour of programs with re
ursion is modelled asPushdown Automata (as, e.g., in [3,13℄).Re
ursive state ma
hines were introdu
ed by Alur et al. [5℄ as a formalism
apable of modelling the
ontrol �ow of sequential imperative programs
on-taining re
ursive pro
edure
alls. This program model is
losely related to ourown, but is �ner in that
alls and returns relate individual entry and returnnodes, thus allowing the e�e
t of data to be modelled. The authors develope�
ient algorithms for (global) model
he
king of re
ursive state ma
hinesagainst LTL and CTL* properties, and investigate their
omplexity.Temporal Logi
. Related to the above program models is the temporal logi
of
alls and returns CaRet proposed by Alur et al. [14℄. This logi
 allows tospe
ify properties in terms of method
alls and returns, thus in
reasing the ex-pressiveness of temporal logi
 while retaining de
idability of model
he
king.A spe
ial veri�
ation strategy is de�ned, that is able to �jump over� internal
omputations. An extension of this logi
 was re
ently presented by Alur etal. [15℄. Among other modalities, it introdu
es the useful �within� modality,whi
h is not expressible in simulation logi
. While these logi
s may be more ad-7

equate than simulation logi
 for spe
ifying behavioural properties of programswith pro
edures, they would (arguably) require more involved te
hniques for
ompositional veri�
ation.Compositional Veri�
ation. There is a wealth of methods for
ompositionalveri�
ation of
on
urrent programs, most notably assumption/
ommitmentbased reasoning about pro
esses with syn
hronous message passing, and therely/guarantee method for shared-variable
on
urren
y. A systemati
 overviewof these and related proof methods, some of whi
h have been adapted tosupport algorithmi
 veri�
ation is given by De Roever et al. [16℄. However,these te
hniques do not address programs with re
ursive pro
edures.Laster and Grumberg [17℄ present a
ompositional method for sequential pro-grams written in a high-level While language (without pro
edures). Their te
h-nique partitions the program text into a sequen
e of sequentially
omposedsubprograms, whi
h
an be model
he
ked individually using assumptions onthe properties holding at the
ut points.Alur and Grosu [18℄ present an assume-guarantee style
ompositional veri�
a-tion prin
iple for a hierar
hi
 extension of rea
tive state ma
hines. However,their approa
h does not address programs with re
ursion.Ly [19℄ also proposes a
ompositional method for de
iding
ontrol-�ow proper-ties of pro
edural programs based on lo
al stru
tural assumptions and globalbehavioural guarantees. The author generalises our de
idability results tomonadi
 se
ond-order logi
 for programs whose
ontrol-�ow graphs have abounded tree-width. To the best of our knowledge, so far this approa
h hasnot been implemented in a tool.The method of partial model
he
king introdu
ed by Andersen [20℄ is basedon a redu
tion pro
edure that removes the top-level operator from a pro
essalgebra term and
omputes a new property for the redu
ed term. To verifythat the produ
t P ×Q of two pro
esses has some property φ, the redu
tion�divides� the property φ by Q to yield φ/Q, whi
h
an be e�e
tively
omputedonly if Q is �nite.Maximal Models for Compositional Veri�
ation. The original maximal modelte
hnique by Grumberg and Long [6℄ was designed for ACTL, the universalfragment of CTL, and later extended to ACTL*, the universal fragment ofCTL*, by Kupferman and Vardi [21℄. These works study syn
hronous par-allel
ompositions of sequential pro
esses under fairness assumptions. Sin
ewe are interested in safety properties of sequential programs, we do not needto add fairness to our models. Simulation logi
 and ACTL* are expressivelyin
omparable: liveness properties su
h as GFp (�in�nitely often p�) are ex-pressible in ACTL*, but not in simulation logi
, while the µ-
al
ulus formula
νX. p ∧ [−][−]X (�p holds on every other level of the
omputation tree�) is8

easily translated to simulation logi
 (whi
h is in equational form), but is notexpressible in ACTL*. Our transformational approa
h to the maximal model
onstru
tion is
loser to an implementation than the automata-theoreti

on-stru
tions in the
ited papers, sin
e it already in
ludes
ertain optimisations,e.g., removal of dupli
ate and unrea
hable equations.Chara
terisation results
onne
ting logi
s and behavioural preorders similarto ours are des
ribed by Boudol and Larsen [22℄ (see also [23℄), who
on-stru
t maximal models in the form of modal transition systems with respe
tto the re�nement preorder for Hennessy-Milner logi
 (HML) [24℄. Simulationlogi
 and HML are expressively in
omparable: existential properties are notexpressible in simulation logi
, while
o-re
ursive properties (su
h as invari-ants) are not expressible in HML. Sin
e HML does not in
lude �xed points,the
onstru
ted maximal models are essentially �nite forests. Apart from theabsen
e of diamond modalities in simulation logi
, our
onstru
tion
an beseen as an extension of Larsen and Boudol's with greatest �xed points. Theextension of HML with greatest �xed points (or, equivalently, simulation logi
with diamond modalities) requires more general models than modal transitionsystems: a �nite maximal modal transition system does not exist for all for-mulae of this logi
. This is shown by Dams and Namjoshi [25℄, who introdu
efo
us transition systems, generalising modal transition systems, in order to
onstru
t linear-size maximal models for properties expressed by alternatingtree automata (thus subsuming the full modal µ-
al
ulus). In [26℄ the sameauthors propose to dire
tly use µ-automata obtained from modal µ-
al
ulusformulae as maximal models, for whi
h they de�ne an appropriate notion ofsimulation. All natural extensions of simulation logi
 require models with morestru
ture than transition systems to
apture maximal models. In our work, wewere interested in safety properties, for whi
h simulation logi
 and transitionsystems are an appropriate
hoi
e.Bouajjani et al. [9℄ de�ne maximal models for a
o-re
ursive modal logi
 ex-pressing safety properties. Their logi
 has an expressive power similar to ours,but is somewhat less standard as it in
ludes a
onne
tive
orresponding tonon-deterministi

hoi
e.A more re
ent appli
ation of the maximal model te
hnique is presented byGoldman and Katz [27℄ in the
ontext of modular veri�
ation of aspe
ts. While
lose in spirit to our veri�
ation prin
iple, the prin
iple presented by the au-thors is for a more
ompli
ated
omposition operator. The prin
iple is basedon the maximal model of the aspe
t property (whi
h is not ne
essary a legalaspe
t behaviour) and is therefore sound, but not
omplete.Organisation The paper is stru
tured as follows. First, Se
tion 2 presentsthe theoreti
al foundation for our work: it de�nes the models and logi
 that9

we
onsider, together with appropriate notions of simulation and satisfa
tion.Next, Se
tion 3 presents our novel maximal model
onstru
tion, and showshow logi
al satisfa
tion of a formula is equivalent to simulation by the
orre-sponding maximal model. Se
tion 4 then dis
usses how our results instantiateto applets, at stru
tural and at behavioural level, and Se
tion 5 presents the
ompositional veri�
ation prin
iple. Se
tion 6 presents the inlining abstra
tionthat we use to be able to verify interfa
e properties over applets with privatemethods. Finally, Se
tions 7 and 8 illustrate how our approa
h is implementedas a tool set and is applied to an industrial
ase study, while Se
tion 9 draws
on
lusions and presents future work.This paper is a
ombination and extension of several results presented earlier.The maximal model
onstru
tion and
ompositional veri�
ation prin
iple arepresented in [28℄. The abstra
tion te
hnique for applets with private methodsis presented in [29℄. The
ase study was presented in [30℄, but without takingthe di�eren
e between publi
 and private methods into a

ount.2 Models, Simulation and Logi
This se
tion des
ribes the theoreti
al foundation for our treatment of
ontrol-�ow stru
ture and behaviour of programs with re
ursive pro
edures. First, wede�ne the (abstra
t) models that we study, together with the standard notionof simulation. Further, we de�ne the logi
 that we use to express our programproperties. Finally, we transfer all these notions to the so-
alled weak setting,where not all a
tions are observable.2.1 Model and SimulationFirst we de�ne models, spe
i�
ations and simulation. These notions are stan-dard up to some minor variations.De�nition 1 (Model, Spe
i�
ation) A model is a stru
ture M = (S, L,→
, A, λ), where S is a set of states, →⊆ S×L×S is a labelled transition relationwith labels taken from L, and λ : S → P(A) is a valuation assigning to ea
hstate a set of atomi
 propositions taken from A. A spe
i�
ation S is a pair
(M, E), where M is a model and E ⊆ S is a set of entry states.The rea
hable part of a spe
i�
ation S = (M, E) is de�ned by R(S) =
(M′, E), where M′ is obtained from M by deleting all states and transitionsnot rea
hable from any entry state in E.Example 2 Figure 1 shows the graphi
al representation of the spe
i�
ation10

PSfrag repla
ements
s1 s2

s3

p, q p

ε

ε

a
a

aFigure 1. Example spe
i�
ation S = (M, E)

S = (M, E), where M = ({s1, s2, s3}, {a, ε},→, {p, q}, {s1 7→ {p, q}, s2 7→
{p}, s3 7→ ∅}) with → = {(s1, ε, s2), (s2, a, s1), (s2, a, s3), (s3, a, s1), (s3, ε, s2)}and E = {s1, s2}. As usual, entry states are depi
ted through additional in-
oming edges without sour
e.De�nition 3 (Simulation) A simulation is a binary relation R on S su
hthat whenever (s, t) ∈ R then λ(s) = λ(t), and whenever s a

−→ s′ then thereis some t′ ∈ S su
h that t a
−→ t′ and (s′, t′) ∈ R. We say that t simulates s,written s ≤ t, if there is a simulation R su
h that (s, t) ∈ R.Simulation on two modelsM1 andM2 is de�ned as simulation on their disjointunion M1⊎M2. The transitions of M1⊎M2 are de�ned by ini(s)

a
−→ ini(s

′) if
s

a
−→ s′ in Mi and its valuation by λ(ini(s)) = λi(s), where ini (for i ∈ {1, 2})inje
ts Si into S1 ⊎ S2. Simulation is extended to spe
i�
ations (M1, E1) and

(M2, E2) by de�ning (M1, E1) ≤ (M2, E2) if there is a simulation R on M1⊎
M2 su
h that for ea
h s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R.Spe
i�
ation S1 is simulation equivalent to S2, written S1 ≃ S2, if S1 ≤ S2 and
S2 ≤ S1. We extend disjoint union to spe
i�
ations (by (M1, E1)⊎(M2, E2) =
(M1 ⊎M2, E1 ⊎E2)) and show that simulation is preserved by disjoint union.Theorem 4 If S1 ≤ T1 and S2 ≤ T2 then S1 ⊎ S2 ≤ T1 ⊎ T2.2.2 Simulation Logi
We de�ne simulation logi
 in two steps: �rst we de�ne a basi
 modal logi
, andthen we add re
ursion by means of equation systems. This results in a logi
that is equally expressive as the modal µ-
al
ulus with boxes and greatest �xedpoints only (
f. Beki£ [31℄). However, the use of equation systems fa
ilitatesthe de�nition of a normal form, where the
orresponden
e between formulaeand spe
i�
ations is immediate. In parti
ular, this allows to
ompute maximalmodels by transforming the equations into this normal form.Let V be a
ountably in�nite set of propositional variables. Basi
 simulationlogi
 is a variant of Hennessy-Milner logi
 [24℄ without diamond modalities:

φ ::= ff | tt | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ11

where p ∈ A, a ∈ L and X ∈ V. The interpretation ‖φ‖ρ of a basi
 formula
φ is de�ned with respe
t to a model M and an environment ρ interpretingthe propositional variables. The de�nition is standard (
f. Stirling [32℄); inparti
ular, for the box modality we have s ∈ ‖[a]φ‖ρ if and only if for all t ∈ Ssu
h that s a

−→ t we have t ∈ ‖φ‖ρ. Formulae like p or ¬p are
alled literals.We use n-ary versions of
onjun
tion and disjun
tion, setting ∨

∅ = ff (false)and ∧

∅ = tt (true). As usual, for �nite K ⊆ L, we write [K]φ for ∧

a∈K [a]φand [−]φ for [L]φ.To make the logi
 expressive enough to
hara
terise all �nite models, we fol-low Larsen [23℄ and add re
ursion to basi
 simulation logi
 by introdu
ingmodal equation systems. A modal equation system Σ is a �nite set of de�ningequations of the shape X = φX , where X is a propositional variable and φXis a formula of basi
 simulation logi
. The de�ned variables X are pairwisedistin
t and bound in Σ, while all other variables are free. For a simpler pre-sentation, we restri
t our attention here to
losed equation systems withoutfree variables.Sin
e the
onsidered equations systems are
losed, it is su�
ient to work withenvironments ρ : bv(Σ) → P(S) mapping the bound variables of Σ to setsof states. The equations in Σ indu
e a map ΨΣ : P(S)bv(Σ) → P(S)bv(Σ) onsu
h environments ρ de�ned by ΨΣ(ρ)(X) = ‖φX‖ρ. A solution of Σ is anenvironment ρ su
h that all equations in Σ are satis�ed (that is, ΨΣ(ρ) =
ρ), and is thus a �xed point of ΨΣ. Environments are ordered by point-wisein
lusion. The semanti
s of a modal equation system Σ with respe
t to amodel M, denoted ‖Σ‖, is its greatest solution. By the Knaster-Tarski �xedpoint theorem [33℄ a greatest solution always exists, sin
e ΨΣ is a monotonefun
tion on the
omplete latti
e of environments ordered by point-wise setin
lusion.De�nition 5 (Simulation Logi
) A (
losed) formula of simulation logi
has the shape φ[Σ], where φ is a formula of basi
 simulation logi
 and Σis a (
losed) modal equation system su
h that all variables o

urring in φare bound in Σ. The semanti
s of φ[Σ] with respe
t to model M is de�nedby ‖φ[Σ]‖ = ‖φ‖‖Σ‖. We say a spe
i�
ation (M, E) satis�es φ[Σ], written
(M, E) |= φ[Σ], if E ⊆ ‖φ[Σ]‖.Example 6 Consider the formula φ = (X ∨ Y)[Σ], where

Σ =







X = [ε]Y ∧ [a]X ∧ p

Y = [ε] (X ∧ Y) ∧ ¬q





 .Let us determine the semanti
s of this formula with respe
t to the spe
i�
ation
S in Figure 1. The greatest �xed point ‖Σ‖ of ΨΣ with respe
t to S
an be
omputed in the standard way by iteration of ΨΣ starting with ρ0 = {X 7→12

S, Y 7→ S}, where S = {s1, s2, s3}. This yields ‖Σ‖ = {X 7→ {s1}, Y 7→ {s2}}.So, E = ‖X ∨ Y ‖‖Σ‖ = {s1, s2}, and hen
e spe
i�
ation S satis�es φ.Hen
eforth, we often omit the equation system Σ from φ[Σ] if no
onfusion
an arise. We say that φ1 is a logi
al
onsequen
e of φ0, written φ0 ⊑ φ1, iffor all spe
i�
ations S, S |= φ0 implies S |= φ1. The formula φ0 is logi
allyequivalent to φ1, written φ0 ≡ φ1, if φ0 ⊑ φ1 and φ1 ⊑ φ0.Simulation logi
 is equally expressive as the modal µ-
al
ulus [8℄ without dia-mond modalities and least �xed points. The translation from this fragment ofthe modal µ-
al
ulus to simulation logi
 is straightforward and repla
es ea
h�xed point by an equation. As an example, the formula νX.p1∧(νY.X∧[a] (p2∨
Y)) is translated into the equivalent formulaX[X = p1∧Y, Y = X∧[a] (p2∨Y)]of simulation logi
. The translation in the other dire
tion is based on Beki£'sprin
iple (
f. [34,31℄), whi
h expresses a �xed point in a produ
t latti
e interms of a ve
tor of
omponent-wise �xed points.2.3 Weak Simulation and Logi
Often, one is only interested in the observable behaviour of systems. To a
hievethis, one
an identify a distinguished a
tion ε ∈ A,
alled the silent a
tion,and de�ne weak transitions s a

⇒ t in terms of the usual (strong) transitions asfollows: s ε
⇒ t whenever s(ε

−→)∗t, and s a
⇒ t whenever s ε

⇒
a
−→

ε
⇒ t for all a 6= ε.Weak simulation ≤w (weak simulation equivalen
e ≃w) is then de�ned as sim-ulation (simulation equivalen
e) with respe
t to weak transitions. Similarly,we
an interpret the box modality of simulation logi
 over the weak transitionsrather than the strong transitions of models. To distinguish the two interpre-tations, we shall rede�ne the notion of satisfa
tion and write S |=w φ in that
ase. Thus, S |=w [a]φ holds if and only if all states that
an be rea
hed fromsome entry state of S by a transition labelled a, pre
eded and followed by anarbitrary number of ε-steps, satisfy φ.Example 7 Consider again the spe
i�
ation in Figure 1. Then (M, {s1}) |=w

[ε] p, but not (M, {s3}) |=w [a] q, sin
e s3
a
⇒ s2 but s2 does not satisfy theatomi
 proposition q.3 Representation ResultsThis se
tion relates simulation logi
 to simulation by de�ning two mappings,

χ and θ. The mapping χ translates ea
h �nite spe
i�
ation into a formula,while θ translates formulae into (�nite) spe
i�
ations. The latter map is �rst13

de�ned on formulae in so-
alled simulation normal form (SNF), and is thenextended to all formulae by showing how any formula
an be transformed intoan equivalent one in SNF. We show that χ logi
ally
hara
terises simulationand θ behaviourally
hara
terises logi
al satisfa
tion. These two maps forma Galois
onne
tion between �nite spe
i�
ations ordered by simulation andformulae ordered by logi
al
onsequen
e. Similar results for somewhat di�erentsettings appear in [22,23,9℄. In this paper, we present a novel pro
edure to
onstru
t maximal models, whi
h is similar to the
onstru
tion by Boudol andLarsen [22℄, but handles greatest �xed points. In
ontrast to
onstru
tions forother bran
hing-time logi
s [6,21℄, we do not dire
tly build the model, butpro
eed by a step-wise transformation of the formula into an equivalent onein SNF, whi
h is isomorphi
 to the desired maximal model. Moreover, unlikein
onstru
tions for more expressive logi
s [25,26℄, our maximal models arerepresentable as standard transition systems. To the best of our knowledge,this is the �rst maximal model
onstru
tion for a fragment of the modal µ-
al
ulus in
luding the full expressive power of greatest �xed points.3.1 Chara
teristi
 FormulaeFirst we de�ne the mapping from �nite spe
i�
ations to formulae. A �nitespe
i�
ation (M, E) is translated into its
hara
teristi
 formula χ(M, E) =
φE[ΣM], where φE =

∨

s∈E Xs and ΣM de�nes Xs for ea
h s ∈ S by
Xs =

∧

a∈L

[a]







∨

s
a

−→t

Xt





 ∧
∧

p∈λ(s)

p ∧
∧

q∈A−λ(s)

¬qRe
all that ∨

∅ = ff (false) and ∧

∅ = tt (true).Example 8 Consider the spe
i�
ation S displayed in Figure 1. Its
hara
ter-isti
 formula is χ(S) = (Xs1
∨Xs2

)[Σ], where
Σ =















Xs1
= [a] ff ∧ [ε]Xs2

∧ p ∧ q

Xs2
= [a] (Xs1

∨Xs3
) ∧ [ε] ff ∧ p ∧ ¬q

Xs3
= [a]Xs1

∧ [ε]Xs2
∧ ¬p ∧ ¬q















.

We have a variation of an earlier result by Larsen [23℄, stating that spe
i�-
ation S1 is simulated by the �nite spe
i�
ation S2 whenever S1 satis�es the
hara
teristi
 formula of S2.Theorem 9 Let S1, S2 be spe
i�
ations and suppose S2 is �nite. Then S1 ≤
S2 if and only if S1 |= χ(S2). 14

Note that using in�nite equation systems this theorem generalises to �nitelybran
hing S2.3.2 Maximal ModelsThe next step is to de�ne the inverse mapping. Not all formulae
orresponddire
tly to a spe
i�
ation, but those in simulation normal form do.De�nition 10 (Simulation normal form) A formula φ[Σ] of simulationlogi
 is in simulation normal form (SNF) if φ has the form ∨

X for some�nite set X ⊆ bv(Σ) and all equations in Σ are in the following state normalform
X =

∧

a∈L

[a]
(

∨

YX,a

)

∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬qwhere ea
h YX,a ⊆ bv(Σ) is a �nite set of variables and ea
h BX ⊆ A is a setof atomi
 propositions.Noti
e that any
hara
teristi
 formula χ(S) is in SNF. From a formula (
∨

X)[Σ]in SNF we derive the spe
i�
ation θ((
∨

X)[Σ]) = ((S, L,→, A, λ), E) where
S = bv(Σ), E = X and, for ea
h X ∈ bv(Σ), the equation for X indu
es thetransitions {X a

−→ Y | Y ∈ YX,a} and the valuation λ(X) = BX .Lemma 11 χ and θ are ea
h others inverse up to equivalen
e, that is,(1) θ(χ(S)) ∼= S for �nite S (where ∼= denotes isomorphism), and(2) χ(θ(φ)) ≡α φ for φ in SNF (where ≡α denotes α-
onvertibility).Here, isomorphism means a label-and-valuation-preserving bije
tion betweenthe respe
tive states and transitions.For φ in SNF, the spe
i�
ation θ(φ) is amaximal model of φ with respe
t to thesimulation preorder, in the sense that it simulates exa
tly those spe
i�
ationsthat satisfy formula φ.Theorem 12 For φ in SNF, we have S ≤ θ(φ) if and only if S |= φ.PROOF. Follows from Theorem 9 by Lemma 11(2). 23.3 Transformation to SNFWe now present a step-wise transformation of any simulation logi
 formulainto a logi
ally equivalent formula in SNF. Before des
ribing the transforma-15

tion in detail, we introdu
e some auxiliary notions. First, we use a slightlynon-standard variant of disjun
tive normal form: we say that a formula φof basi
 simulation logi
 is in disjun
tive normal form (DNF) if it is a dis-jun
tion of
onjun
tions of box formulae and literals, i.e., it has the shape
φ =

∨

i(
∧

j [aij]ψij ∧
∧

Li) where Li are sets of literals and ψij arbitrary formu-lae in basi
 simulation logi
. Furthermore, the
onjun
tive de
omposition c(ψ)of a formula ψ into its
onjun
ts is given by c(ψ) = {ψ1, . . . , ψm} su
h that no
ψi is a
onjun
tion and ψ =

∧

i ψi (modulo asso
iativity and
ommutativity).Note that c(tt) = ∅. The elements of c(ψ) are
alled
onjun
tive
omponentsof ψ.We
all an o

urren
e of a subformula top-level if it is not under the s
ope ofa box operator. We say that Y is unguarded in φX , written X ⊲ Y , if thereis a top-level o

urren
e of Y in φX . A modal equation system Σ (or formula
φ[Σ]) is weakly guarded if the relation ⊲ is a
y
li
, and strongly guarded if ⊲ isempty.Example 13 Consider the modal equation system

Σ =







X = [a]X ∨ (q ∧ Y)

Y = [b] (X ∧ [a]Y) ∧ p





Variable X is guarded in φX (the only o

urren
e of X is under the s
ope ofa box operator), but Y is not (it o

urs on the top-level). Both X and Y areguarded in φY . Hen
e, ⊲ = {(X, Y)} being a
y
li
 but not empty, Σ is weaklyguarded but not strongly guarded.Any weakly guarded formula
an be transformed into a strongly guarded oneby repeatedly rewriting ea
h unguarded o

urren
e of a variable by its de�ningequation. Moreover, using a result of Walukiewi
z [35℄ we
an also show thatany formula of simulation logi

an be transformed into an equivalent weaklyguarded one (and thus into a strongly guarded one).After these auxiliary de�nitions, we are ready to present the transformation.It
onsists of three phases:Phase I transforms ea
h equation into a disjun
tion of formulae in state nor-mal form, where only single variables appear under modalities,Phase II splits top-level disjun
tions in ea
h equation into a set of new equa-tions, one for ea
h disjun
t, yielding an equation system in state normalform, andPhase III is an optimisation phase removing unrea
hable and redundantequations.The transformation into SNF uses a partial fun
tion h that keeps tra
k how16

sets of formulae are mapped to variables. This map avoids the repeated in-trodu
tion of new equations for the same formula, whi
h is essential for thetermination of the transformation. If h maps a set of formulae Ψ to variable
X, this means that an equation X =

∧

Ψ (su
h that c(∧ Ψ) = Ψ) has beenintrodu
ed earlier and that variable X should be used instead of introdu
ingany further equation for ∧

Ψ.Before going into the details, let us illustrate the basi
 ideas on a simpleexample. A more elaborate transformation example appears in Se
tion 8.3.1.Example 14 Let φ = [b] ff ∧ p be interpreted as a formula over L = {a, b}and A = {p}. This formula holds for spe
i�
ations, where ea
h initial statesatis�es p and has no outgoing b transition. We �rst translate φ to (
∨

X0)[Σ0]with X0 = {X} and Σ0 = {X = [b] ff ∧ p}. In the following, the numbers inparentheses refer to the transformation steps detailed below.The equation for X is already strongly guarded (I.1) and in DNF (I.2). Next,we add the missing box [a] using the equivalen
e tt ≡ [a] tt (I.3), yielding
X = [a] tt ∧ [b] ff ∧ p. In the next step (I.4), we introdu
e new variables forthe formulae under the boxes: Y = tt and Z = ff. This is re
orded in h withtwo new entries: (∅, Y) (sin
e tt =

∧

∅) and ({ff}, Z). The equation for Xbe
omes
X = [a]Y ∧ [b]Z ∧ pwhi
h is already in state normal form. We pro
eed with Y = tt. Again, the �rststep with an e�e
t adds the missing boxes (I.3), produ
ing Y = [a] tt ∧ [b] tt.Next, sin
e c(tt) = ∅ and h(∅) = Y , we know that Y stands for tt, so werepla
e the subformulae tt under the boxes by Y , yielding Y = [a]Y ∧ [b] Y . Toget a disjun
tion of state normal forms, we add the missing literals in positiveand negative form, yielding

Y = ([a]Y ∧ [b] Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p).The third equation Z = ff (= ∨

∅) is already a (trivial) disjun
tion of statenormal forms. Note that X remains un
hanged in Phase I. Thus, at the endof Phase I we have the following equation system.
Σ =















X = [a]Y ∧ [b]Z ∧ p

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b] Y ∧ ¬p)

Z = ff













Next, Phase II splits ea
h top-level disjun
tion into a set of new equationsand substitutes the disjun
tion of new variables for the original variable. Con-
retely, all o

urren
es of Y are repla
ed by Y1 ∨ Y2 and Z = ff (= ∨

∅) is17

PSfrag repla
ements
Y1 Y2

X

p

p

aa

a, b a, b
a, b

a, b

Figure 2. Maximal model for φ = [b]ff ∧ psubstituted ba
k into φX , yielding
Σ =















X = [a] (Y1 ∨ Y2) ∧ [b] ff ∧ p

Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p

Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p













Sin
e X is not split into several equations, X = {X} remains un
hanged.Phase III is the identity transformation in this example as there are no un-rea
hable or dupli
ate equations. Thus, the �nal result is X[Σ], whi
h is insimulation normal form. The derived maximal model θ(X[Σ]) is displayed inFigure 2. Indeed, it simulates exa
tly all those spe
i�
ations where ea
h initialstate satis�es p and has no outgoing b transition.We now des
ribe the a
tual transformation in detail. We assume without lossof generality that the initial formula has the shape X0[Σ0], where Σ0 is weaklyguarded (sin
e any formula
an be transformed into a weakly guarded one).We initialise X = {X0}, Σ = Σ0 and h = ∅.Phase I (Disjun
tion of state normal forms)This phase transforms ea
h equation into a disjun
tion of formulae in statenormal form. Its steps are applied on
e to ea
h equation in
luding the newones introdu
ed in step I.4 below.(1) (Strong guardedness) Make equation strongly guarded by repeated rewrit-ing of unguarded o

urren
es of variables using the original system Σ0.(2) (DNF) Put equation into disjun
tive normal form and remove in
onsis-tent disjun
ts (those where ff or both p and ¬p appear).(3) (Box grouping and
ompletion) Group boxes together using [a]φ1∧[a]φ2 ≡
[a] (φ1 ∧ φ2) and add missing boxes to ea
h disjun
t using tt ≡ [a] tt su
hthat there is a box formula for ea
h a ∈ L. The resulting equation shapeis

X =
∨

i

(
∧

a∈L

[a]ψia ∧
∧

Li)(4) (Modal depth redu
tion) Apply the following to ea
h top-level box sub-formula [a]ψia where ψia is not a variable. If (c(ψia), Y) ∈ h for some18

variable Y then repla
e [a]ψia by [a]Y ; otherwise,
hoose a fresh variable
Z 6∈ bv(Σ), add the new equation Z = ψia to Σ, repla
e [a]ψia by [a]Zand extend h to h ∪ {(c(ψia), Z)}. The equation shape is then

X =
∨

i

(
∧

a∈L

[a]Zia ∧
∧

Li)(5) (Literal
ompletion) Repla
e equation X = φ by X = φ ∧
∧

p∈A(p ∨ ¬p),then repeat step (2) to put equation ba
k into DNF. The equation shapeis (for Bi ⊆ A)
X =

∨

i

(
∧

a∈L

[a]Zia ∧
∧

p∈Bi

p ∧
∧

q∈A−Bi

¬q)Note that step (I.4) might introdu
e unguarded o

urren
es of variables inthe newly added equations. Thus, the rewriting step (I.1) is needed to bringthese equations into strongly guarded form. For the termination of Phase I, itis
ru
ial to use the original equation system Σ0 and not the
urrent Σ in thisstep, be
ause this limits the set of subformulae introdu
ed by the rewriting tothose already o

urring in Σ0. This in turn guarantees that subsequent modaldepth redu
tions in step (I.4) eventually �nd already existing variables for thesubformulae under the box operator.Phase II (Push disjun
tions inside)This phase eliminates the top-level disjun
tions by introdu
ing a new equationfor ea
h disjun
t, thus pushing these disjun
tions under box modalities. It isapplied on
e to ea
h equation in Σ.(1) Remove an equation of shape X =
∨n

i=1 φi with n 6= 1 from Σ; note thatthis in
ludes the
ase X = ff (for n = 0).(2) Add a new equation Xi = φi for ea
h non-variable disjun
t φi and sub-stitute ∨n
i=1Xi for X in all equations of Σ (where Xi is either identi
alto φi or Xi is the fresh variable introdu
ed for φi).(3) If X ∈ X then repla
e X by (X − {X}) ∪ {X1, . . . , Xn}.The resulting equation is in state normal form.Phase III (Optimisation)This optimisation phase iteratively removes unrea
hable and dupli
ate equa-tions.(1) Remove equations Z = ψ from Σ in
ase Z
an not be rea
hed from anyvariable in X via variable dependen
ies (X depends on Y if Y o

urs in

φX). 19

(2) If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ su
h that ψ1[Z1/Z2] =
ψ2[Z1/Z2], then remove Z2 = ψ2 from Σ and substitute Z1 for Z2 in theremaining equations as well as in X .Theorem 15 The algorithm above terminates and transforms any formula

φ of simulation logi
 into an equivalent formula snf(φ) in simulation normalform.PROOF. (Sket
h; full proof in [36℄) Let Xi, Σi and hi denote the values of
X , Σ and h after i transformation steps. We
on
entrate in this sket
h onPhase I, whi
h preserves the following two invariants:J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡ Y [Σ0], andJ2. if (Ψ, Z) ∈ hi then Ψ ⊆ Ψ0, where Ψ0 is de�ned as the set of
onjun
tive
omponents of subformulae appearing under some box modality in Σ0, thatis, Ψ0 =

⋃

{c(ψ) | ∃a. [a]ψ is a subformula of Σ0}.Preservation of the semanti
s by the transformation steps follows from J1 andthe fa
t that X is
onstant in Phase I. To see that Phase I terminates, note�rst that step I.1 terminates, be
ause Σ0 is weakly guarded (by assumption)and all steps preserve weak guardedness. Overall non-termination of Phase Idue to the introdu
tion of equations in step I.4 is ruled out by J2: sin
e Ψ0 is�nite, the map h eventually �lls up and thus Phase I terminates. 2We extend the mapping θ to all formulae of simulation logi
 by de�ning θ(φ) =
θ(snf(φ)). Sin
e snf preserves the semanti
s, Theorem 12
an be extended toall formulae, showing that θ(φ) is the maximal model of φ with respe
t to thesimulation preorder.Theorem 16 S ≤ θ(φ) if and only if S |= φ.We
on
lude with two important
onsequen
es of Theorems 9 and 16. The�rst one is that simulation preserves logi
al properties.Corollary 17 S1 ≤ S2 and S2 |= φ imply S1 |= φ.The se
ond
orollary expresses that the maps χ and θ form a Galois
onne
tionbetween the preorder (S,≤) of (isomorphism
lasses of) �nite spe
i�
ationsordered by simulation and be the preorder (L,⊑) of formulae of simulationlogi
 ordered by logi
al
onsequen
e.Corollary 18 χ and θ are monotone and, for �nite spe
i�
ations S, S ≤ θ(φ)if and only if χ(S) ⊑ φ. 20

3.4 Representation results for weak simulationA natural question is whether the results of the previous subse
tion
an be usedto relate weak simulation and simulation logi
 in the same way as simulationand simulation logi
 are related by the transformation θ (and its adjoint map
χ). Note that applying θ on a formula of simulation logi
 interpreted over weaktransitions would only give us a model in terms of weak transitions, withoutthe underlying strong transitions. However, there is a standard translation offormulae interpreted over weak transitions into equivalent formulae interpretedover strong transitions [32℄. This translation, let us denote it by δ, is easilyadapted to our setting. It has the property that S |=w φ exa
tly when S |=
δ(φ). We show that θ ◦ δ provides the desired transformation relating weaksimulation and simulation logi
.To this end, we �rst introdu
e the notion of saturated model, i.e., a modelin whi
h s a

−→ t whenever s a
⇒ t. We show that for all formulae φ, θ (δ (φ)) issimulation equivalent to its saturation, and therefore it is su�
ient for a modelto be weakly simulated by θ (δ (φ)) in order to satisfy φ when interpreted overweak transitions.De�nition 19 (Saturation) Let M = (S, L,→, A, λ) be a model. The sat-uration of M is the model sat(M) = (S, L,→s, A, λ) in whi
h s a

−→s t exa
tlywhen s a
⇒ t for all a. The saturation of a spe
i�
ation (M, E) is the spe
i�-
ation sat(M, E) = (sat(M), E).Thus, sat(M) is the least saturated model with respe
t to the subset orderingon the powerset of S×L×S,
ontaining M. For instan
e, in the model givenin Figure 1 above, we have to add the transition s1

a
−→ s3 and ε-self-loops tosaturate the model. We have s a

⇒s t in sat(S) whenever s a
−→s t in sat(S)whenever s a

⇒ t in S. As
onsequen
es, we have the following properties ofweak simulation and simulation logi
.Proposition 20 We have(i) S1 ≤w S2 i� S1 ≤ sat(S2), and(ii) S |=w φ i� sat(S) |=w φ i� S |= δ(φ).Lemma 21 sat(θ (δ (φ))) ≃ θ (δ (φ)).PROOF. Clearly, θ (δ (φ)) ≤ sat(θ (δ (φ))) holds; it remains to show theother dire
tion. From re�exivity of≤ and Theorem 16 we know that θ (δ (φ)) |=
δ(φ). Then, by Proposition 20(ii), sat(θ (δ (φ))) |= δ(φ), and again by Theo-rem 16, sat(θ (δ (φ))) ≤ θ (δ (φ)). 221

These results allow the following
hara
terisation of simulation logi
, in thestyle of Theorem 16.Theorem 22 S ≤w θ (δ (φ)) if and only if S |=w φ.PROOF. By Proposition 20(i) and Lemma 21 the following statements areequivalent: (a) S ≤w θ (δ (φ)), (b) S ≤ sat(θ (δ (φ))), and (
) S ≤ θ (δ (φ)).Theorem 16 together with Proposition 20(ii) then establish the result. 2Corollary 23 S1 ≤w S2 and S2 |=w φ imply S1 |=w φ.4 Program ModelThis se
tion uses the notions developed above to formally de�ne applet stru
-ture and behaviour, stru
tural and behavioural simulation logi
, and maximalapplets. The next se
tion then shows how these support
ompositional veri�-
ation of
ontrol-�ow-based safety properties of applets.4.1 Applet Stru
tureWe model the
ontrol stru
ture of an applet as a
olle
tion of method spe
i-�
ations. We �rst de�ne the notion of applet interfa
e as the sets of methodswhi
h are provided and
alled by an applet. We shall need this notion for
onstru
ting maximal applets. Let Meth be an in�nite set of method names(not
ontaining the spe
ial symbols r and ε).De�nition 24 (Applet interfa
e) An applet interfa
e is a pair I = (I+, I−),where I+, I− ⊆ Meth are �nite sets of names of provided and required meth-ods, respe
tively. We say I is
losed if I− ⊆ I+. The
omposition of two inter-fa
es I1 = (I+
1 , I

−
1) and I2 = (I+

2 , I
−
2) is de�ned by I1∪I2 = (I+

1 ∪I+
2 , I

−
1 ∪I−2).Next, we de�ne method spe
i�
ations, whi
h are the basi
 building blo
ks ofapplets. Ea
h method is des
ribed by its
ontrol-�ow graph and a set of entrypoints.De�nition 25 (Method spe
i�
ation) A method graph for m ∈ Methover a set M of method names is a �nite model Mm = (Vm, Lm,→m, Am, λm),where Vm is the set of
ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r},

m ∈ λm(v) for all v ∈ Vm, i.e., ea
h node is tagged with the method name. Amethod spe
i�
ation for m ∈ Meth over M is a spe
i�
ation (Mm, Em) su
hthat Mm is a method graph for m over M .22

PSfrag repla
ements
mmv1

v2

v3

p ε m, rm, rv4Figure 3. A method graphThe nodes labelled with the distinguished atomi
 proposition r are the returnpoints of m.Example 26 Figure 3 shows the method graph for the following Java-likemethod m:void m() {if
() {p()} else x = 3}An applet is a
olle
tion of method spe
i�
ations.De�nition 27 (Applet) Applets A with interfa
e I, written A : I, are in-du
tively de�ned by
• 0M : (∅,M), where 0M is the empty applet over M de�ned by 0M =

((∅,M ∪ {ε},∅, {r},∅),∅),
• (Mm, Em) : ({m},M) if (Mm, Em) is a method spe
i�
ation for m over M ,
• A1 ⊎A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.An applet A : I is
losed if its interfa
e I is
losed.This de�nition requires that ea
h provided method m ∈ I+ of an applet A : Ihas to be implemented in a method graph for m. The interfa
e of an applet
an be derived from its implementation: a straightforward indu
tion showsthat if A is an applet built from a model over L and A then its interfa
e is
(A−{r}, L−{ε}). We write S : I for an arbitrary spe
i�
ation S to mean that
S is (isomorphi
 to) an applet with interfa
e I. Note that, up to isomorphism,applet
omposition ⊎ is asso
iative and
ommutative with neutral element 0∅.We have developed a tool to extra
t applet graphs from Java Card byte
ode.The tool is based on the SOOT framework (see Se
tion 7).4.1.1 Stru
tural Simulation and Logi
Stru
tural simulation on applets
oin
ides with simulation on the spe
i�
a-tions de�ning the applets. For
onvenien
e we write A1 ≤s A2 instead of
A1 ≤ A2 to denote stru
tural simulation. Sin
e applet
omposition
orre-sponds to disjoint union, stru
tural simulation is preserved by applet
ompo-23

sition (
f. Theorem 4).Corollary 28 If A1 ≤s B1 and A2 ≤s B2 then A1 ⊎ A2 ≤s B1 ⊎ B2.We also instantiate (weak) simulation logi
 to this level. For an applet A : Iand a formula φ of simulation logi
 over L = I− ∪ {ε} and A = I+ ∪ {r} wewrite for
larity A |=s φ instead of A |= φ and A |=s,w φ instead of A |=w φ.4.2 Maximal Applet Stru
turesIn general, the maximal model of a given formula in stru
tural simulation logi
is not a legal applet stru
ture. What we are interested in, then, is
omputinga maximal applet for the formula, i.e., an applet stru
ture whi
h satis�esthe formula and whi
h stru
turally simulates all other applets satisfying theformula. This problem, however,
an only be solved for a �xed applet interfa
e:one
an axiomatise applet stru
tures within stru
tural simulation logi
 for agiven interfa
e. This allows the maximal model
onstru
tion presented aboveto be used for
omputing a maximal applet for a given formula in stru
turalsimulation logi
.De�nition 29 (Interfa
e formula) Let I = (I+, I−) be an applet interfa
e.De�ne φI [ΣI], the interfa
e formula for I, by
φI =

∨

m∈I+ Xm

ΣI = {Xm = [I−, ε]Xm ∧ pm | m ∈ I+}

pm = m ∧
∧

{¬m′ | m′ ∈ I+, m′ 6= m}The formula φI [ΣI] axiomatises the basi
 stru
ture of an applet with inter-fa
e I, namely, ea
h initial node belongs to a unique method m and no tran-sition leaves m. Note that ΣI is not in SNF (proposition r is missing).The maximal applet with respe
t to a formula φ and interfa
e I is de�ned asthe maximal model of φ
onjoined with the interfa
e formula for I.De�nition 30 (Maximal applet) The maximal applet with respe
t to in-terfa
e I and formula φ[Σ] is de�ned as θI(φ[Σ]) = θ(φ ∧ φI [Σ,ΣI]) (where itis assumed without loss of generality that the bound variables of Σ and ΣI aredisjoint).Example 31 The interfa
e formula for interfa
e I = ({m1, m2}, {m1, m3})24

PSfrag repla
ements m1

m1 m2

m2

m1, r m2, r

m1, m3, ε

m1, m3, ε

m1, m3, ε

m1, m3, ε

m1, m3, ε m1, m3, ε

m1, m3, ε

m1, m3, ε

Figure 4. Maximal applet for interfa
e I = ({m1,m2}, {m1,m3}) and φ = ttis given by the formula φI [ΣI], where φI = Xm1
∨Xm2

and
ΣI =







Xm1
= [m1, m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1, m3, ε]Xm2

∧m2 ∧ ¬m1





The maximal applet for interfa
e I (and formula φ = tt) is shown in Figure 4.The following result re
ords the main properties of interfa
e formulae andmaximal applets.Theorem 32 Let I be an applet interfa
e. For any spe
i�
ation S = (M, E)over labels L = I−∪{ε} and atomi
 propositions A = I+∪{r} we have (where
R denotes the rea
hable part of a spe
i�
ation, as de�ned on page 10)(1) S |=s φI if and only if R(S) : I, and(2) S ≤s θI(φ) if and only if S |=s φ and R(S) : I.
PROOF. (1) (Sket
h) �⇒� By an indu
tion on the size of I+. The restri
-tion to the rea
hable part of S is required, be
ause the formula φI does not
onstrain the unrea
hable parts of S. �⇐� By inspe
tion of the de�nitionof applets. (2) Using the de�nition of θI(φ) and Theorem 16 we know that
S ≤s θI(φ) is equivalent to S |=s φ and S |=s φI . The result then follows from(1). 2

Point (1) of the theorem essentially expresses that the formula φI
hara
terisesthose spe
i�
ations that are applets with interfa
e I, while point (2) extendsTheorem 16 from spe
i�
ations to applets. As a
onsequen
e of (2) we have
θI(φ) |= φI and θI(φ) : I, sin
e all nodes of θI(φ) are rea
hable by
onstru
tion.25

4.3 Applet BehaviourNext, we
hange our fo
us to the behavioural level, where we �rst de�ne theoperational semanti
s of a
losed applet. Sin
e our
ompositional veri�
ationmethod is based on stru
tural assumptions, there is no need to
ompose ap-plets on the behavioural level, so an operational semanti
s of
losed applets issu�
ient. This is in
ontrast with previous work on semi-automati

omposi-tional applet veri�
ation [7℄ where the use of behavioural assumptions requireda more involved open semanti
s of applets.Applet behaviour
an be des
ribed in terms of Pushdown Automata. We alsopresent an equivalent formulation of applet behaviour, de�ning it dire
tly interms of a model. Applet behaviour is
losely
onne
ted with applet stru
ture,in the sense that simulation of applet stru
ture immediately
arries over tosimulation of applet behaviours. This will be exploited in the next se
tion,when presenting the
ompositional veri�
ation prin
iple.4.3.1 Applet Behaviour as Pushdown AutomatonPushdown Automata provide a natural exe
ution model for programs withre
ursion. They form a well-studied
lass of in�nite state systems for whi
hmany important problems like bisimulation equivalen
e and model
he
kingare de
idable (see e.g., [10,5℄ for analysis te
hniques and [3,2℄ for appli
ations).Applet behaviour
an be des
ribed dire
tly in terms of Pushdown Automata.De�nition 33 (PDA) A non-deterministi
 Pushdown Automaton is a tuple
P = (Q,Σ,Γ,∆, Q′,⊥) where Q is a set of
ontrol states, Σ a �nite inputalphabet, Γ a �nite sta
k alphabet, Q′ ⊆ Q are the start states, ⊥ ∈ Γ isthe initial sta
k symbol, and ∆ ⊆ (Q × Γ) × Σ × (Q × Γ∗) a set of labelledprodu
tions (or rewrite rules) of the shape (q1, A)

a
→֒ (q2, γ).A
on�guration of a PDA is a pair (q, γ) ∈ Q× Γ∗. The set of
on�gurations

Q′ × {⊥} are
alled initial
on�gurations. The set of produ
tions indu
es alabelled transition relation on
on�gurations as the least relation whi
h
on-tains the initial
on�gurations and is
losed under the pre�x rewrite rule:
(q1, A · γ′)

a
−→ (q2, γ · γ

′) whenever (q1, A)
a
→֒ (q2, γ) ∈ ∆.Applet behaviour is indu
ed from the applet PDA through the pre�x rewriterule. The
onne
tion between applet stru
ture and applet PDA is establishedthrough the following de�nition.De�nition 34 (Applet PDA) Let A = (M, E) : (I+, I−) be a
losed appletsu
h that M = (V, L,→, A, λ). Then PA = (V, Lb, V ∪ {⊥},∆, E,⊥) is the26

[transfer℄ (v, σ)
τ
−→ (v′, σ) if v

ε
−→m v′, v |= ¬r[
all℄ (v1, σ)

m1 call m2−−−−−−→ (v2, v
′
1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1
v′1, v1 |= ¬r,

v2 |= m2, v2 ∈ E[return℄ (v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1Table 1Applet Transition RulesPDA indu
ed by A where

Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}

∆ = {(v, v⊥)
ε
→֒ (v′, v⊥) | v |= ¬r ∧ v →m v′}

∪ {(v1, v⊥)
m1
all m2

→֒ (v2, v
′
1 · v⊥) | v1 |= ¬r ∧ v1

m2−→m1
v′1

∧ v2 |= m2 ∧ v2 ∈ E}

∪ {(v2, v1)
m2 retm1

→֒ (v1, ε) | v2 |= r ∧ v2 |= m2 ∧ v1 |= m1}where v⊥ ranges over V ∪ {⊥}.Note that the valuation λ also applies to PDA
ontrol states and is lifted to
on�gurations by de�ning λ̂((v, v⊥)) = λ(v).4.3.2 Applet Behaviour by Transition RulesAn alternative approa
h is to des
ribe applet behaviour expli
itly as a spe
i-�
ation, by de�ning appropriate transition rules.De�nition 35 (Behaviour) Let A = (M, E) : (I+, I−) be a
losed ap-plet su
h that M = (V, L,→, A, λ). The behaviour of A is des
ribed bythe spe
i�
ation b(A) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) is de-�ned by Sb = V × V ∗, that is, states are pairs of
ontrol points and sta
ks,
Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {ε}, →b is de�ned by thetransition rules of Table 1, Ab = A and λb((v, σ)) = λ(v). The set of initialstates Eb is de�ned by Eb = E × {ε}.A simple inspe
tion of the rules in Table 1 and De�nition 34 shows thatthe behaviour indu
ed by the applet PDA through the pre�x rewrite rule isisomorphi
 to the expli
itly des
ribed applet behaviour.27

4.3.3 Behavioural Simulation and Logi
Applet A1 behaviourally simulates applet A2, written A1 ≤b A2, if b(A1) ≤
b(A2). Similarly, we instantiate simulation logi
 on the behavioural level. Be-havioural properties are more abstra
t than stru
tural ones as they do not referto the program
ontrol stru
ture. We de�ne behavioural satisfa
tion A |=b ψas b(A) |= ψ for applets A : I and ψ a formula of simulation logi
 over Lb and
Ab. Similarly, weak behavioural satisfa
tion A |=b,w ψ is de�ned as b(A) |=w ψ.Sin
e applet behaviour
oin
ides with behaviour of a Pushdown Automaton,verifying goals of the shape A |=b ψ (or A |=b,w ψ)
an be redu
ed to PDAmodel
he
king, for whi
h standard algorithms exist.4.3.4 Simulation Corresponden
eThe notions of applet stru
ture and behaviour have been de�ned so as toensure that any two applets related by stru
tural simulation are also relatedby behavioural simulation. In general, the inverse does not hold, be
ause dueto re
ursion, method graphs
an
ontain nodes that are never rea
hable at thebehavioural level.Theorem 36 (Simulation Corresponden
e) If A1 ≤s A2 then A1 ≤b A2.PROOF. LetR be a stru
tural simulation between A1 andA2. We liftR fromthe stru
tural level to Rb on the behavioural level by de�ning ((v, σ), (v′, σ′)) ∈
Rb if and only if (v, v′) ∈ R, |σ| = |σ′| and (σ(i), σ′(i)) ∈ R for all 0 ≤ i < |σ|.It is easy to
he
k that Rb is a behavioural simulation between A1 and A2.
2As a
onsequen
e, in the set of applets satisfying a given stru
tural formula
φ[Σ], the maximal applet for this formula (with respe
t to stru
tural simula-tion) θI(φ[Σ]) is also maximal with respe
t to behavioural simulation.4.4 Behavioural Maximal AppletsDe�ning the maximal applet behaviour for a given behavioural formula is moreproblemati
. As in the stru
tural
ase, in general, the maximal model of aformula in behavioural simulation logi
 is not a legal applet behaviour. Unlikethe stru
tural
ase, however, one
annot axiomatise applet behaviour withinbehavioural simulation logi
 (in order to use the maximal model
onstru
tionfor generating maximal applet behaviours), sin
e simulation logi
 is only ableof
apturing regular properties and not the
ontext-free properties exhibitedby Pushdown Automata. 28

Furthermore, a maximal applet behaviour would in general be in�nite-state;therefore, a maximal behaviour
onstru
tion has to return a �nite represen-tation of this behaviour. The obvious (but not only)
hoi
e for su
h a rep-resentation would be an applet stru
ture. Given a formula in behaviouralsimulation logi
, the problem then redu
es to �nding an applet whi
h satis�esthe formula and whi
h behaviourally simulates all other applets satisfying theformula. However, in general su
h a maximal applet is not unique.Example 37 Consider the behavioural formula [m1 callm2] r over an inter-fa
e I = ({m1, m2}, {m1, m2}). The formula gives rise to two maximal applets:(1) the maximal applet for I, but without edges labelled m2 whose sour
e is anon-return entry node of m1 (representable as θI(¬m1 ∨ r∨ [m2] ff)), i.e.,the applet where m1
an never
all m2 immediately; and(2) the maximal applet for I, but where every entry point of m2 is valuated r(representable as θI(¬m2 ∨ r)), i.e., the applet where m2 always returnsimmediately.Every applet satisfying the formula is behaviourally simulated by one of thesetwo applets; however, neither of the two applets simulates the other.We are
urrently investigating under what
onditions and how su
h a
olle
-tion of maximal applets
an be
hara
terised exa
tly, by means of a translationfrom behavioural properties into
olle
tions of stru
tural properties. Prelimi-nary results are presented by Gurov and Huisman in [11℄.5 Compositional Veri�
ationThe results of the pre
eding se
tions form the basis for
ompositional veri�-
ation of applets using maximal models.5.1 Stru
tural PropertiesIn the realm of stru
tural properties, i.e., when global guarantees and lo
alassumptions are all given as stru
tural formulae, we obtain a
ompositionalveri�
ation prin
iple of the desired form, embodied by the following rule:
(struct − comp)

A |=s φ θI(φ) ⊎ B |=s ψ

A ⊎ B |=s ψ
A : IThis prin
iple states that in order to show that a
omposed applet A⊎B hasa stru
tural property ψ, it is su�
ient to �nd a stru
tural property φ whi
h is29

satis�ed by A and for whi
h θI(φ)⊎B |=s ψ. The rule is sound and
omplete.The proof of this rule follows
losely the (slightly more involved) proof for rule
(compos) presented below (Theorem 39), and is therefore omitted. Verifyingthe premises is a
hieved by standard, �nite-state model
he
king.Sin
e applet
omposition is
ommutative, one
an apply the
ompositionalreasoning prin
iple also with respe
t to applet B in the se
ond premise of therule to yield a further de
omposition of the global property.5.2 Behavioural PropertiesAs explained above, de
omposition of global behavioural properties is moreproblemati
, as behavioural properties in general do not give rise to uniquemaximal applets. We
an represent the set of applets satisfying the lo
al as-sumption by a model that behaviourally simulates these applets, but this ne
-essarily leads to approximative (i.e., sound but in
omplete) solutions, sin
esu
h a model
annot be guaranteed to be a legal applet behaviour itself. How-ever, by restri
ting lo
al assumptions to stru
tural properties, we obtain a
omplete
ompositional veri�
ation rule, thus avoiding the possibility of falsenegatives. This rule exploits the result that stru
tural simulation implies be-havioural simulation (Theorem 36).Let A : I and B : J be applets su
h that I ∪ J is
losed and let φ and ψbe formulae of stru
tural and behavioural simulation logi
, respe
tively. Wepropose a
ompositional veri�
ation prin
iple embodied by the following rule:

(compos)
A |=s φ θI(φ) ⊎ B |=b ψ

A⊎ B |=b ψ
A : IWe establish soundness and
ompleteness of the rule with the help of thefollowing result, whi
h
hara
terises its se
ond premise.Proposition 38 Let B : J be an applet and I an interfa
e su
h that I ∪ J is
losed. Then θI(φ) ⊎ B |=b ψ if and only if for all A : I with A |=s φ we have

A ⊎ B |=b ψ.PROOF. �⇒� Suppose θI(φ) ⊎ B |=b ψ, A : I and A |=s φ. Then
ertainlyalso R(A) : I and so we get A ≤s θI(φ) by Theorem 32(2). From Corollary 28and Theorem 36 we derive that A ⊎ B ≤b θI(φ) ⊎ B. Hen
e, A ⊎ B |=b ψ byCorollary 17. �⇐� By Theorem 32(2) we have θI(φ) : I and θI(φ) |=s φ, thus
θI(φ) ⊎ B |=b ψ. 2 30

Theorem 39 Rule (compos) is sound and
omplete.PROOF. Soundness is immediate by Proposition 38. For
ompleteness sup-pose A ⊎ B |=b ψ and set φ = χ(A). By Theorem 9 we have A |=b χ(A).To establish the se
ond premise of the rule, we use Proposition 38 and show
C ⊎ B |=b ψ for an arbitrary C : I with C |=s X (A). We use Theorem 9 toderive C ≤s A. The result then follows by Theorem 36 and Corollaries 17 and28. 2Again, sin
e applet
omposition is
ommutative, one
an apply the
omposi-tional reasoning prin
iple (compos) also with respe
t to applet B in the se
ondpremise of the rule to yield a further de
omposition of the global property.Note that by taking B to be the empty applet ∅J− , (compos) redu
es to a rulerelating behavioural properties to stru
tural ones:

(stru
t-beh) A |=s φ θI(φ) |=b ψ

A |=b ψ
A : IThus, given applet A : I, the satisfa
tion of behavioural property ψ
an beredu
ed to the satisfa
tion of stru
tural property φ if and only if the maximalapplet with respe
t to I and φ (behaviourally) satis�es property ψ.6 Interfa
e Abstra
tionSo far we have only
onsidered applets where all provided methods are publi
,meaning that they
an be
alled from the outside. However, in pra
ti
e thepubli
 methods will be implemented using private methods whi
h are hiddenfrom the outside world. Thus, when one wishes to
he
k that an a
tual ap-plet implementation (using private methods) satis�es a spe
i�ed property, oneneeds to abstra
t away from the private methods, whi
h are not observablefrom the outside. In parti
ular, in a
ompositional veri�
ation setting, lo
alassumptions (and global guarantees) will typi
ally be expressed at the pub-li
 interfa
e level of an applet, while the
on
rete applet implementation willuse private methods. For the
ase study presented in Se
tion 8, the ability todistinguish between publi
 and private method is
ru
ial to make veri�
ationfeasible.Given an applet A with interfa
e I = (I+, I−) and a set of publi
 methods

M ⊆ I+, we de�ne the publi
 interfa
e of A by Î(M) = (M, I− − (I+ −M)).The methods in the set I+ −M are
alled private methods of A.We introdu
e the notion of interfa
e behaviour, whi
h � intuitively speaking �31

proje
ts the applet behaviour onto the observable methods de
lared in thepubli
 interfa
e. For the purpose of pra
ti
al veri�
ation, we present the in-terfa
e abstra
tion of an applet, produ
ed by an inlining algorithm, whi
h over-approximates the applet's interfa
e behaviour by inlining its private methods.We also show that, under the (very
ommon) restri
tion that an applet islast-
all re
ursive, an inlined applet is weakly simulation equivalent to theinterfa
e behaviour of the original applet. We then propose a modi�ed prin
i-ple for
ompositional veri�
ation based on the interfa
e abstra
tion of appletsand the maximal model obtained for the publi
 interfa
e of the
orrespondingapplet.
6.1 Interfa
e BehaviourThe next se
tion de�nes an inlining algorithm that transforms a
on
reteapplet implementation into an applet that
ontains only method
alls to publi
methods. We want to prove that for any
losed applet, every behaviour of the
on
rete applet is also a behaviour of the inlined applet. However, for this tohold, we have to abstra
t the
on
rete behaviour to the level of publi
 methods.Therefore, we introdu
e the notion of interfa
e behaviour of an applet withrespe
t to a set of publi
 methods M .First, we de�ne the top publi
 method with respe
t toM , whi
h for a given
allsta
k σ is the �rst publi
 method to whi
h a node in the
all sta
k belongs. For
onvenien
e, below we will often write the states of the behavioural model as asimple sequen
e of states, i.e., v · σ, instead of (v, σ). We use reverse indexingto denote the ith element from the ba
k of a sequen
e, so that (v · σ)|σ| = v(where |σ| denotes the length of sequen
e σ), and σ0 is the last element of σ.Let λMeth(v) denote the method to whi
h node v belongs.

top_indexM(σ) = max{i | 0 ≤ i < |σ| ∧ λMeth(σi) ∈M}

topM(σ) = λMeth(σtop_indexM (σ))Using these de�nitions, we
an de�ne a relabelling ρM of transition labels tothe publi
 level. Labels for
alls and returns between publi
 methods are leftun
hanged. A
all from a private to a publi
 method is relabelled as a
allfrom the top publi
 method in the pending
all sta
k. A return from a publi
to a private method is relabelled as a return to the top publi
 method. All32

other transitions get labelled as silent a
tions.
ρM((v, σ), ℓ) =







































ℓ if ℓ = m1{call/ret}m2 ∧ m1, m2 ∈ M

topM(σ) callm2 if ℓ = m1 callm2 ∧ m1 6∈M,m2 ∈M

m1 ret topM(σ) if ℓ = m1 retm2 ∧ m1 ∈M,m2 6∈ M

ε otherwiseNow we are ready to de�ne the interfa
e behaviour of applet A with respe
tto a set of publi
 methods M .De�nition 40 (Interfa
e behaviour) Let A : I be a
losed applet withbehaviour b(A) = ((S, L,→, A, λ), E). Let M ⊆ I+ be a set of publi
 methods.The interfa
e behaviour of A with respe
t to M is de�ned as
bM (A) = ((S, LM ,→M , AM , λM), EM)where

• LM = {m1 l m2 | m1, m2 ∈M ∧ l ∈ {call, ret}} ∪ {ǫ}

• →M= {((v, σ), ℓ, (v′, σ′)) | ∃a ∈ L. (v, σ)
a
→ (v′, σ′) ∧ ρM((v, σ), a) = ℓ }

• AM = M ∪ {r}

• λM = (v, σ) 7→ {topM(v · σ)} ∪ if(v ∈M ∧ v |= r) then {r} else ∅

• EM = {v | v ∈ E ∧ λMeth(v) ∈M}.The interfa
e behaviour of an applet also de�nes a Pushdown Automaton.Proposition 41 The interfa
e behaviour of A with respe
t to I+ is identi
alto its behaviour, i.e., bI+

(A) = b(A).We de�ne behavioural interfa
e simulation A ≤M
b B as bM (A) ≤ bM(B), andweak behavioural interfa
e simulation A ≤M

b,w B as bM(A) ≤w bM(B). Noti
ethat A and B need not have the same interfa
es � we only require M ⊆ I+
AandM ⊆ I+

B . Similarly, for any formula φ in simulation logi
 over LMand AM ,we de�ne behavioural interfa
e satisfa
tion A |=M
b φ as bM (A) |= φ, and weakbehavioural interfa
e satisfa
tion A |=M

b,w φ as bM (A) |=w φ.6.2 The Inlining TransformationNext we de�ne an inlining algorithm αM that, given a set of publi
 methodsM ,transforms an applet graph by inlining all private
alls. Re
ursive
alls toprivate methods are not inlined, but
reate loops in the resulting graph. We33

prove that the interfa
e behaviour of the original applet A is simulated by thebehaviour of the inlined applet αM(A), thus (by Corollary 17) all properties φof the latter, i.e., αM(A) |=b φ, are also properties of the former, i.e., A |=M
b φ.Moreover, we prove that if the applet is last-
all re
ursive, the two behavioursare weakly simulation equivalent � thus both applets satisfy exa
tly the sameobservable properties at the publi
 interfa
e level.Noti
e that the inlining algorithm does not require the applet to be
losed: ittreats all external methods as publi
.6.2.1 The Inlining AlgorithmThe algorithm is applied to ea
h publi
 method and (re
ursively) inlines all
alls to private methods. Intuitively,
onstru
ting the transformed (or inlined)graph for a publi
 method m
orresponds to exe
uting the interfa
e behaviourof m, where method
alls to publi
 methods are skipped and re
ursion isrepla
ed by iteration. The nodes of the inlined applet
an thus be seen asstates of the (interfa
e) behaviour of the original applet, modulo an abstra
tionfun
tion whi
h repla
es re
ursion by iteration.During the inlining, ea
h edge that represents internal transfer or a
all to apubli
 method is left un
hanged. Ea
h edge that represents a
all to a privatemethod is repla
ed by two internal edges: one from the
alling point to theentry point of the method; and another from the return point of the methodto the destination of the
alling edge. If a method has several entry or returnpoints, several internal edges are
reated. The private method is inlined re-
ursively. Ea
h node is repla
ed by a sequen
e denoting the fragment of the
all sta
k from the a
tivation of the publi
 method up to the
urrent node(ex
ept for the
ase of a re
ursive
all). Sin
e we keep tra
k of the pending
all sta
k, we
an re
ognise re
ursive
alls to private methods. In that
ase,the appropriate initial fragment of the
all sta
k is used to de
ide the exa
tnew edges.For the formal de�nition of the inlining algorithm, we need some new notions.Let A : I be an applet and M ⊆ I+ be a set of publi
 methods. An M-frameis a sequen
e of nodes σ of whi
h only λMeth(σ0) is inM . AnM-frame is
allednormal, if all nodes in the frame belong to di�erent methods. The nodes of theinlined applet are represented by normalM-frames derived from the behaviourof the original applet. The abstra
tion fun
tion mentioned above (repla
ingre
ursion by iteration) is formalised by means of the (normalising)
onditionalrewrite rule σ · v ·σ′ · v′ · σ′′ →֒ σ · v · σ′′ if λMeth(v) = λMeth(v

′) and σ′ · v′ · σ′′ isa normal M-frame. Let ν(σ) denote the normal form of σ with respe
t to therule. Note that if σ is an M-frame, then ν(σ) is a normalM-frame. Moreover,for any M-frame σ we have topM(σ) = λMeth(σ0).34

Further, for method m we de�ne Int(m) and Call(M,m), denoting the sets ofits internal edges and
all edges with respe
t to methods in a set M , respe
-tively.
Int(m) = {(v, ε, v′) | v −→m v′ ∧ v |= ¬r}

Call(M,m) = {(v,m′, v′) | v
m′

−→m v′ ∧ v |= ¬r ∧ m′ ∈M}The de�nition of the inlining algorithm uses auxiliary fun
tions η and ζ . Thefun
tion η
onsiders all edges related to a method: it returns internal andpubli

all edges with renamed nodes � using the pending
all sta
k, and
alls fun
tion ζ on private
all edges. Fun
tion ζ adds edges to the entrypoint, and from the return point of the private method, using the pending
all sta
k argument, and if ne
essary normalising the result (this uses the fa
tthat the pending
all sta
k is always a normalised M-frame). Then it
he
ksif the private
all is non-re
ursive, in whi
h
ase the private method is inlinedre
ursively.De�nition 42 (Inlined applet) Let A : I be an applet, and let (M,P) be apartitioning of I+ into publi
 and private methods, respe
tively. We de�ne theinlined applet
αM(A) = ((V ′, L′,→′, A′, λ′), E ′)where

• V ′ = {w ∈ V + | w is a normal M-frame},
• L′ = (I− − P) ∪ {ε},
• →′=

⋃

m∈M η(m, ǫ) where
η(m, σ) = {(v · σ, ℓ, v′ · σ) | (v, ℓ, v′) ∈ Int(m) ∪ Call(I− − P,m)}

∪
⋃

{ζ(σ, (v,m′, v′)) | (v,m′, v′) ∈ Call(P,m)}

ζ(σ, (v,m′, v′)) = {(v · σ, ε, ν(e · v′ · σ)) | e |= m′ ∧ e ∈ E}

∪ {(ν(rt · v′ · σ), ε, v′ · σ) | rt |= (m′ ∧ r)}

∪ if ¬∃i. (0 ≤ i ≤ |σ| ∧ (v′ · σ)i |= m′)

then η(m′, v′ · σ) else ∅

• A′ = M ∪ {r}

• λ′ = σ 7→ {λMeth(σ0)} ∪ if (|σ| = 1 ∧ σ0 |= r) then {r} else ∅

• E ′ = {v ∈ E | λMeth(v) ∈M}.Before dis
ussing properties of the inlining algorithm, we �rst show an exam-ple.Example 43 Suppose we have an applet as depi
ted in the left-hand
olumn35

PSfrag repla
ements
m

m

aa

a

a

b

b

v0

v1, r

v2

v3, r

v4

v5 v6

v7, r

PSfrag repla
ements
m

m

v0

v1, r

v2 · v1
v4 · v3 · v1

v5 · v3 · v1 v6 · v3 · v1

v7 · v3 · v1

v3 · v1Figure 5. Example applet before and after inliningof Figure 5. Inlining this applet with the publi
 method set {m} results in theapplet depi
ted in the right-hand
olumn of Figure 5. Noti
e that all internaland publi

all edges are preserved, while private method
alls are repla
edby two edges: to the entry and from the return point of the
alled method,respe
tively.6.2.2 PropertiesWe state several useful properties of the inlining algorithm. First of all, theinlining algorithm
omputes an applet having as interfa
e the publi
 interfa
eof the original applet.Proposition 44 Let A : I be an applet and M ⊆ I+ a set of publi
 methods.Then αM(A) is an applet with interfa
e Î(M), i.e., αM(A) : Î(M).By Proposition 41 we thus get:
bM(αM(A)) = b(αM(A))Sin
e the inlining transformation αM only inlines provided methods not inM ,

αI+ is the identity operation.Proposition 45 Let A : I be an applet. Then αI+(A) = A.Finally, the inlining algorithm enjoys the following distributivity property.Proposition 46 Let A : IA and B : IB be applets su
h that I+
A and I+

B aredisjoint and let MA ⊆ I+
A and MB ⊆ I+

B be sets of publi
 methods su
h that
I−A ⊆ I+

A ∪MB and I−B ⊆ I+
B ∪MA. Then

αMA∪MB
(A ⊎ B) = αMA

(A) ⊎ αMB
(B)36

6.2.3 Simulation ResultsAs already mentioned, the interfa
e behaviour of the original applet is over-approximated by the inlining algorithm, i.e., every exe
ution of the interfa
ebehaviour of A is an exe
ution of the behaviour of αM(A). This is due to the
lose
orresponden
e between the interfa
e behaviour of A and the stru
tureof αM(A). We provide an �inlining� transformation α′
M on the states of bM(A)by de�ning α′

M (v, σ) = (hd(γ), tl(γ)), where γ = βM(v · σ) and where βM(σ)denotes the sequen
e of normalised M-frames. Noti
e that we always have
hd(hd(γ)) = hd(v · σ). We show that α′

M is a simulation relating the originalinterfa
e behaviour with the inlined behaviour.Theorem 47 Let A : I be a
losed applet, and let M ⊆ I+. Then bM (A) ≤
b(αM (A)).PROOF. We show by
o-indu
tion that α′

M is a simulation between bM(A)and b(αM(A)), i.e., we show that (1) the valuations of (v, σ) in bM (A) and
α′

M(v, σ) in b(αM(A)) agree, and (2) if (v, σ)
l
−→(v′, σ′) in bM(A), then we have

α′
M (v, σ)

l
−→ α′

M (v′, σ′) in b(αM(A)). The result then follows sin
e α′
M mapsthe entry states of bM(A) to entry states of b(αM(A)) (in fa
t, the entry states
oin
ide, and α′

M maps every entry state to itself). It is easy to
he
k that thevaluations agree and that the transitions are simulated. For the full proof werefer to our te
hni
al report [37℄. 2Noti
e that in general we do not have behavioural simulation equivalen
e. Theinlining
onstru
tion introdu
es transfer edges for
alls to and returns fromprivate methods. Be
ause of the latter, the behaviour of the inlined applet
an
ontain a silent transition
orresponding to a return from a private methodin the original applet, even when the inlined applet has not yet followed asilent transition
orresponding to a
all to this private method in the origi-nal applet. For instan
e, the exe
ution (v0, ε) → (v2.v1, ε) → (v4.v3.v1, ε) →

(v7.v3.v1, ε) → (v3.v1, ε) → (v6.v3.v1, ε)
m call m
−−−−→ (v0, v7.v3.v1) of the inlined ap-plet in Figure 5 does not
orrespond to any exe
ution in the original applet.The inlining transformation thus introdu
es new behaviours. Noti
e however,that these new behaviours are only observable in applets whi
h are not last-
allre
ursive.A set of methods is re
ursive if every method in the set
ontains a (rea
hable)
all edge to some method in the set. A
all edge is re
ursive if the
alling andthe
alled methods belong to some minimal (and thus, mutually) re
ursivemethod set. A program is
alled last-
all re
ursive if from any destinationnode of any re
ursive
all edge, only transfer edges are rea
hable. In addition,37

we shall assume that a return node is rea
hable from every su
h destinationnode.For last-
all re
ursive applets, we prove the reverse
orresponden
e for observ-able behaviours.Theorem 48 Let A : I be a
losed last-
all re
ursive applet, and let M ⊆ I+.Then b(αM(A)) ≤w b
M (A).PROOF. Consider a state (w, γ) in b(αM(A)), where λMeth(hd(w)) /∈M and

hd(w) |= r. For last-
all re
ursive applets, the inlining transformation αM hasthe property that for any su
h w, the nodes w′ su
h that ν(hd(w) ·w′) = w but
hd(w) · w′ 6= w and whi
h are stru
turally rea
hable from w in αM(A) form(together with w) a strongly
onne
ted
omponent and are equivalent withrespe
t to stru
tural simulation. As a
onsequen
e, in b(αM (A)), all states
(w′, γ) for a given γ also form a strongly
onne
ted
omponent and are weaksimulation equivalent. Modulo su
h �return� equivalen
e
lasses, we show by
o-indu
tion that (α′

M)−1 is a weak simulation between b(αM(A)) and bM(A).More exa
tly, we show that (1) the valuations of α′
M(v, σ) and (v, σ) agree,and (2) if α′

M(v, σ)
l
−→ (w′, γ′) is a transition in b(αM (A)) other than a (silent)transition within a return equivalen
e
lass, then (v, σ)

l
⇒ (v′, σ′) in bM(A)for some v′and σ′ su
h that α′

M(v′, σ′) = (w′, γ′) (in most
ases we even showthe
orresponding strong transition). The result then follows sin
e α′
M mapsentry states of b(αM(A)) to entry states of bM(A). It is easy to
he
k that thevaluations agree and that the transitions are simulated. For the full proof weagain refer to [37℄. 2Sin
e weak simulation
ontains simulation we have the following.Corollary 49 Let A : I be a
losed last-
all re
ursive applet, and letM ⊆ I+.Then bM (A) ≃w b(αM (A)).6.3 Interfa
e Abstra
tion and Compositional ReasoningUsing the results obtained above, we
an state several veri�
ation prin
iplesthat
an be used to prove properties of applet interfa
e behaviour. We �rstpresent two abstra
tion prin
iples, and then show how these
an be
ombinedwith our
ompositional veri�
ation prin
iple from Se
tion 5.38

6.3.1 Abstra
tion RulesLet A : I be a
losed applet, and let M ⊆ I+. With the results establishedabove, we
an justify the following abstra
tion prin
iple (abstra
t), where ψ isa behavioural interfa
e formula.(abstra
t) αM(A) |=b ψ

A |=M
b ψTheorem 50 Rule (abstra
t) is sound.PROOF. Follows from the de�nition of behavioural satisfa
tion, Theorem 47,Corollary 17, and the de�nition of behavioural interfa
e satisfa
tion. 2When A is last-
all re
ursive, we
an even provide a faithful abstra
tion prin-
iple (weak-abstra
t) for properties of the observable behaviour by using trans-formation δ mentioned in Se
tion 3.4.(weak-abstra
t) αM(A) |=b δ(ψ)

A |=M
b,w ψTheorem 51 For last-
all re
ursive applets A rule (weak-abstra
t) is soundand
omplete.PROOF. Follows from the de�nition of behavioural satisfa
tion, Proposi-tion 20(ii), Corollary 49, Corollary 23, and the de�nition of weak behaviouralinterfa
e satisfa
tion, all of whi
h are equivalen
es. 26.3.2 Compositional ReasoningLet A :IA and B : IB be applets su
h that IA ∩ IB = ∅ and let MA ⊆ I+

A and
MB ⊆ I+

B be sets of publi
 methods su
h that I−A ⊆ I+
A∪MB and I−B ⊆ I+

B ∪MA.The latter
ondition says that ea
h applet only
alls its own methods and theothers' publi
 methods and implies that their
omposition is
losed. We
om-bine the
ompositional veri�
ation prin
iple (
ompos) from Se
tion 5 with theabstra
tion prin
iple (abstra
t) to obtain the following abstra
t
ompositionalveri�
ation prin
iple:
(abstra
t-
ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b ψ

A ⊎ B |=MA∪MB

b ψNoti
e that the maximal model
onstru
tion is based on the publi
 interfa
e
Î(MA) = (MA, I

−
A − (I+

A −MA)) of applet A.39

Theorem 52 Rule (abstra
t-
ompos) is sound.PROOF. Follows from the soundness of (abstra
t) and (
ompos) together withProposition 46. 2Similarly as for the abstra
tion prin
iple, we
an state a faithful
ompositionalveri�
ation prin
iple (weak-abstra
t-
ompos) for properties of the observableinterfa
e behaviour of applets whi
h are last-
all re
ursive:
(weak-abstra
t-
ompos) αMA

(A) |=s φ θÎ(MA)(φ) ⊎ αMB
(B) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψTheorem 53 Rule (weak-abstra
t-
ompos) is sound and
omplete for last-
allre
ursive applets A and B.Noti
e that rule (weak-abstra
t-
ompos) is also sound for applets that are notlast-
all re
ursive: last-
all re
ursiveness is only needed to ensure
ompleteness.Our s
enario for se
ure post-issuan
e loading of applets is based on the ver-i�
ation prin
iple embodied by these rules and its derivatives. In parti
ular,a
ombined appli
ation of rules (weak-abstra
t-
ompos) and (
ompos) yieldsthe rule (w(eak)-a(bstra
t)-
(ompos)-2), whi
h we apply in our
ase study inSe
tion 8:
(wa
-2) αMA

(A) |=s φ αMB
(B) |=s ξ θÎ(MA)(φ) ⊎ θÎ(MB)(ξ) |=b δ(ψ)

A ⊎ B |=MA∪MB

b,w ψHere, an appli
ation of rule (
ompos) has introdu
ed a se
ond maximal modelfor the publi
 interfa
e of B and stru
tural property ξ. Noti
e that this rule issound and
omplete for last-
all re
ursive applets.7 A Tool Set for Compositional Veri�
ationTo support our
ompositional veri�
ation method, we have developed a toolset implementing the various algorithms presented above and providing trans-lations into the input formats of appropriate, existing model
he
kers. Figure 6gives a general overview of the tool set.As input we have for ea
h applet either an implementation (in Java byte
ode),or a stru
tural property, restri
ting its possible implementations, plus a publi
interfa
e, spe
ifying the methods provided and required by the applet. Forthese inputs, we
onstru
t an applet representation a

ording to De�nition 27.40

CCS process

CWB

PDA

Model

YES/NO

YES/NO

Concrete

model

Inliner

Applet Graphs
Public

Implementation

PDA MC

Structural

Public Interface

Behavioural

specification

specification

Applet Graph

Maximal

constructor

Applet
Analyser

generator

Figure 6. Tool Set for Compositional Applet Veri�
ationIn
ase we have the applet implementation, we use the Applet Analyser toextra
t the
on
rete applet graph. The Applet Analyser is a stati
 analysistool, built on top of the SOOT Java Optimisation Framework [12℄. The byte
ode of an applet is transformed into Jimple basi
 blo
ks, while abstra
tingaway variables, method parameters, and
alls to API methods. We use SOOT'sstandard
lass hierar
hy analysis to produ
e a safe over-approximation of the
all graph. If, for example, the stati
 analysis
annot determine the re
eiverof a virtual method
all, a
all edge is generated for every possible methodimplementation. Next we use the Inliner, whi
h is an O
aml implementation ofthe inlining algorithm of De�nition 42. The Inliner takes the extra
ted methodgraph and the publi
 interfa
e as input, and produ
es the graph at the publi
interfa
e level.In
ase we have a stru
tural property, we use the Maximal Model Constru
tor.This is an O
aml implementation of the SNF transformation as de�ned in Se
-tion 3.3, whi
h we use to
onstru
t maximal models. The stru
tural propertiesand the applet interfa
e are used to produ
e an applet graph that simulatesall possible implementations of applets respe
ting the formula.If required, the resulting applets
an be
omposed with the ⊎ operator, whi
his basi
ally a
on
atenation of the textual graph representations. Sin
e theapplet analyser appends pa
kage names to the method names, there are noname
on�i
ts to be resolved here. Using the Model Generator the result-ing applet graphs are translated into models whi
h serve as input for di�er-ent model
he
kers. If we want to
he
k stru
tural properties, we exploit thefa
t that applet graphs
an be viewed as �nite Kripke stru
tures. Therefore,stru
tural properties
an be expressed in temporal logi
s and they
an be
he
ked using standard model
he
king tools su
h as the Con
urren
y Work-ben
h (CWB) [38℄. The Kripke stru
tures of the CWB are labelled transitionsystems generated from CCS pro
ess de�nitions. For this purpose, we use theModel Generator to
onvert applet graphs into a representation as CCS pro-
esses. Sin
e CCS does not have the notion of valuation, atomi
 propositions
p assigned to a node in an applet are represented by probes, that is, self-loops41

labelled by p. The translation also produ
es a set of pro
ess
onstants
orre-sponding to the entry nodes of the respe
tive applet. To model
he
k an appletgraph against a stru
tural safety property, all initial states have to be
he
kedindividually. We en
ode the properties to be
he
ked as µ-
al
ulus formulae,repla
ing atomi
 propositions p by 〈p〉 true. Sin
e CWB supports parametrisedformulae, our spe
i�
ation patterns
an be en
oded dire
tly.If for a
omposed system we want to verify whether it respe
ts a behaviouralsafety property, we use the fa
t that the behaviour of an applet is an in�nitestate model generated by a Pushdown Automaton (PDA) given as a set ofprodu
tion rules indu
ed by the applet. The model
he
king problem for this
lass of models is exponential both in the size of the formula and in the numberof
ontrol states of the PDA [10℄. Ideally we would like to use an existing model
he
ker for PDAs (PDA MC). Unfortunately, there is
urrently no e�
ient toolavailable for model
he
king (alternation-free) modal µ-
al
ulus properties ofPDAs. We experimented with Alfred [39℄, a demonstrator tool implementingthe model
he
king algorithm of Bouajjani et al. [40℄, and we are
urrentlydeveloping su
h a model
he
ker.8 Case StudyTo evaluate its validity, we apply our
ompositional veri�
ation method toa realisti
 smart
ard
ase study, whi
h illustrates typi
al unwanted appletintera
tions. The appli
ation, an ele
troni
 purse, has been provided by smart
ard produ
er Gemplus as a test
ase for formal methods. Even though it isnot a
tually used by Gemplus, it demonstrates all the relevant issues relatedto smart
ard appli
ations. In this se
tion, we introdu
e the ele
troni
 purse
ase study, present the lo
al and global spe
i�
ations for the di�erent applets,and des
ribe their veri�
ation using the tool set presented above.8.1 Illi
it Applet Intera
tions in the Ele
troni
 PurseThe Gemplus ele
troni
 purse
ase study PACAP [41℄ is developed to providea realisti

ase study for applying formal methods to Java Card appli
ations.It de�nes three appli
ations: CardIssuer, Purse and Loyalty. Typi
ally, a
ardwill
ontain one
ard issuer and one purse applet, but several loyalty applets.The
ase study has been previously used in
onne
tion with several otherformal te
hniques. For example, fun
tional sour
e
ode level spe
i�
ationshave been given and
he
ked with automati
 and intera
tive veri�
ation te
h-niques [42℄. The
ase study also has been used to illustrate an approa
h wheredi�erent priva
y levels are assigned to information, and model
he
king is used42

to ensure that the information �ow respe
ts the restri
tions imposed by thesepriva
y levels [43℄. The property des
ribed in the latter work motivates theproperty we study here. However, our te
hnique is more general, allowing theveri�
ation of arbitrary behavioural
ontrol-�ow safety properties.The property that we verify for this
ase study is only
on
erned with Purseand Loyalty, we shall therefore not dis
uss CardIssuer any further. If the
ard holder wishes to join a loyalty program, the appropriate applet
an beloaded on the
ard. Subsequently, the purse and the di�erent loyalties willex
hange information about the pur
hases made, so that the loyalty points
anbe
redited. Current versions of Java Card use sharable interfa
es to ex
hangethis kind of information. Even though in the future this is likely to
hange,for our te
hniques to be appli
able it is not relevant how this
ommuni
ationexa
tly takes pla
e, as long as it is in terms of method
alls (rather than interms of shared state). The goal of our
ase study is to ensure that no illi
itintera
tions
an happen between the various applets on the
ard. The
ode ofthe appli
ation is last-
all re
ursive, thus our veri�
ation will be exa
t, and theinlining step will not introdu
e any new observable interfa
e behaviours. Inthis parti
ular
ase study, we
an verify
orre
tness of the de
omposition, thuswe rely only on soundness of the
ompositional veri�
ation prin
iple. However,if
orre
tness of the de
omposition
ould not be veri�ed, the
ompleteness forlast-
all re
ursive applets would tell us that our lo
al assumption is too weak.To understand the property whi
h we verify here, let us look
loser at how thepurse and the loyalties
ommuni
ate about the pur
hases made with the
ard.The ele
troni
 purse keeps a log table of all
redit and debit transa
tions,and the loyalty applets
an request the (relevant) information stored in thistable. Further, loyalties might have so-
alled partner loyalties, whi
h meansthat a user
an add up the points obtained with the di�erent loyalty programs.Therefore, ea
h loyalty should keep tra
k of its lo
al balan
e and its extendedbalan
e. If the user wishes to know how many loyalty points are availableexa
tly, the loyalty applet will ask for the relevant entries of the purse logtable in order to update its balan
e, and it will also ask the balan
es of partnerloyalties in order to
ompute the extended balan
e.For e�
ien
y reasons, the log table is of �xed length, arranged as a ring. If thelog table is full, existing entries will be repla
ed by new transa
tions. In orderto ensure that loyalties do not miss any of the logged transa
tions, they
ansubs
ribe to the so-
alled logFull servi
e. This servi
e signals all subs
ribedloyalties that the log table will be overwritten soon, and that therefore theyshould update their balan
es. Typi
ally, loyalties will have to pay for thisservi
e.Suppose we have an ele
troni
 purse, whi
h
ontains besides the ele
troni
purse itself two partner loyalties, say L1 and L2. Further, suppose that L1 has43

subs
ribed to the logFull servi
e, while L2 has not. If in rea
tion to the logFullmessage L1 always
alls an interfa
e method of L2 (say to ask for its balan
ewhen
omputing the extended balan
e), L2
an impli
itly dedu
e that the logtable might be full. A mali
ious implementation of L2 might therefore requestthe information stored in the log table before returning the value of its lo
albalan
e to L1. If loyalties have to pay for the logFull servi
e, su
h
ontrol �owis unwanted, sin
e the owner of the Purse applet will not want other loyaltiesto get this information for free.This is a typi
al example of an illi
it applet intera
tion, that our
ompositionalveri�
ation te
hnique
an dete
t. Below, we show how the absen
e of this par-ti
ular undesired s
enario
an be spe
i�ed and veri�ed algorithmi
ally. We use
ompositional reasoning to redu
e the global behavioural property expressingthe absen
e of the s
enario des
ribed above to lo
al stru
tural properties ofthe purse and loyalty applet
lasses. We assume there is only one purse ap-plet on the
ard, but we allow an arbitrary number of loyalty applets on the
ard. However, sin
e all loyalty applets have the same interfa
e, we
an apply
lass-based analysis, and treat all loyalty instan
es in a similar way. The
asestudy provides implementations for the purse and the loyalty applet. These are
he
ked against the
orresponding stru
tural properties. Noti
e that a typi
aluse of the
ard initially only will have the purse applet installed on the
ard.After the
ard has been issued, new loyalty applets will be installed wheneverthe
ard holder wishes to join a loyalty program. Every time a new loyalty ap-plet is installed, it will have to be veri�ed against the stru
tural spe
i�
ationof the loyalty applet.8.2 Spe
i�
ationThis se
tion presents the formalisation of the global and lo
al se
urity proper-ties that we need for our example. The following se
tion then shows how thetool set is used for the veri�
ation of the de
omposition and of the implemen-tations with respe
t to the lo
al properties.8.2.1 Spe
i�
ation PatternsSin
e writing spe
i�
ations in the modal µ-
al
ulus is known to be di�
ult(even in the simulation logi
 fragment), we de�ne a
olle
tion of
ommonlyused spe
i�
ation patterns (inspired by the Bandera Spe
i�
ation Patternproje
t [44℄). In our experien
e, all relevant behavioural
ontrol-�ow safetyproperties
an be expressed using a small set of su
h patterns � however, itis important to remember that one
an always fall ba
k on the full expres-siveness of simulation logi
. We present several spe
i�
ation patterns, both at44

stru
tural and behavioural level, whi
h are all used in the
ase study at hand.From now on we shall adopt the
onvention of denoting stru
tural propertiesby σ and behavioural ones by φ.Stru
tural Spe
i�
ation Patterns We shall use Everywhere with the ob-vious formalisation:
Everywhere σ = νY. σ ∧ [ε, I−]Y

= Y [Y = σ ∧ [ε, I−]Y]as well as the following patterns, for method sets M andM ′ of an applet withinterfa
e I:
M HasNoCallsTo M ′ = (

∧

m∈M ¬m) ∨ (Everywhere [M ′] ff)

HasNoOutsideCalls M = M HasNoCallsTo (I− −M)The �rst pattern spe
i�es that method graphs in the set M do not
ontainedges labelled with elements of the set M ′. The se
ond spe
i�es a
losed setof methods M , i.e., methods in M only
ontain
alls to methods in M .Behavioural Spe
i�
ation Patterns Pattern Always is standard:
Always φ = νZ. φ ∧ [Lb]Z

= Z[Z = φ ∧ [Lb]Z]For spe
ifying that a property φ is to hold within a
all to method m, we usethe Within pattern formalised as follows:
Within m φ = ¬m ∨ (Always φ)More pre
isely, this pattern states that φ always holds as soon as m is
alled.However, sin
e we do not use this pattern inside other formulae, the givendes
ription is
orre
t. Noti
e that this is a typi
al behavioural pattern: thenotion of Within a method invo
ation en
ompasses all methods that mightbe invoked during the
all to m. This rea
hability notion
annot be dire
tlyexpressed at the stru
tural level.Finally, for applet A : (I+, I−) and method set M , we de�ne:

CanNotCall AM =
∧

m∈I+

∧

m′∈M

[mcall m′] ffThis pattern holds for state (v, σ) if no
all to a method in M is possible.45

8.2.2 The Se
urity PropertiesWe express the se
urity properties at the publi
 level, that is, stru
tural prop-erties refer to the interfa
e abstra
tion (i.e., inlined version) and behaviouralproperties to the interfa
e behaviour of applets. As mentioned above,
om-muni
ation between applets takes pla
e via so-
alled sharable interfa
es. ThePurse applet de�nes a sharable interfa
e SIP for
ommuni
ation with loy-alty applets,
ontaining the methods getTransa
tion, isThereTransa
tion, get-InvEx
hangeRateIntPart and getInvEx
hangeRateDe
Part. The Loyalty ap-plet de�nes two sharable interfa
es: one, SILP , for
ommuni
ation with aPurse,
ontaining the methods logFull and ex
hangeRate, and one, SILL, for
ommuni
ation with other loyalty applets,
ontaining methods getBalan
e andgetDebit. If we de�ne SIL = SILP ∪ SILL, then we
an identify the followingpubli
 interfa
es: IP = (SIP , SIP ∪SIL) for Purse, and IL = (SIL, SIP ∪SIL)for Loyalty.The Global Se
urity Property To guarantee that no loyalty will get theopportunity to
ir
umvent subs
ribing to the logFull servi
e, we require thatif the Purse
alls the logFull method of a loyalty, within this
all the loyaltydoes not
ommuni
ate with other loyalties. However, as the logFull method issupposed to
all the Purse for its transa
tions, we also have to ex
lude indire
t
ommuni
ations, via the Purse. We require the following global property ofthe interfa
e behaviour:A
all to Loyalty.logFull does not trigger any
alls to any other loyalty.This property
an be formalised with the help of behavioural patterns:
φ = Within Loyalty.logFull

(CanNotCall Loyalty SIL ∧ CanNotCall Purse SIL)Thus, if a loyalty re
eives a logFull message, it
annot
all any other loyalty(be
ause it
annot
all any of its sharable interfa
e methods), and in addition,if the Purse is (re)a
tivated within the
all to logFull, it
annot
all any loyaltyapplet.Property De
omposition We apply rule (wa
-2) from Se
tion 6.3 andtherefore introdu
e lo
al stru
tural properties for the inlined versions of Purseand Loyalty. Here we explain the formalisation of the lo
al properties; below wedes
ribe how we a
tually verify that these are su�
ient to guarantee the globalbehavioural property. Within Loyalty.logFull, the Loyalty applet has to
all themethods Purse.isThereTransa
tion and Purse.getTransa
tion, but it shouldnot make any other external
alls (where
alls to sharable interfa
e methods46

of Loyalty are
onsidered external). Noti
e that sin
e we are performing
lass-based analysis, we
annot distinguish between
alls to interfa
e methods ofother instan
es, and those of the same instan
e. Thus, a natural stru
turalproperty for Loyalty would be, informally:From any entry point of Loyalty.logFull, the only rea
hable external
allsare
alls to Purse.isThereTransa
tion and Purse.getTransa
tion.Thus, within a
all to Loyalty.logFull the Purse applet
an only be a
ti-vated via Purse.isThereTransa
tion or Purse.getTransa
tion. For Purse we
an therefore propose the following informal stru
tural property:From any entry point of Purse.isThereTransa
tion or Purse.getTransa
tion,no edge labelled by an external
all is rea
hable.Using the stru
tural spe
i�
ation patterns, we
an spe
ify these properties asfollows.
σL = {Loyalty .logFull} HasNoCallsTo

(SIP ∪ SIL) − {Purse.isThereTransaction,Purse.getTransaction}

σP = HasNoOutsideCalls {Purse.isThereTransaction} ∧

HasNoOutsideCalls {Purse.getTransaction}Noti
e that these spe
i�
ations are expressed with respe
t to the inlined ver-sions of the applets. Ex
luding external
alls from a method at the publi
level is equivalent to ex
luding external
alls from any private method that
an be
alled transitively from the publi
 method at the implementation level- a property whi
h is not dire
tly expressible (at the implementation level) inour logi
 (
f. Huisman et al. [30℄).8.3 Veri�
ationAfter the global and lo
al se
urity properties have been spe
i�ed, we have toshow that: (1) the lo
al properties are su�
ient to establish the global se
urityproperty, and (2) the implementations of the di�erent applets respe
t the lo
alproperties. In order to do this, we identify the following (independent) tasks,
onsidered in detail below.(1) Verifying the
orre
tness of the property de
omposition by:(a) building θIP
(σP) and θIL

(σL), the maximal applets for σP and σL,respe
tively; and(b) model
he
king θIP
(σP) ⊎ θIL

(σL) |=b δ(φ).(2) Verifying the lo
al stru
tural properties by:47

(a) extra
ting the applet graphs P of the Purse and L of the Loyalty ;(b)
omputing αSIP
(P) and αSIL

(L) using the inlining algorithm; and(
) model
he
king αSIP
(P) |=s σP and αSIL

(L) |=s σL.We then apply rule (wa
-2) to
on
lude that P ⊎ L |=SIP∪SIL

b,w φ as required.8.3.1 Veri�
ation of the Property De
ompositionTo illustrate the pro
edure of
onstru
ting a maximal applet, we present insome detail the
onstru
tion of the maximal applet for σL; for σP the
on-stru
tion is similar. First, we write σL as a modal equation system, wherewe use lf to abbreviate Loyalty.logFull, gT for Purse.getTransa
tion, iTT forPurse.isThereTransa
tion, and M for (SIP ∪ SIL) − {iTT, gT}:
σL = ¬lf ∨ Y [Y = [M] ff ∧[ε, gT , iTT]Y]Next, we build the interfa
e formula φIL

for interfa
e IL (re
all that the maxi-mal applet for σL is the maximal model for σL∧φIL
). For
larity of presentationwe shall make here the simplifying assumption that SIL = {lf }; the a
tual
ase study has naturally been performed for the full sharable interfa
e. Thus

φIL
= Xlf [Xlf = [ε, lf , SIP]Xlf ∧ lf]. We then form the
onjun
tion σL ∧ φIL

,whi
h by introdu
ing a new variable Z yields:
Z















Z = (¬lf ∨ Y) ∧Xlf

Y = [M]ff ∧ [ε, gT , iTT]Y

Xlf = [ε, lf , SIP]Xlf ∧ lf













The next step is to transform this formula into SNF. First, in Phase I ofthe transformation, ea
h equation is transformed into a disjun
tion of statenormal forms. Suppose we start with the equation de�ning Z.(1) Make equation strongly guarded, by rewriting with the original equations:
Z = (¬lf ∨ ([M] ff ∧[ε, gT , iTT]Y)) ∧ [ε, lf , SIP]Xlf ∧ lf(2) Put equation into DNF and simplify:

Z = [M] ff ∧[ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf(3) Group and
omplete boxes. No boxes are missing, thus we only groupthem (remember M = (SIP ∪ SIL) − {gT , iTT} = (SIP ∪ {lf }) −
{gT , iTT}):

Z = [M] ff ∧[ε, gT , iTT](Y ∧Xlf) ∧ lf48

(4) Introdu
e new equations for formulae under boxes. Sin
e the map h doesnot yet
ontain an entry for {Y,Xlf }, we
hoose a fresh variable U andadd ({Y,Xlf }, U) to h. The equation de�ning Z be
omes
Z = [M] ff ∧[ε, gT , iTT]U ∧ lfwhile we introdu
e the new equation U = Y ∧Xlf .(5) Finally,
omplete the equation by adding missing literals and put theformula into DNF again. Here, only literal r is missing. Adding this gives:

Z = ([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ r)∨

([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ ¬r)The equations de�ning Y and Xlf are handled in a similar way. The only stepthat has some e�e
t is step 5, whi
h introdu
es the missing literal r. Moreinteresting is how Phase I is applied to the new equation U = Y ∧Xlf .(1) Rewriting into strongly guarded form yields:
U = [M] ff ∧[ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf(2) Formula φU is already in DNF and
annot be simpli�ed.(3) Grouping boxes results in the following equation:

U = [M] ff ∧[ε, lf , SIP](Y ∧Xlf) ∧ lf(4) The map h
ontains the pair ({Y,Xlf }, U), so we repla
e Y ∧Xlf by U .
U = [M] ff ∧[ε, gT , iTT]U ∧ lf(5) Literal
ompletion again introdu
es r.

U = ([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ r)∨

([M] ff ∧[ε, gT , iTT]U ∧ lf ∧ ¬r)After applying Phase I to all equations, Phase II introdu
es a new equationfor ea
h disjun
t and repla
es ea
h old variable by the disjun
tion of the newvariables. For example, the equation de�ning U gets repla
ed by:
U1 = [M] ff ∧[ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M] ff ∧[ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬rThe remaining equations are treated similarly. Noti
e that also Z in X getsrepla
ed by {Z1, Z2}, where Z1 and Z2 are the equations repla
ing Z.49

(a) (b) (c)

PSfrag repla
ements
gT , iTT , ε

gT , iTT , ε gT , iTT , ε

gT , iTT , ε

lf v1v1v1

v2v2v2 lf , r

m

m, r

SIL, SIP , ε

SIL, SIP , ε
SIL, SIP , ε

SIL, SIP , ε
iTT

iTT , ε

iTT , ε iTT , ε

iTT , ε

iTT , r

Figure 7. Maximal applets for σL and σPDuring the optimisation in Phase III, we �nd that the equations for Z1 and U1,and Z2 and U2 are dupli
ates of ea
h other. Therefore, we remove the equationsfor Z1 and Z2, and repla
e {Z1, Z2} in X by {U1, U2}. Further, the equations
Y1, Y2, Xlf 1 and Xlf 2 (repla
ing Y and Xlf in Phase II), are not rea
hable fromany variable in X = {U1, U2}. Hen
e, the �nal result is (U1 ∨ U2)[Σ], where

Σ =







U1 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬r





The spe
i�
ation extra
ted from this modal equation system (whi
h is in sim-ulation normal form) is the maximal applet θIL
(σL) for σL. It is shown inFigure 7(a). The method graph has two nodes; both of them are entry pointsof the method, but only one is labelled as a return point. The edges are labelledonly with internal a
tions and
alls to getTransa
tion and isThereTransa
tion.As mentioned above, in the
omputation above we simpli�ed SIL to {lf}. Ifwe do the
omputation for the
omplete shareable interfa
e SIL, we �nd thatfor all other methods m in SIL, the method graph is a maximal method graphwithout restri
tions, as in Figure 7(b). If we do the same
omputation for

σP , we �nd the method graph for isThereTransa
tion in the maximal modelfor the Purse as in Figure 7(
), i.e., the method
an only
all itself or makeinternal transitions. The method graph for getTransa
tion is similar, withall edges labelled with getTransa
tion or ε, while the method graphs for theother methods provided by the Purse are maximal method graphs, withoutany restri
tions.Using our implementation of the maximal model
onstru
tion in O
aml,
om-puting the maximal applets for σL and σP takes less than a se
ond. Table 2shows the relevant information.On
e the maximal applets θIP
(σP) and θIL

(σL) are
onstru
ted, we produ
etheir
omposition θIP
(σP)⊎θIL

(σL), and we use the Model Generator to trans-late the applet graph to a PDA representation, serving as input to a PDAmodel
he
ker. 50

θIL
(σL) θIP

(σP)#nodes 8 8#edges 120 88
onstr. time 0.05 s. 0.05 s.Table 2Size and timing for maximal applet
onstru
tion
#
lasses #methods #nodes #edges extr.time inlinetime mod.gen.tim

e
verif.timeLoyalty 11 237 3 782 4 372 5.6 se
. 0.6 se
. 2.8 se
. 10.1 se
.Purse 15 367 5 882 7 205 7.5 se
. 0.6 se
. 0.6 se
 3.6 se
.Table 3Statisti
s on applet graph extra
tion and veri�
ation.8.3.2 Corre
tness of the Lo
al Stru
tural PropertiesWe use the Applet Analyser to extra
t applet graphs and the appropriate setof entry points from the byte
ode of the loyalty and purse implementations.Table 3 provides statisti
s on the extra
ted applet graphs.Next, we applied the implementation of the inlining algorithm to the extra
tedapplet graphs, whi
h took 0.6 se
onds on both Loyalty and Purse. Sin
e theapplets are last-
all re
ursive, the inlining does not introdu
e any new observ-able interfa
e behaviours. Even though theoreti
ally the worst-
ase blowupin the number of nodes of the inlined applets, determined by the number ofnormal M-frames, is exponential in the number of private methods, in pra
-ti
e this is not likely to happen. In our
ase, we even observed a redu
tionin size of the graphs due to the following two fa
ts: �rst, the
all dependen
ygraph is sparse and, se
ond, the inlining fo
uses on intera
tion between ap-plets, and thus any
ode that is not rea
hable by a shareable interfa
e methodis abstra
ted away by the inlining (as it is not relevant to the property we areinterested in).Finally, we used the Model Generator to translate the inlined applet graphsinto input for CWB, and we veri�ed the stru
tural properties. Table 3 alsoprovides statisti
s for the model generation and veri�
ation time.Remark Initially, we did not distinguish between publi
 and private meth-ods when we performed the
ase study (see [30℄). This gave signi�
ant per-51

forman
e problems: the maximal applets
ontained implementations for (and
alls to) all private methods as well, whi
h resulted in huge stru
tures. More-over, without the distin
tion between publi
 and private methods we had to
ompute the transitive
losure of method
alls to be able to express the lo
alstru
tural spe
i�
ations, whi
h resulted in a non-robust spe
i�
ation: for ex-ample splitting a private method into two would break the lo
al spe
i�
ation.Adding the distin
tion between publi
 and private methods thus resulted ina
on
eptually
leaner
ompositional veri�
ation method, with a drasti
allyimproved performan
e.9 Con
lusionWe have developed a
ompositional veri�
ation method for sequential pro-grams with pro
edures. The method is parti
ularly suited for supporting these
ure dynami
 loading of applets onto smart
ards and other smart de-vi
es, but dynami
ally re
on�guring distributed systems based on remotepro
edure
all
ommuni
ation also provides a suitable appli
ation area forthe method. Using our veri�
ation method, se
ure dynami
 loading
an bea
hieved through the following s
enario:(1) Spe
ify global se
urity property φ (at stru
tural or behavioural publi
level).(2) For any initially unavailable applet A with publi
 interfa
e I
ontainingpubli
 methods M , spe
ify a lo
al spe
i�
ation σA (at stru
tural publi
level).(3) Compute a maximal applet θI(σA), and verify that this maximal applet,
omposed with the inlining of the already available applets B (with publi
methods N) satis�es φ, i.e., verify θI(σA) ⊎ αN(B) |= φ. This establishesthe
orre
tness of the de
omposition.(4) When applet A be
omes available,
ompute its abstra
tion αM(A) byinlining its private methods, and verify that this abstra
tion respe
ts thelo
al spe
i�
ation, i.e., αM(A) |= σA.Noti
e that we restri
t attention to
ontrol-�ow safety properties. We haveshown appli
ability of this approa
h on an industrial
ase study. To supportthe above s
enario, we have developed the following theoreti
al
ontributions:(1) a logi
al
hara
terisation of simulation, and vi
e versa, a behavioural
hara
terisation of logi
al satisfa
tion (for safety properties) in terms ofmaximal models;(2) adaptation of the maximal model te
hnique to pro
edural programs;(3) a sound and
omplete
ompositional veri�
ation method for pro
eduralprograms; and 52

(4) a behaviour-preserving inlining transformation of pro
edural programs.Future work The program model whi
h forms the basis for our analyses israther abstra
t. We are
urrently investigating how to extend our te
hniquesto �ner program models. In parti
ular, we are
onsidering program models
apturing multi-threading and ex
eptions. Our
ompositional veri�
ation prin-
iple remains valid, as long as the notions of stru
ture and behaviour (and the
orresponding notions of simulation and logi
)
an be extended so that thene
essary te
hni
al
onditions still apply. However, the veri�
ation problemfor the global behavioural property be
omes unde
idable in the presen
e ofmulti-threading [45℄ (when
onsidering the same primitives as in e.g., Java),thus appropriate abstra
tion te
hniques have to be employed for this task(as proposed in e.g., [46,47,48℄). A further extension of signi�
ant interest isadding data to the program model, so that a more pre
ise
ontrol �ow
an bemodelled, and properties over data
an be spe
i�ed. This requires again the useof appropriate abstra
tions in order to retain de
idability of the veri�
ationproblems.In prin
iple, our veri�
ation te
hnique
an be extended to more expressivelogi
s, for example to the full modal µ-
al
ulus. However, adding diamondmodalities and least �xed-point re
ursion to the logi
 requires a more generalnotion of model (and hen
e applet stru
tures and behaviours) in the frame-work; for example, see [26,49℄ for su
h models and
orresponding maximalmodel
onstru
tions.Further, we are investigating under what restri
tions one
an
onstru
t max-imal applets for behavioural properties, thus extending the method to dealwith lo
al behavioural properties. The approa
h we take is to de�ne a transla-tion from behavioural properties into
olle
tions of stru
tural properties, su
hthat any applet that is simulated by a maximal applet for one of the stru
-tural properties satis�es the original behavioural one. Preliminary results inthis dire
tion are presented in [11℄.Referen
es[1℄ Common Criteria.URL http://www.
ommon
riteriaportal.org[2℄ G. Chugunov, L. Fredlund, D. Gurov, Model
he
king of multi-applet JavaCardappli
ations, in: Smart Card Resear
h and Advan
ed Appli
ation Conferen
e(CARDIS '02), USENIX Publi
ations, 2002, pp. 87�95.53

[3℄ J. Esparza, D. Hansel, P. Rossmanith, S. S
hwoon, E�
ient algorithms for model
he
king pushdown systems, in: Computer Aided Veri�
ation (CAV '00), Vol.1855 of LNCS, Springer Verlag, 2000, pp. 232�247.[4℄ F. Besson, T. Jensen, D. L. Métayer, T. Thorn, Model
he
king se
urityproperties of
ontrol �ow graphs, Journal of Computer Se
urity 9(3) (2001)217�250.[5℄ R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, M. Yannakakis,Analysis of re
ursive state ma
hines, ACM TOPLAS 27 (2005) 786�818.[6℄ O. Grumberg, D. Long, Model
he
king and modular veri�
ation, ACMTOPLAS 16(3) (1994) 843�871.[7℄ G. Barthe, D. Gurov, M. Huisman, Compositional veri�
ation of se
ure appletintera
tions, in: Fundamental Approa
hes to Software Engineering (FASE '02),Vol. 2306 of LNCS, Springer Verlag, 2002, pp. 15�32.[8℄ D. Kozen, Results on the propositional µ-
al
ulus, Theoreti
al Computer S
ien
e27 (1983) 333�354.[9℄ A. Bouajjani, J. Fernandez, S. Graf, C. Rodriguez, J. Sifakis, Safety forbran
hing time semanti
s, in: Automata, Languages and Programming (ICALP'91), Vol. 501 of LNCS, Springer Verlag, 1991, pp. 76�92.[10℄ O. Burkart, D. Cau
al, F. Moller, B. Ste�en, Veri�
ation on in�nite stru
tures,in: J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Pro
ess Algebra, NorthHolland, 2000, pp. 545�623.[11℄ D. Gurov, M. Huisman, Redu
ing behavioural to stru
tural properties ofprograms with pro
edures, Te
h. Rep. TRITA-CSC-TCS 2007:3, KTH RoyalInstitute of Te
hnology, Sto
kholm, available online atURL http://www.
s
.kth.se/∼dilian/Papers/te
hrep-07-3.pdf (2007).[12℄ R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot - aJava Optimization Framework, in: CASCON '99, 1999, pp. 125�135.URL http://www.sable.m
gill.
a/soot/[13℄ A. Lal, T. W. Reps, Improving pushdown system model
he
king, in: ComputerAided Veri�
ation (CAV '06), Vol. 4144 of LNCS, Springer Verlag, 2006, pp.343�357.[14℄ R. Alur, K. Etessami, P. Madhusudan, A temporal logi
 for nested
alls andreturns, in: Tools and Algorithms for the Analysis and Constru
tion of Software(TACAS '04), Vol. 2998 of LNCS, Springer Verlag, 2004, pp. 467�481.[15℄ R. Alur, M. Arenas, P. Bar
elo, K. Etessami, N. Immerman, L. Libkin, First-order and temporal logi
s for nested words, in: Logi
 in Computer S
ien
e (LICS'07), IEEE Computer So
iety, Washington, DC, USA, 2007, pp. 151�160.[16℄ W.-P. d. Roever, F. d. Boer, U. Hannemann, J. Hooman, Y. Lakhne
h,M. Poel, J. Zwiers, Con
urren
y Veri�
ation: Introdu
tion to Compositionaland Non
ompositional Methods, No. 54 in Cambridge Tra
ts in Theoreti
alComputer S
ien
e, Cambridge University Press, 2001.54

[17℄ K. Laster, O. Grumberg, Modular model
he
king of software, in: Pro
eedings ofthe 4th International Conferen
e on Tools and Algorithms for Constru
tion andAnalysis of Systems (TACAS '98), Vol. 1384 of LNCS, Springer Verlag, 1998,pp. 20�35.[18℄ R. Alur, R. Grosu, Modular re�nement of hierar
hi
 rea
tive ma
hines, ACMTOPLAS 26 (2004) 339�360.[19℄ O. Ly, Compositional veri�
ation: De
idability issues using graph substitutions,in: Pro
eedings of the 29th Mathemati
al Foundations of Computer S
ien
e(MFCS '04), Vol. 3153 of LNCS, Springer Verlag, 2004, pp. 537�549.[20℄ H. Andersen, Partial model
he
king (extended abstra
t), in: Logi
 in ComputerS
ien
e (LICS '95), IEEE Computer So
iety Press, 1995, pp. 398�407.[21℄ O. Kupferman, M. Vardi, An automata-theoreti
 approa
h to modular model
he
king, ACM TOPLAS 22 (1) (2000) 87�128.[22℄ G. Boudol, K. Larsen, Graphi
al versus logi
al spe
i�
ations, Theoreti
alComputer S
ien
e 106 (1992) 3�20.[23℄ K. Larsen, Modal spe
i�
ations, in: Automati
 Veri�
ation Methods for FiniteState Systems, Vol. 407 of LNCS, Springer Verlag, 1989, pp. 232�246.[24℄ M. Hennessy, R. Milner, Algebrai
 laws for nondeterminism and
on
urren
y,Journal of the ACM 32 (1985) 137�161.[25℄ D. Dams, K. Namjoshi, The existen
e of �nite abstra
tions for bran
hing timemodel
he
king, in: Nineteenth Annual IEEE Symposium on Logi
 in ComputerS
ien
e (LICS '04), IEEE Computer So
iety Press, 2004, pp. 335�344.[26℄ D. Dams, K. Namjoshi, Automata as abstra
tions, in: Veri�
ation, ModelChe
king, and Abstra
t Interpretation (VMCAI '05), Vol. 3385 of LNCS,Springer Verlag, 2005, pp. 216�232.[27℄ M. Goldman, S. Katz, MAVEN: Modular aspe
t veri�
ation, in: Tools andAlgorithms for the Constru
tion and Analysis of Systems (TACAS '07), Vol.4424 of LNCS, Springer Verlag, 2007, pp. 308�322.[28℄ C. Sprenger, D. Gurov, M. Huisman, Compositional veri�
ation for se
ureloading of smart
ard applets, in: Formal Methods and Models for Co-Design(MEMOCODE '04), IEEE Computer So
iety, 2004, pp. 211�222.[29℄ D. Gurov, M. Huisman, Interfa
e abstra
tion for
ompositional veri�
ation,in: Software Engineering and Formal Methods (SEFM '05), IEEE ComputerSo
iety, 2005, pp. 414�423.[30℄ M. Huisman, D. Gurov, C. Sprenger, G. Chugunov, Che
king absen
e of illi
itapplet intera
tions: a
ase study, in: Fundamental Approa
hes to SoftwareEngineering (FASE '04), Vol. 2984 of LNCS, Springer Verlag, 2004, pp. 84�98.[31℄ H. Beki£, De�nable operators in general algebras, and the theory of automataand �ow
harts, Te
h. rep., IBM Laboratory (1967).55

[32℄ C. Stirling, Modal and Temporal Logi
s of Pro
esses, Springer Verlag, 2001.[33℄ A. Tarski, A latti
e-theoreti
al �xpoint theorem and its appli
ations, Pa
i�
Journal of Mathemati
s 5 (1955) 285�310.[34℄ A. Arnold, D. Niwi«ski, Rudiments of µ-
al
ulus, Vol. 146 of Studies in Logi
and the Foundations of Mathemati
s, Elsevier Publishing, 2001.[35℄ I. Walukiewi
z, Pushdown pro
esses: games and model
he
king, in: ComputerAided Veri�
ation (CAV '96), Vol. 1102 of LNCS, 1996, pp. 62�75.[36℄ C. Sprenger, D. Gurov, M. Huisman, Simulation logi
, applets and
ompositionalveri�
ation, Te
h. Rep. RR-4890, INRIA (2003).[37℄ D. Gurov, M. Huisman, Abstra
tion over publi
 interfa
es, Te
h. Rep. RR-5330,INRIA (2004).[38℄ R. Cleaveland, J. Parrow, B. Ste�en, A semanti
s based veri�
ation tool for �nitestate systems, in: International Symposium on Proto
ol Spe
i�
ation, Testingand Veri�
ation, North-Holland Publishing Co., Amsterdam, The Netherlands,The Netherlands, 1990, pp. 287�302.[39℄ D. Polanský, Verifying properties of in�nite-state systems, Master's thesis,Masaryk University, Fa
ulty of Informati
s, Brno (2000).[40℄ A. Bouajjani, J. Esparza, O. Maler, Rea
hability analysis of pushdownautomata: Appli
ation to model-
he
king, in: International Conferen
e onCon
urren
y Theory (CONCUR '97), Vol. 1243 of LNCS, 1997, pp. 135�150.[41℄ E. Bretagne, A. E. Marouani, P. Girard, J.-L. Lanet, PACAP purse and loyaltyspe
i�
ation, Te
h. Rep. V 0.4, Gemplus (2000).[42℄ C. Breunesse, N. Cataño, M. Huisman, B. Ja
obs, Formal methods for smart
ards: an experien
e report, S
ien
e of Computer Programming 55 (1-3) (2005)53�80.[43℄ P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, G. Zanon, Che
king se
ureintera
tions of smart
ard applets, Journal of Computer Se
urity 10 (4) (2002)369�398.[44℄ J. Corbett, M. Dwyer, J. Hat
li�, Robby, A language framework for expressing
he
kable properties of dynami
 software, in: International SPIN Workshop onSPIN Model Che
king and Software Veri�
ation, Vol. 1885 of LNCS, SpringerVerlag, 2000, pp. 205�223.[45℄ G. Ramalingam, Context-sensitive syn
hronization-sensitive analysis isunde
idable, ACM TOPLAS 22 (2) (2000) 416�430.[46℄ A. Bouajjani, J. Esparza, T. Touili, A generi
 approa
h to the stati
 analysis of
on
urrent programs with pro
edures, SIGPLAN Notes 38 (1) (2003) 62�73.[47℄ A. Bouajjani, J. Esparza, S. S
hwoon, J. Strej£ek, Rea
hability analysis ofmultithreaded software with asyn
hronous
ommuni
ation, in: Foundations ofSoftware Te
hnology and Theoreti
al Computer S
ien
e (FSTTCS '05), Vol.3821 of LNCS, Springer Verlag, 2005, pp. 348�359.56

[48℄ S. Qadeer, J. Rehof, Context-bounded model
he
king of
on
urrent software,in: Tools and Algorithms for the Constru
tion and Analysis of Systems (TACAS'05), Vol. 3440 of LNCS, Springer Verlag, 2005, pp. 93�107.[49℄ I. Aktug, D. Gurov, State spa
e representation for veri�
ation of open systems,in: Algebrai
 Methodology And Software Te
hnology (AMAST '06), Vol. 4019of LNCS, Springer Verlag, 2006, pp. 5�20.

57

