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Abstract els. Model checkers based on deductive methods are able to

cope with systems of arbitrary size. However, they require
The verification methodology studied in this paper stems expert knowledge to be taken advantage of.

from investigations on respectively deduction-based inode  |n our case, the models are graphs representing con-
checking and semantics of concurrency. Specifically, wetrol, with edges labelled byransition predicates They
consider imperative programs with CSP-like communica- are extracted from a program text written in the concurrent
tion and use a:ategorical semanties foundation to extract programming |anguagMc inc|uding imperative features
from a program acontrol grapHabelled bytransition pred-  and synchronous message-passing communication infras-
icates This logical content acts as system description for trycture & la CSP [10]. We apply a categorical semantics of
a deduction-based model check#iLTL properties. We il-  the language to extract the transition predicates in cqursti
lustrate the methodology with a concrete realisation imfor a novel approach to the best of our know|edge_ The individ-
of theMc5 verification tool written in Ocaml and using the ual processeand communication channels Occurring in a
theorem prover PVS as back-end. program determine diagramin a category [12] where the

objects are essentially graphs with edges labelled by spans

i.e. pairs of functions with common domain. The composed
1. Introduction behaviour is calculated asliait of this diagram. Finally,

the transition predicates are calculated from the spans by

Formal verification of concurrent systems has been stud-image factorisationthe categorically inclined reader will

ied for more than two decades and is still considered as faridentify the whole construction asraflection This kind
from being simple. The difficulties stem essentially from Of semantics scales up to more complex object-based lan-
the conjunction of two characteristics most concurrent sys guages [21] and has the advantage of bemgpositional
tems exhibit: non-deterministic behaviour on one hand and  Given a model, our set of deduction rules is designed to
huge state spaces on the other. The first characteristicanakeconstruct goroof structurei.e. a graph with nodes labelled
pure proof-theoreticapproaches too tedious. The second with sequentsassociatingcontrol pointswith logical con-
one, also known astate space explosipeliminates even  tent in form of predicates and LTL formulas [14]. Once
state-of-the-art automatimodel-checkingat least as far as  constructed, a proof structuper sedoes in generahot
realistic applications are of concern. One remedy for this represent groof. In order to do so, it needs to be vali-
situation is to get the best of both proof-theoretic aratiel- dated by provingide conditionanddischarge conditions.
theoreticworlds by using model-checking algorithmsdes The former guarantee tfmherenceof the proof structure
cision proceduresvithin a theorem prover [16]. We advo- w.r.t. to the model while the latter guarantee that no run in
cate an alternative approach where model checkers are dethe system is a counterexample to the LTL property to be

vised to operate by application déduction rulesThe lat- proved. Discharge conditions are constructed from a Biichi
ter are designed to incrementally construgiraof object automaton associated to the proof structure along with user
possibly associated to somvalidity conditionsof logical suppliedrankingswhich can be understood as a measure of

nature. The approach is stittodel-basedince the deduc- failure potential. Side conditions and discharge condgio
tion rules in question are formulated w.r.t. a class of mod- are first-order predicates. Due to the nature of the models
*main part of work done while both authors were members of tha-C however'.lt turns out to be.convemem to Worl.( ina hlgher-
puter Networking Laboratory, Swiss Federal Institute affffelogy, Lau- order logic framework. This temporal deduction system is
sanne, Switzerland novel to the best of our knowledge and scales up to CTL*
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Table 1. Well-typed atomic statements.

I'Fp:bool T F stat;: A T'F staty: © A®O: ok

If
I'  if p then stat; else stat; end: A ® O

'Fp:bool T F stat: A

Whi
I' - whilepdo statend : A

'k stat; : A T F staty : © A®0O: ok

Se
q I' F staty;staty : A® O

Table 2. Well-typed compound statements.

and models including fairness constraints [19]. well as the ground function symbols are taken inadgpe-
It is fair to say that this work stems from a productive braic theory[5].
blend of two generally disjoint disciplines. The concepts  The type system reflects the interfaces of the programs

sketched above led us to devise the verification tdob, to their environment. Specifically, two ip’s with matching
written in Ocaml [11] and using PVS [17] as back-end for types may form &hannel TheMCut -rule expresses com-
proving side and discharge conditions. position: its application creates an arbitrary numbeprof

The paper is structured as follows: section 2 elaboratesvatechannels between two processes. In this sevi€at
on the languag®lc and its semantics, section 3 is about roughly corresponds tparallel compositionfollowed by
the temporal deduction system, section 4 presentd/itte hiding as encountered in conventional process calculi like
tool, while concluding remarks are to be found in section 5. CCS [15] or CSP [10].
We include an appendix containing an example proof of a

liveness property. 2.2. Semantics
2. A Concurrent Programming Language In this subsection, we present the semantic concepts un-
derlyingMc.

The concurrent programming languadde acts as input —_—

) . Definition 2.1.
language for the temporal deduction tool to be introduced
in section 4. It is essentially a variant of concurrent Pasca
with message-passing, enriched by a rigorously designed g
theory of types essentially reflecting the connectivityhaf t e€E|l—m
communication channels.

(i) A graphG is pair(E, V') along with
functionsdom,cod : E — V. We writel 5 m
for dom(e) = 1 A cod(e) = m andE (I,m) £

(ii) A relational graph is a grapli = (E,V) s.t. E C

2.1. Syntax VX V.

(iii) A pathrinagraphG = (E,V) is a (finite or infinite)
sequenceney . ..v€;v;41 ... S.t. dome;, = v; and
code; = v;41 for all indicesi. Thetraceof 7 is the
sequence;vs ... v; ... of vertices occurring irr.

The rules for well-typedVic programs in-context are
summarised in tables 1, 2, 3 and 4. Types are lists-of
terface pointsor ip’s, the latter being pairs associating a
type to a name. The operateron types performs list con-
catenation followed by removal of duplicates while tile- Twisted systemare graphs with edges labelled fiyans
judgement (on types as well as on contexts) says that na.e. by pairs of functions with common domain. They rely
name occurs twice. Finally, notice that the ground types asupon the concept of control locations and transitions on one
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Table 3. The composition rule.
I'F stat : A I'F stat : A

Weak Perm
Lz:7F stat : A m [ F stat : mA

Table 4. The structural rules.

hand and on (possibly explicit) state and computation on theProposition 2.2. Let
other. In line with the underlying intuition we dub the graph
control, its verticescontrol pointsand its edgesransitions Osp = (Ospy, Osp,, dom, cod, comp)

Twisted systems are a platform of choice for handling se- po the category having spans as objects and the obvious

mantics of imperative programs with CSP-style message-ripjes of functions as morphisms. The categdriSets)
passing. For instance, tidc-program (without communi- given by the data

cation) ) ) )
e Objects:(G, s) withG = (E, V) a reflexive graph and
X :nat F s: E— Osp,
x 1= 20; . (h,k) .
whilex > O0dox := x — lend : <> [ IV’Orphle‘nS.'(C:7 8) —_— (H7 t) with h = (h07 hl) .
G — H a homomorphism of reflexive graphs and
can be translated to the twisted system E — Osp, s.t. everything commutes in
° 1 N s dom
a‘ N N2 Ospo E ; 4
N 2N N d id «
° ° _ N N om (3
K
e ‘\—/ {0} oo\ Osp: E ho
wa N 1
N
J N cod hy
¢ dom
OSp(] D —— VA
cod
In particular, the program’s syntactic locations are one-
to-one with the control points and each transition carries a e Composition: LK) o (hk) _

computation reflecting an assignment or the evaluation of a

branching condition. Given a twisted system arising from a

meaning of arMc-program, there is a sé? s.t. the labels e Units:id(g,s) = (idg, K1) wherek (e) = idy(.)

of all transitions are of typ® x D — {tt,ff}. D is a prod-

uct where each factor corresponds as usual to an individua

program variable. It is not hard to see how finite limits are calculated in
Labelling of graphs with spans can be formulated in 7 (Sets) and that the constructions can be carried out in

terms of graphs, (lax) functors and (lax) natural transfor- the internal language &ets.

mations determining a categoms (Sets) with finite lim-

its, the latter being the ingredient required for the semantics2.3. Systems

of the MCut-rule [23, 22]. However, a simpler category

7T (Sets) turns out to be more convenient for the present  In this subsection we introduce the format of the systems

setup. to be used by the temporal deduction engine.

(loh, compo (K, K o hy})

{1as finite limits.



Definition 2.3. A system 3.1. Linear-Time Temporal Logic
S =(T,C,D,dom,cod, p) The formulas of linear-time temporal logic (LTL) over

is a graph with edges labelled by predicates where X are given by

dom,cod : T — C are the graph data and : 7' —

Pred (D x D) is the labelling. pu=pleiVealerAwz iU |1V | Xe
Systems determineraflective subcategoyf 7 (Sets)  wherep € Pred(X) is a predicate. As usual, some derived
where the legs of the labelling spans @imtly monici.e. def

connectives can be defined from the basic onesFesg—

they determine a predicate. The basic underlying fact is tha ttUp andGy & V. These formulas are interpreted

logical information can be extracted from a spanitnage over infinite sequences € X“. Foro € X* and a LTL

factorisationusing the familiar corresponden8ab (.5) = formulaw over X . thesatisfaction relatiort= is inductivel
Pred (S) between subsets éf and theirclassifying predi- definuedﬁyv ’ I I lorp=is inductively

cates
ALXLB UI:p |ﬂ: p(r(o)):tt |
3z€X. (a,0)=(f(z),9(x)) 0= ¢1A e !ff o =1 ando = o
— AXDB ! {tt, ff} cEpi Ve Iff olE@0oroE @
. . . — i 1|

In other words, any twisted system admits an associated o =Xy !ﬁ o =Y i
system, canonically. The construction can be carried out o @ Up iff 3keN(o" 2
in the internal language of (the topdSits, essentially a _ andvi < k.o 'f 1)
higher-order logic over a simple type theory. The practice- o=V, iff VE < N-_ (Vi f k.o' & 1)
oriented reader may safely skip this part of the discussion impliesa™” |= ¢

keeping in mind that the relevant constructions can be car-
ried out in a higher-order logic over a simple type theory as
implemented in PVS.

wherec (i) denotes théth position andr! theith suffix of
o. For a predicatg € Pred(C' x D) and a LTL formulag
overC x D, the notatiorp =s ¢ means that alp-runs of

. e - S satisfy¢. For more details on LTL we refer the interested
3. Deductive Temporal Verification reader to [4, 14].

_ We introduce a tablgau—based proof methc_>d for the veri- 3.2. Proof Structures
fication of LTL properties of systems (stemming frdvic-
programs). The method consists of two parts: a set of local
proof rules used to construptoof structuresand a global
discharge conditiorthat serves to establish that a proof
structure is a propeguroof of a property. For the remain-
der of this section, le§ = (T',C, D, dom, cod, p) stand for

an arbitrary but fixed system.

Definition 3.3. A sequentove€ x D is atriplel,p - ®
wherel € C is a control pointp € Pred(C' x D) is a pred-
icate and® is afinite, non-emptget of LTL formulas over
C x D. By abuse of language we use C as predicates
with I(c,d) = ttiff [ = c¢. Asequent,p - & is calledvalid
iflnp E V¢€® ¢. Seq(C, D) is the set of all sequents
Definition 3.1. A run of S is an infinite sequence = overC x D.

(lo,do) -+ (l;,d;) -+ - € (Cx D)¥ of statess.t. foralli € N
there is some € T with [; > I;11 andp(t)(d;, diy1) =
tt. Aruno is ap-runfor p € Pred(C x D) provided
p(lo,dp) = tt. Finally, R (S, p) stands for the set gf-runs

Definition 3.4. Letll = (V,E,v,,n) where(E,V) is a
relational graphp, € V is a distinguished vertex called
rootandrn : V — Seq(C,D) labels vertices with se-
quents.II is aproof structurefor a sequent,p - ¢ w.r.t.

of 5. systemsS providedn(v,) =I,pF ¢ andforallv € V
Definition 3.2. Let S be a system andp,q € .
Pred (C x D). Then (i) v isreachablerom v,
def / 1 (i) if v hasn > 0 successorsy, ..., v, thenn(v) is the
il =¥ (;7(2 s)(//:) (dhd e D). conclusion andy(v, ), . .., (v, ) are the premises of a
¢ = dom (t) A correct instantiation of some rulg of table 5 and the
p(t) (d,d') A side condition of rulek holds

¢ =cod(t) = ¢(c,d) (iii) if (v,v') € E then ruleR(sp) is not applied at both

!
and{p} U {q} = Aicvip} t{q} areHoare triplesw.r.t. S andv

for a transitiont € T' resp. for a set of transitiords C T'. We often writel,,, p, - ®, for n(v).
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Table 5. The local proof rules; in Rule

R(X) we write X @ for {X¢ | ¢ € &} and m4,...,m, is the set of

successor vertices of [ in the control graph.

The aim of a proof structure is to establish the validity of Definition 3.6. Atracer is callednext-freefthe Nextrule

its root sequent. Clause (iii) in definition 3.4 preventsuair

lar propositional reasoning. However, the latter is nemgss
but not sufficient for a proof structure to beeoof (of the
validity of the root sequent). We have to make sure that for-
mulas of the formp; U ¢, eventually satisfy their promises
¢2 which is a non-local condition that cannot be guaranteed
by the construction of a proof structure alone. Therefore,
we need a global criterion to identify proofs.

3.3. Proofs

We formulate a criterion for a proof structufe to be
proof in terms of the language accepted by an automaton
derived fromll and equipped with a generalised Biichi ac-

ceptance condition. For the rest of this section we consider

an arbitrary but fixed proof structute= (V, E, v,., ) W.r.t.
S with root sequengy(v,.) = I,p F ¢.

Definition 3.5. A vertexwv of 11 is called«-safefor a V-
formulay = ¢ V ¢ if @, N {Y, X} # @ andps ¢ @,.
By abuse of language, a tracelinis a trace in the underly-
ing graph and it is)-safeif this is the case elementwise.

R(X) is applied at most at the last vertexmfLet !/, be the

(unigue) control point appearing in labels along a nexé¢-fre

tracer.

Definition 3.7. Let {¢1,...,%,} be the set ofV-
subformulas ofp. Thedischarge automaton

AH d:ef (Q7Q07A7:U‘7'7:)

is given by the data

def

Q@ = {r |7 amaximal nextfree trace inl}

Q = {reQ|n(0)=0v]}

A = () €QxQ]|(x(ln] - 1),7(0)) € B}
p(r) = lw/\/\ogk<\7r|pﬂ(k)

F £ {F,... F.}

whereF; = {r | = note; — safe

A maximal tracer in (A, Q) with 7(0) € Qy is called arun
of AL Such arv is a run over a sequeneec (C x D)*
if u(r(i))(o(i)) = ttforalli < |r|]. The sequence is
acceptedoy A if there is a runr of A s.t. forallF € F
there are infinitely many € N such that(j) € F. The set



of accepted sequences is called tieguage ofA!! and is Soundness and Relative CompletenessOur proof
denoted byC(A™M). method is sound and completdativeto thevalidity of the

) N ) side conditions of the local rules and validity of the dis-
Note that due to the side conditions of the Split and Next charge conditions.

rules there is a run oft!! over any(l A p)-run of the system.

Observe also that an accepting rundf correspondstoa Theorem 3.11. I A p s ¢ if and only if there is a proof

trace inII containing infinitely many)-unsafe vertices for  structurell for [,p = ¢ w.r.t. S and a ranking function

eachV-subformulay of ¢. such that the discharge conditions of Proposition 3.10 hold
for AL

Lemma 3.8. A (I A p)-runo of S accepted byA!! if and

only if o is a counterexample to the validity of the root se- 4. The Mc5 Verification Tool
quentl,p - ¢ OfI1. )

Definition 3.9. A proof structurdl is aproof,if £(A")N In this section we report on our preliminary experi-

R(S,INp) = @. ence with a prototype tool implementing the framework de-
scribed in the previous two sections. Its overall architec-

Definition 3.9 goes in pair with Lemma 3.8 since the lat- ture is displayed in Figure 1. Two basic parts can be dis-

ter carves effectively out those proof structures which can tinguished: (1) d@ront-endconsisting of theMc language

be considered as proofs of the propejty compiler, the proof manager, the tactical language inter-
preter and the graphical user interface, and (2)otiek-end

Discharge Conditions Proposition 3.10 provides us with  theorem prover PVS [17] used to discharge first-order ver-

amethod to establish that a proof structure is a proof. As welfication conditions. The implementation language for the

can apply the well-known construction to transform a gen- front-end is Ocaml [11].

eralised Buchi automatoff| > 0) into a standard Biichi

automaton|(F| = 1) accepting the same language [20], we Mc Compiler The functionality of the back-end w.r.t. a

assume here thé&f is a singleton set. given program is to extract a system from the syntactical in-
formation collected by the parser. In section 2, we argued

Proposition 3.10.  Let IT and A" be as in definition 3.7 that all the underlying constructions can be represented in

exceptthatr = {F'}. Il is a proofifthere is awell-founded  pvs. However, taking the idd#erally from an implemen-

domain(W, <) and a ranking functio: @ — (D — W) tation perspective would result in significant inefficieesi
such that for eacly, r) € A the condition since direct calculation is not possible in PVS but has to be
performed by proving series of lemmas. We therefore opted

{ulg) No(g) = w} T(lg,lr) {n(r) — 6(r) < w} for the following trade-off: graph-related calculationg.e

the limit construction are carried oexplicitly while the la-
belling is handled in aymboliovay,assemblingelevant\-
terms. So what is handed over to the proof manager is an ex-
{ulg) A o(g) = w} Tl 1r) {pu(r) — o(r) 2w} plicit representation of the control grgph and a fﬂnction on
holds ifq ¢ F. edge_s _returning the abs_,tract syntax tre_e _of a predi_cate. Not
surprisingly, we had to implement “optimisations” in form
Intuitively speaking, the ranking function measures Of 3- andé-reductions in order to obtain human-readable
progress towards the non_acceptance of System ruﬂg_[by PVS-terms. Fina”y, it is worth to notice that the Compila-
the ranking is required to decrease at accepting vertiads an tion of individual processes can be done separately and also
to not increase at other vertices. Recall that there is a rundecoupled from the compilation of communicating systems
of A over any(I A p)-run of S. Hence, provided that the  built with such processes. It is possible by virtue of the

holds ifq € F and

discharge conditions hold, the well-foundedneséi&f <) compositionality that a semantics based on twisted systems
implies that no(I A p)-run of the system can be accepted exhibits.
by A™.

It is important to remark that the discharge automaton The Proof Manager This part handles proof structures
Al of a proof structurdl for a safety formulathat is, a and discharge automata by maintaining pheof statein-
formula not containing any-subformulas, always accepts cluding the set of open goals while providing additional
the empty language. The reason is that all vertices of a givenfunctionality like undoing/redoing of elementary proof
strongly connected componentldfares-safe for somé/- steps and postponing the subgoal in focus. When the con-
formula. In other words, a proof structure for a safety struction of a proof structure is finished, the discharge au-
formula is always a proof. tomaton is generated and the user provides an appropriate
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Figure 1. Mc5 Tool Architecture

well-founded relation and ranking functions for the gener- mentary graphical user interface for our tool. It is curhent
ation of the discharge conditions. Side conditions as well used only for displaying system specifications, proof struc
as discharge conditions are proved using PVS. The inter-tures and discharge automata.

action with PVS is very rudimentary in this first prototype

implementation in that all verification conditions are gabs 5 Concluding Remarks

to PVS in the form of a theory file. In particular, there is no
interaction with PVS during the construction of the proof

structure. We propose a verification methodology building on orig-

inal results in the relevant fields of semantics of concur-

rency respectively deduction-based model checking. Model
Tactics and Tacticals The manipulation of proof struc-  generation relies on a novel categorical semantics of pro-
tures is done via a tactics module providing the user with cesses with synchronous communication. The semantics is
a simple but powerful interface. The basic proof rules are compositional, which has to be contrasted with other ap-
mapped to tactics and there is a number of standard tacticalproaches known in the literature [14]. The deduction sys-
i.e. higher-order tactics. In the current state of develepin  tem, presented here in a version geared towards the class
the tactical commands are directly interpreted by the Ocamlof models under consideration, extends the model checker
shell. In order not to falsify the generated discharge aatom presented in [1] to cope with infinite-state systems. Al-
ton, we keep all intermediate subgoals a tactic may producethough stemming from usually separated areas of computer

by making the basic proof rules directly act on the state of science, those results coalesce smoothly as documented by
the proof structure. Each tactic returns themberof new the discussed application, tMe5 verification tool.

subgoals. Counting the numbkrof basic rules applied to
the proof structure by a tactic allows us to undo the effects rajated Work Expressing a system of communicating

of the latter in case of failure by calling the undo method of processes as diagram and the composed behaviour as its
the proof structur: times. In case of successjs pushed  jinit goes back to Goguen’s work in the late seventies [9].
onto a stack thus implementing a simple tactics-level undo g ing1on recently refined the idea by introducing twisted
facility. systems in his doctoral dissertation [8] and in [7]. The sec-

ond author of the present paper applied a slightly simplified
Graphical User Interface The DaVinci graph visualisa-  version of the setup to the semantics of a concurrent pro-
tion tool [6] has proved to be extremely helpful as a rudi- gramming language based antive objectand made the



link with conventional operational semantics precise [21]
Closest to our work on verification are the diagram-based
techniques of deductive model checking (DMC) [18] and
generalised verification diagrams (GVDSs) [3, 13]. They use
automata (calledliagramg very similar to our discharge

automata. In contrast to our method, DMC repeateelly

finesan initial diagram by applying transformations pre-
serving theinvariant that each diagram accepts all poten-
tial counterexamples of the system. It is noteworthy that
discharge automata satisfy this invariant (cf. Lemma 3.8)

(3]

(4]
(5]
(6]

and can hence be refined using DMC transformations. The [7]

GVD method consists of the construction of an abstraction
of the system, followed by automatic model checking of

(8]

I. A. Browne, Z. Manna, and H. B. Sipma. Generalized
temporal verification diagrams. Foundations of Software
Technology and Theoretical Computer Science, FSTTCS
'95, Bangalore, India volume 1026 ofLecture Notes in
Computer Sciencgages 484—-498. Springer-Verlag, 1995.
E. M. Clarke, O. Grumberg, and D. Pelddodel Checking
The MIT Press, 1999.

R. L. Crole. Categories for TypesCambridge University
Press, 1993.

daVinci home page http://www.tzi.de/daVinci ,
2001. University of Bremen, Germany.

L. Erington. On the semantics of message passing presess
In Proceedings of CTCS99999.

L. Erington. Twisted SystemsPhD thesis, Department of
Computing, Imperial College, London, 1999.

the property on the abstraction. Whereas GVDs can be con- 9] j. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial

structed independently of the property to be verified, afproo

structure can be seen as an abstraction that is constructed
hand-in-hand with the tableau of the property and is thus [10]

tailored to the latter.

Future Work Clearly, a lot of work remains to be done.

The most apparent limitation of the current prototype is its
lack of automation. Automatic invariant generation tech-
nigues [2] could be applied with great benefit to produce the

[11]
[12]

[13]

predicates to be supplied to the Next rule. These need to be
strong enough for the discharge conditions to be provable.[14]

At the same time the discharge conditions could be weak-

ened by replacing the acceptance condition by an equivalent{15]

(language-preserving) one with less accepting states

Another issue concerns the condition for looping back to
an existing vertex in the proof structure. The currentimple

mentation requires that a sequent generated by @&qulals

a sequent already present. Equality is a much too strong

condition on predicates and should be replacedripfica-

tion. Each new subgoal should be checked automatically
against loopback candidates using for example PVS’ batch

mode.

16]

The interaction with PVS needs a more interactive shape. [17]

In particular, side conditions should be submitted to PVS
immediately in an attempt to prove them automatically and

feedback about their status should be handed back from[ls]

PVS to the proof manager.
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2003. To appear. In this case, all side conditions validating this proof
structure (totally 9) are proved without user interventisn
ing PVS’sgrind command.

Having constructed the proof structure, the next step is to
i i . generate the derived discharge automaton (see Figure 4). It

As a simple example consider the program below. ItiS yefiects the structure of the system: each node corresponds
built from two processes? and@, running in parallel and 1 5 control point and each transition to a transition of the
communicating over a synchronous channel. Control po'”tssysten%. As there is nov-subformula in the property for-
are commented as a and b/nand by x, y and z irQ). mula, all states of the automaton are accepting. Let us call
its nodesax, by andbz according to the associated control
points.

Clearly, all sequences of states accepted by this automa-
ton violate our property, sincg < n holds in all states of
such a sequence. Contemplating the automaton for a mo-
ment, we easily come up with the rankings

A. Example

P = x:nat F while true do
(*a*) cp!x+x;

(*b*) cp?x
end : <cp:nat>

Q = y:nat I while true do

*X* C f) , ]
E*y*g y?:yy'i'l' (53)((3373]) ::: lex2(n—y71)
(*z*) cqly 6by(x7y) d:f lex2(n —y,0)
end : <cg:nat> boel,y) = Llex2(n—y,2)
For the parallel compositionS = x,y : nat +  Wherelex2 isaPVS function mapping a lexicographically

(P |lep < cq| Q) <> we verify that the variable grows ordered pair of natural numbers to (the PVS representation
without bound whenever equalsy in the initial state. The of) an ordinal. The first argument measures the distance

liveness property of unbounded growth is expressed in LTL bétweeny andn, while the second one measures progress
by the formula to the next decrease of the first component.

6=F(y>n) As an example, for the automaton transition frbyrto

) ) ) bz the tool generates the PVS discharge condftion
wheren is an arbitrary but fixed parameter.

Model Generation The control graph with control points (FORALL (pe:string),(x:nat),(y:nat),
called ax, by and bz of the system generated byNtue (pcstring),(x:nat), (y':nat).
compiler is shown in Figure 2. ((pc = “by”) AND (y = (X + X))

AND NOT(y > n) AND (x = X)
AND (y + 1 =vy)

x| AND (pc’ = “bz’)
AND (y' = X + X + 1)

AND NOT(y' > n))
IMPLIES

bz | (lex2(n -y, 0) >

lex2(n -y, 2)))

Figure 2. Control graph of system specifica- which is easily seen to be valid. All of the totally three
tion discharge conditions are proved in PVS without user inter-
vention using the commargtind

while the transition predicates labeling the edges are

! [—
ax —by = ¥ =rAy =T+ 2Terminal nodes with no outgoing edges can safely be remoithdut
by —bz — z'=zAy =y+1 changing the language accepted by the automaton.
bz—ax — 2’ =yAy' =y 3slightly edited to improve readability



ax, (y=x)|-F(y>n)

[ axy=0iy>mxFy>n |

ax, (y>n-(y>m,XFiy>n) | | ax((y=x)ANDNOT(y>m) |-(y>n),XF(y>n) |

\4
| ax, ((y = x) AND NOT((y > n))) |- XF (y>n) |

v
[ oy y=x+x)1-Fy>n) |

v
[ broy=xox)-y>mxFiy>n |

— T~

by, (y>m I-(y>n), XF(y>n | [ by, (y=(x+x) ANDNOT(ty >n) |- (y>n), XF(y>n) |

v
[ by, (y=(x+x) ANDNOT(y > ) - XF(y>n) |

v
[ bzy=@x+x+)-Fy>nm |

v
[ bzy=@x+x+0)->nXFiy>n |

— T~

bz, (y>n) |- (y>n), XF(y>n) | | bz, ((y = ((x +x) + 1)) AND NOT((y > n))) |- (y > n), XF (y > n)

bz, ((y = ((x + x) + 1)) AND NOT((y > n))) |- XF (y > n)

Figure 3. Proof Structure

{5,6,8,9}: (((pc =by’) AND (y = (x + x))) AND ((y = (x + x)) AND NOT((y > n))))

/

{10,11,13,14}: (((pc = "bz’) AND (y = ((x + x) + 1))) AND ((y = ((x + X) + 1)) AND NOT((y > n})))

\

| {0,1,3,4} (init): (((pc = ’ax’) AND (y = x)) AND ((y = x) AND NOT((y > n))))

Figure 4. Discharge automaton



