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Abstract

The verification methodology studied in this paper stems
from investigations on respectively deduction-based model
checking and semantics of concurrency. Specifically, we
consider imperative programs with CSP-like communica-
tion and use acategorical semanticsas foundation to extract
from a program acontrol graphlabelled bytransition pred-
icates. This logical content acts as system description for
a deduction-based model checkerof LTL properties. We il-
lustrate the methodology with a concrete realisation in form
of theMc5 verification tool written in Ocaml and using the
theorem prover PVS as back-end.

1. Introduction

Formal verification of concurrent systems has been stud-
ied for more than two decades and is still considered as far
from being simple. The difficulties stem essentially from
the conjunction of two characteristics most concurrent sys-
tems exhibit: non-deterministic behaviour on one hand and
huge state spaces on the other. The first characteristic makes
pure proof-theoreticapproaches too tedious. The second
one, also known asstate space explosion, eliminates even
state-of-the-art automaticmodel-checking, at least as far as
realistic applications are of concern. One remedy for this
situation is to get the best of both proof-theoretic andmodel-
theoreticworlds by using model-checking algorithms asde-
cision procedureswithin a theorem prover [16]. We advo-
cate an alternative approach where model checkers are de-
vised to operate by application ofdeduction rules. The lat-
ter are designed to incrementally construct aproof object,
possibly associated to somevalidity conditionsof logical
nature. The approach is stillmodel-basedsince the deduc-
tion rules in question are formulated w.r.t. a class of mod-�main part of work done while both authors were members of the Com-
puter Networking Laboratory, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland

els. Model checkers based on deductive methods are able to
cope with systems of arbitrary size. However, they require
expert knowledge to be taken advantage of.

In our case, the models are graphs representing con-
trol, with edges labelled bytransition predicates. They
are extracted from a program text written in the concurrent
programming languageMc including imperative features
and synchronous message-passing communication infras-
tructure à la CSP [10]. We apply a categorical semantics of
the language to extract the transition predicates in question,
a novel approach to the best of our knowledge. The individ-
ual processesand communication channels occurring in a
program determine adiagramin a category [12] where the
objects are essentially graphs with edges labelled by spans
i.e. pairs of functions with common domain. The composed
behaviour is calculated as alimit of this diagram. Finally,
the transition predicates are calculated from the spans by
image factorisation, the categorically inclined reader will
identify the whole construction as areflection. This kind
of semantics scales up to more complex object-based lan-
guages [21] and has the advantage of beingcompositional.

Given a model, our set of deduction rules is designed to
construct aproof structurei.e. a graph with nodes labelled
with sequentsassociatingcontrol pointswith logical con-
tent in form of predicates and LTL formulas [14]. Once
constructed, a proof structureper sedoes in generalnot
represent aproof. In order to do so, it needs to be vali-
dated by provingside conditionsanddischarge conditions.
The former guarantee thecoherenceof the proof structure
w.r.t. to the model while the latter guarantee that no run in
the system is a counterexample to the LTL property to be
proved. Discharge conditions are constructed from a Büchi
automaton associated to the proof structure along with user-
suppliedrankings,which can be understood as a measure of
failure potential. Side conditions and discharge conditions
are first-order predicates. Due to the nature of the models
however, it turns out to be convenient to work in a higher-
order logic framework. This temporal deduction system is
novel to the best of our knowledge and scales up to CTL*
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Table 1. Well-typed atomic statements.

If
� ` p : bool � ` stat1 : � � ` stat2 : � �
� : ok� ` if p then stat1 else stat2 end : �
�

Whl
� ` p : bool � ` stat : �� ` while p do stat end : �

Seq
� ` stat1 : � � ` stat2 : � �
� : ok� ` stat1; stat2 : �
�

Table 2. Well-typed compound statements.

and models including fairness constraints [19].
It is fair to say that this work stems from a productive

blend of two generally disjoint disciplines. The concepts
sketched above led us to devise the verification toolMc5,
written in Ocaml [11] and using PVS [17] as back-end for
proving side and discharge conditions.

The paper is structured as follows: section 2 elaborates
on the languageMc and its semantics, section 3 is about
the temporal deduction system, section 4 presents theMc5
tool, while concluding remarks are to be found in section 5.
We include an appendix containing an example proof of a
liveness property.

2. A Concurrent Programming Language

The concurrent programming languageMc acts as input
language for the temporal deduction tool to be introduced
in section 4. It is essentially a variant of concurrent Pascal
with message-passing, enriched by a rigorously designed
theory of types essentially reflecting the connectivity of the
communication channels.

2.1. Syntax

The rules for well-typedMc programs in-context are
summarised in tables 1, 2, 3 and 4. Types are lists ofin-
terface pointsor ip’s, the latter being pairs associating a
type to a name. The operator
 on types performs list con-
catenation followed by removal of duplicates while theok -
judgement (on types as well as on contexts) says that no
name occurs twice. Finally, notice that the ground types as

well as the ground function symbols are taken in analge-
braic theory[5].

The type system reflects the interfaces of the programs
to their environment. Specifically, two ip’s with matching
types may form achannel. TheMCut -rule expresses com-
position: its application creates an arbitrary number ofpri-
vatechannels between two processes. In this sense,MCut
roughly corresponds toparallel compositionfollowed by
hiding as encountered in conventional process calculi like
CCS [15] or CSP [10].

2.2. Semantics

In this subsection, we present the semantic concepts un-
derlyingMc.

Definition 2.1. (i) A graphG is pair(E; V ) along with
functionsdom; 
od : E ! V . We write l e�! m
for dom (e) = l ^ 
od (e) = m andE (l;m) def=ne 2 E j l e�! mo

(ii) A relational graph is a graphG = (E; V ) s.t. E �V � V .

(iii) A path� in a graphG = (E; V ) is a (finite or infinite)
sequencev1e1 : : : vieivi+1 : : : s.t. domei = vi and
od ei = vi+1 for all indicesi. The trace of � is the
sequencev1v2 : : : vi : : : of vertices occurring in�.

Twisted systemsare graphs with edges labelled byspans
i.e. by pairs of functions with common domain. They rely
upon the concept of control locations and transitions on one



MCut

� ` stat1 : h�; 
1 : �1; � � � ; 
n : �ni �
� : ok� ` stat2 : h�; d1 : �1; � � � ; dn : �ni �; � : ok�; � ` stat1 k
1 � d1; : : : ; 
n � dnk stat2 : �
�
Table 3. The composition rule.

Weak
� ` stat : ��; x : � ` stat : � Perm

� ` stat : ��1� ` stat : �2�
Table 4. The structural rules.

hand and on (possibly explicit) state and computation on the
other. In line with the underlying intuition we dub the graph
control, its verticescontrol pointsand its edgestransitions.
Twisted systems are a platform of choice for handling se-
mantics of imperative programs with CSP-style message-
passing. For instance, theMc-program (without communi-
cation) x : nat `x := 20;while x > 0 do x := x� 1end : hi
can be translated to the twisted system
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In particular, the program’s syntactic locations are one-
to-one with the control points and each transition carries a
computation reflecting an assignment or the evaluation of a
branching condition. Given a twisted system arising from a
meaning of anMc-program, there is a setD s.t. the labels
of all transitions are of typeD�D ! ftt;�g. D is a prod-
uct where each factor corresponds as usual to an individual
program variable.

Labelling of graphs with spans can be formulated in
terms of graphs, (lax) functors and (lax) natural transfor-
mations determining a categoryTs (Sets) with finite lim-
its, the latter being the ingredient required for the semantics
of the MCut -rule [23, 22]. However, a simpler categoryT (Sets) turns out to be more convenient for the present
setup.

Proposition 2.2. LetOsp = (Osp0;Osp1; dom; 
od; 
omp)
be the category having spans as objects and the obvious
triples of functions as morphisms. The categoryT (Sets)
given by the data� Objects:(G; s) withG = (E; V ) a reflexive graph ands : E ! Osp0� Morphisms:(G; s) (h;�)���! (H; t) with h = (h0; h1) :G ! H a homomorphism of reflexive graphs and� :E ! Osp1 s.t. everything commutes in

Osp0 E

Osp1 E

Osp0 E′

V

V ′

s

κ

t

cod

dom id

h1

h0

dom

cod

dom

cod� Composition: (l; �0) Æ (h; �) =(l Æ h; 
omp Æ h�; �0 Æ h1i)� Units: id(G;s) = (idG; K1) whereK1 (e) = ids(e)
has finite limits.

It is not hard to see how finite limits are calculated inT (Sets) and that the constructions can be carried out in
the internal language ofSets.
2.3. Systems

In this subsection we introduce the format of the systems
to be used by the temporal deduction engine.



Definition 2.3. A systemS = (T;C;D; dom; 
od; �)
is a graph with edges labelled by predicates wheredom; 
od : T ! C are the graph data and� : T !Pred (D �D) is the labelling.

Systems determine areflective subcategoryof T (Sets)
where the legs of the labelling spans arejointly monic i.e.
they determine a predicate. The basic underlying fact is that
logical information can be extracted from a span byimage
factorisationusing the familiar correspondenceSub (S) �=Pred (S) between subsets ofS and theirclassifying predi-
cates:A f � X g�! B7! A�B 9x2X: (a;b)=(f(x);g(x))���������������! ftt;�g
In other words, any twisted system admits an associated
system, canonically. The construction can be carried out
in the internal language of (the topos)Sets, essentially a
higher-order logic over a simple type theory. The practice-
oriented reader may safely skip this part of the discussion
keeping in mind that the relevant constructions can be car-
ried out in a higher-order logic over a simple type theory as
implemented in PVS.

3. Deductive Temporal Verification

We introduce a tableau-based proof method for the veri-
fication of LTL properties of systems (stemming fromMc-
programs). The method consists of two parts: a set of local
proof rules used to constructproof structuresand a global
discharge conditionthat serves to establish that a proof
structure is a properproof of a property. For the remain-
der of this section, letS = (T;C;D; dom; 
od; �) stand for
an arbitrary but fixed system.

Definition 3.1. A run of S is an infinite sequence� =(l0; d0) � � � (li; di) � � � 2 (C�D)! of statess.t. for alli 2 N
there is somet 2 T with li t! li+1 and�(t)(di; di+1) =tt. A run � is a p-run for p 2 Pred(C � D) providedp (l0; d0) = tt. Finally,R (S; p) stands for the set ofp-runs
of S.

Definition 3.2. Let S be a system andp; q 2Pred (C �D). Thenfpg t fqg def= 8 (
; 
0 2 C) ; (d; d0 2 D) :p (
; d)^
 = dom (t)^� (t) (d; d0)^
0 = 
od (t) ) q (
0; d0)
andfpgU fqg def= Vt2Ufpg t fqg areHoare triplesw.r.t. S
for a transitiont 2 T resp. for a set of transitionsU � T .

3.1. Linear-Time Temporal Logic

The formulas of linear-time temporal logic (LTL) overX are given by' ::= p j '1 _ '2 j '1 ^ '2 j '1 U'2 j '1 V'2 j X'
wherep 2 Pred(X) is a predicate. As usual, some derived
connectives can be defined from the basic ones, e.g.F' def=tt U' andG' def= � V'. These formulas are interpreted
over infinite sequences� 2 X!. For � 2 X! and a LTL
formula' overX , thesatisfaction relationj= is inductively
defined by� j= p iff p(�(0)) = tt� j= '1 ^ '2 iff � j= '1 and� j= '2� j= '1 _ '2 iff � j= '1 or � j= '2� j= X iff �1 j=  � j= '1 U'2 iff 9k 2 N: (�k j= '2

and8i < k: �i j= '1)� j= '1 V'2 iff 8k 2 N: (8i < k: �i 6j= '1)
implies�k j= '2

where�(i) denotes theith position and�i the ith suffix of�. For a predicatep 2 Pred(C �D) and a LTL formula�
overC �D, the notationp j=S � means that allp-runs ofS satisfy�. For more details on LTL we refer the interested
reader to [4, 14].

3.2. Proof Structures

Definition 3.3. A sequent overC �D is a triplel; p ` �
wherel 2 C is a control point,p 2 Pred(C �D) is a pred-
icate and� is afinite, non-emptyset of LTL formulas overC � D. By abuse of language we usel 2 C as predicates
with l(
; d) = tt iff l = 
. A sequentl; p ` � is calledvalid
if l ^ p j= W�2� �. Seq (C;D) is the set of all sequents
overC �D.

Definition 3.4. Let � = (V;E; vr ; �) where(E; V ) is a
relational graph,vr 2 V is a distinguished vertex called
root and � : V ! Seq (C;D) labels vertices with se-
quents.� is a proof structurefor a sequentl; p ` � w.r.t.
systemS provided�(vr) = l; p ` � and for allv 2 V
(i) v is reachablefrom vr
(ii) if v hasn � 0 successorsv1; : : : ; vn then�(v) is the

conclusion and�(v1); : : : ; �(vn) are the premises of a
correct instantiation of some ruleR of table 5 and the
side condition of ruleR holds

(iii) if (v; v0) 2 E then ruleR(sp) is not applied at bothv
andv0

We often writelv; pv ` �v for �(v).



R(ax) l; p ` �; p�R(bsf) l; p ` �; ql; p ` � (l ^ p)! :qR(_) l; p ` �; �1 _ �2l; p ` �; �1; �2R(^) l; p ` �; �1 ^ �2l; p ` �; �1 l; p ` �; �2R(U) l; p ` �; �1 U�2l; p ` �; �2; �1 l; p ` �; �2;X(�1 U�2)R(V) l; p ` �; �1 V �2l; p ` �; �2 l; p ` �; �1;X(�1 V �2)R(X) l; p ` X�m1; q1 ` � � � � mn; qn ` � fpgT (l;mi) fqig for all iR(sp) l; p ` �l; q1 ` � � � � l; qn ` � (l ^ p)! Wni=1 qi
Table 5. The local proof rules; in Rule R(X) we write X� for fX� j � 2 �g and m1; : : : ;mn is the set of
successor vertices of l in the control graph.

The aim of a proof structure is to establish the validity of
its root sequent. Clause (iii) in definition 3.4 prevents circu-
lar propositional reasoning. However, the latter is necessary
but not sufficient for a proof structure to be aproof (of the
validity of the root sequent). We have to make sure that for-
mulas of the form�1 U�2 eventually satisfy their promises�2 which is a non-local condition that cannot be guaranteed
by the construction of a proof structure alone. Therefore,
we need a global criterion to identify proofs.

3.3. Proofs

We formulate a criterion for a proof structure� to be
proof in terms of the language accepted by an automaton
derived from� and equipped with a generalised Büchi ac-
ceptance condition. For the rest of this section we consider
an arbitrary but fixed proof structure� = (V;E; vr; �)w.r.t.S with root sequent�(vr) = l; p ` �.

Definition 3.5. A vertexv of � is called -safefor a V-
formula = �1 V �2 if �v \ f ;X g 6= ? and�2 62 �v .
By abuse of language, a trace in� is a trace in the underly-
ing graph and it is -safeif this is the case elementwise.

Definition 3.6. A trace� is callednext-freeif the Next ruleR(X) is applied at most at the last vertex of�. Let l� be the
(unique) control point appearing in labels along a next-free
trace�.

Definition 3.7. Let f 1; : : : ;  ng be the set ofV-
subformulas of�. Thedischarge automatonA� def= (Q;Q0;�; �;F)
is given by the dataQ def= f� j � a maximal next�free trace in�gQ0 def= f� 2 Q j �(0) = vrg� def= f(�; �0) 2 Q�Q j (�(j�j � 1); �0(0)) 2 Eg�(�) def= l� ^V0�k<j�j p�(k)F def= fF1; : : : ; Fng

whereFi def= f� j � not i � safeg
A maximal tracer in (�; Q) with r(0) 2 Q0 is called arun
ofA�. Such anr is a run over a sequence� 2 (C �D)!
if �(r(i))(�(i)) = tt for all i < jrj. The sequence� is
acceptedbyA� if there is a runr of A� s.t. for allF 2 F
there are infinitely manyj 2 N such thatr(j) 2 F . The set



of accepted sequences is called thelanguage ofA� and is
denoted byL(A�).

Note that due to the side conditions of the Split and Next
rules there is a run ofA� over any(l^p)-run of the system.
Observe also that an accepting run ofA� corresponds to a
trace in� containing infinitely many -unsafe vertices for
eachV-subformula of �.

Lemma 3.8. A (l ^ p)-run � of S accepted byA� if and
only if � is a counterexample to the validity of the root se-
quentl; p ` � of �.

Definition 3.9. A proof structure� is aproof, if L(A�)\R(S; l ^ p) = ?.

Definition 3.9 goes in pair with Lemma 3.8 since the lat-
ter carves effectively out those proof structures which can
be considered as proofs of the property�.

Discharge Conditions Proposition 3.10 provides us with
a method to establish that a proof structure is a proof. As we
can apply the well-known construction to transform a gen-
eralised Büchi automaton (jFj � 0) into a standard Büchi
automaton (jFj = 1) accepting the same language [20], we
assume here thatF is a singleton set.

Proposition 3.10. Let � andA� be as in definition 3.7
except thatF = fFg. � is a proof if there is a well-founded
domain(W;�) and a ranking functionÆ : Q ! (D ! W )
such that for each(q; r) 2 � the conditionf�(q) ^ Æ(q) = wg T (lq; lr) f�(r)! Æ(r) � wg
holds if q 2 F andf�(q) ^ Æ(q) = wg T (lq; lr) f�(r)! Æ(r) � wg
holds if q 62 F .

Intuitively speaking, the ranking function measures
progress towards the non-acceptance of system runs byA�:
the ranking is required to decrease at accepting vertices and
to not increase at other vertices. Recall that there is a run
of A� over any(l ^ p)-run ofS. Hence, provided that the
discharge conditions hold, the well-foundedness of(W;�)
implies that no(l ^ p)-run of the system can be accepted
byA�.

It is important to remark that the discharge automatonA� of a proof structure� for a safety formula, that is, a
formula not containing anyU-subformulas, always accepts
the empty language. The reason is that all vertices of a given
strongly connected component of� are -safe for someV-
formula . In other words, a proof structure for a safety
formula is always a proof.

Soundness and Relative CompletenessOur proof
method is sound and completerelativeto thevalidity of the
side conditions of the local rules and validity of the dis-
charge conditions.

Theorem 3.11. l ^ p j=S � if and only if there is a proof
structure� for l; p ` � w.r.t. S and a ranking functionÆ
such that the discharge conditions of Proposition 3.10 hold
forA�.

4. The Mc5 Verification Tool

In this section we report on our preliminary experi-
ence with a prototype tool implementing the framework de-
scribed in the previous two sections. Its overall architec-
ture is displayed in Figure 1. Two basic parts can be dis-
tinguished: (1) afront-endconsisting of theMc language
compiler, the proof manager, the tactical language inter-
preter and the graphical user interface, and (2) theback-end
theorem prover PVS [17] used to discharge first-order ver-
ification conditions. The implementation language for the
front-end is Ocaml [11].

Mc Compiler The functionality of the back-end w.r.t. a
given program is to extract a system from the syntactical in-
formation collected by the parser. In section 2, we argued
that all the underlying constructions can be represented in
PVS. However, taking the idealiterally from an implemen-
tation perspective would result in significant inefficiencies
since direct calculation is not possible in PVS but has to be
performed by proving series of lemmas. We therefore opted
for the following trade-off: graph-related calculations e.g.
the limit construction are carried outexplicitly while the la-
belling is handled in asymbolicway,assemblingrelevant�-
terms. So what is handed over to the proof manager is an ex-
plicit representation of the control graph and a function on
edges returning the abstract syntax tree of a predicate. Not
surprisingly, we had to implement “optimisations” in form
of �- andÆ-reductions in order to obtain human-readable
PVS-terms. Finally, it is worth to notice that the compila-
tion of individual processes can be done separately and also
decoupled from the compilation of communicating systems
built with such processes. It is possible by virtue of the
compositionality that a semantics based on twisted systems
exhibits.

The Proof Manager This part handles proof structures
and discharge automata by maintaining theproof statein-
cluding the set of open goals while providing additional
functionality like undoing/redoing of elementary proof
steps and postponing the subgoal in focus. When the con-
struction of a proof structure is finished, the discharge au-
tomaton is generated and the user provides an appropriate
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well-founded relation and ranking functions for the gener-
ation of the discharge conditions. Side conditions as well
as discharge conditions are proved using PVS. The inter-
action with PVS is very rudimentary in this first prototype
implementation in that all verification conditions are passed
to PVS in the form of a theory file. In particular, there is no
interaction with PVS during the construction of the proof
structure.

Tactics and Tacticals The manipulation of proof struc-
tures is done via a tactics module providing the user with
a simple but powerful interface. The basic proof rules are
mapped to tactics and there is a number of standard tacticals
i.e. higher-order tactics. In the current state of development,
the tactical commands are directly interpreted by the Ocaml
shell. In order not to falsify the generated discharge automa-
ton, we keep all intermediate subgoals a tactic may produce
by making the basic proof rules directly act on the state of
the proof structure. Each tactic returns thenumberof new
subgoals. Counting the numberk of basic rules applied to
the proof structure by a tactic allows us to undo the effects
of the latter in case of failure by calling the undo method of
the proof structurek times. In case of success,k is pushed
onto a stack thus implementing a simple tactics-level undo
facility.

Graphical User Interface The DaVinci graph visualisa-
tion tool [6] has proved to be extremely helpful as a rudi-

mentary graphical user interface for our tool. It is currently
used only for displaying system specifications, proof struc-
tures and discharge automata.

5. Concluding Remarks

We propose a verification methodology building on orig-
inal results in the relevant fields of semantics of concur-
rency respectively deduction-based model checking. Model
generation relies on a novel categorical semantics of pro-
cesses with synchronous communication. The semantics is
compositional, which has to be contrasted with other ap-
proaches known in the literature [14]. The deduction sys-
tem, presented here in a version geared towards the class
of models under consideration, extends the model checker
presented in [1] to cope with infinite-state systems. Al-
though stemming from usually separated areas of computer
science, those results coalesce smoothly as documented by
the discussed application, theMc5 verification tool.

Related Work Expressing a system of communicating
processes as diagram and the composed behaviour as its
limit goes back to Goguen’s work in the late seventies [9].
Errington recently refined the idea by introducing twisted
systems in his doctoral dissertation [8] and in [7]. The sec-
ond author of the present paper applied a slightly simplified
version of the setup to the semantics of a concurrent pro-
gramming language based onactive objectsand made the



link with conventional operational semantics precise [21].
Closest to our work on verification are the diagram-based

techniques of deductive model checking (DMC) [18] and
generalised verification diagrams (GVDs) [3, 13]. They use
automata (calleddiagrams) very similar to our discharge
automata. In contrast to our method, DMC repeatedlyre-
finesan initial diagram by applying transformations pre-
serving theinvariant that each diagram accepts all poten-
tial counterexamples of the system. It is noteworthy that
discharge automata satisfy this invariant (cf. Lemma 3.8)
and can hence be refined using DMC transformations. The
GVD method consists of the construction of an abstraction
of the system, followed by automatic model checking of
the property on the abstraction. Whereas GVDs can be con-
structed independently of the property to be verified, a proof
structure can be seen as an abstraction that is constructed
hand-in-hand with the tableau of the property and is thus
tailored to the latter.

Future Work Clearly, a lot of work remains to be done.
The most apparent limitation of the current prototype is its
lack of automation. Automatic invariant generation tech-
niques [2] could be applied with great benefit to produce the
predicates to be supplied to the Next rule. These need to be
strong enough for the discharge conditions to be provable.
At the same time the discharge conditions could be weak-
ened by replacing the acceptance condition by an equivalent
(language-preserving) one with less accepting states1.

Another issue concerns the condition for looping back to
an existing vertex in the proof structure. The current imple-
mentation requires that a sequent generated by a ruleequals
a sequent already present. Equality is a much too strong
condition on predicates and should be replaced byimplica-
tion. Each new subgoal should be checked automatically
against loopback candidates using for example PVS’ batch
mode.

The interaction with PVS needs a more interactive shape.
In particular, side conditions should be submitted to PVS
immediately in an attempt to prove them automatically and
feedback about their status should be handed back from
PVS to the proof manager.
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A. Example

As a simple example consider the program below. It is
built from two processes,P andQ, running in parallel and
communicating over a synchronous channel. Control points
are commented as a and b inP and by x, y and z inQ.P = x:nat ` while true do

(*a*) cp!x+x;
(*b*) cp?x

end : <cp:nat>Q = y:nat ` while true do
(*x*) cq?y;
(*y*) y:=y+1;
(*z*) cq!y

end : <cq:nat>

For the parallel compositionS = x; y : nat `(P k
p � 
qk Q) <> we verify that the variabley grows
without bound wheneverx equalsy in the initial state. The
liveness property of unbounded growth is expressed in LTL
by the formula � = F(y � n)
wheren is an arbitrary but fixed parameter.

Model Generation The control graph with control points
called ax, by and bz of the system generated by theMc
compiler is shown in Figure 2.

ax

by

bz

Figure 2. Control graph of system specifica-
tion

while the transition predicates labeling the edges areax! by 7! x0 = x ^ y0 = x+ xby! bz 7! x0 = x ^ y0 = y + 1bz! ax 7! x0 = y ^ y0 = y

expressed in the primed/unprimednotation ubiquitous in the
model-checking litterature.

Proof The proof structure for this system and the sequentax; y = x ` F(y > n) is displayed in Figure 3.
In this case, all side conditions validating this proof

structure (totally 9) are proved without user interventionus-
ing PVS’sgrind command.

Having constructed the proof structure, the next step is to
generate the derived discharge automaton (see Figure 4). It
reflects the structure of the system: each node corresponds
to a control point and each transition to a transition of the
system2. As there is noV-subformula in the property for-
mula, all states of the automaton are accepting. Let us call
its nodesax, by andbz according to the associated control
points.

Clearly, all sequences of states accepted by this automa-
ton violate our property, sincey � n holds in all states of
such a sequence. Contemplating the automaton for a mo-
ment, we easily come up with the rankingsÆax(x; y) def= lex2(n� y; 1)Æby(x; y) def= lex2(n� y; 0)Æbz(x; y) def= lex2(n� y; 2)
wherelex2 is a PVS function mapping a lexicographically
ordered pair of natural numbers to (the PVS representation
of) an ordinal. The first argument measures the distance
betweeny andn, while the second one measures progress
to the next decrease of the first component.

As an example, for the automaton transition fromby to
bz the tool generates the PVS discharge condition3

(FORALL (pc:string),(x:nat),(y:nat),
(pc’:string),(x’:nat),(y’:nat):

((pc = “by”) AND (y = (x + x))
AND NOT(y > n) AND (x = x’)
AND (y + 1 = y’)
AND (pc’ = “bz”)
AND (y’ = x’ + x’ + 1)
AND NOT(y’ > n))

IMPLIES
(lex2(n - y, 0) >

lex2(n - y’, 2)))

which is easily seen to be valid. All of the totally three
discharge conditions are proved in PVS without user inter-
vention using the commandgrind .

2Terminal nodes with no outgoing edges can safely be removed without
changing the language accepted by the automaton.

3slightly edited to improve readability



ax, (y = x) |− F (y > n)

ax, (y = x) |− (y > n), X F (y > n)

ax, (y > n) |− (y > n), X F (y > n) ax, ((y = x) AND NOT((y > n))) |− (y > n), X F (y > n)

ax, ((y = x) AND NOT((y > n))) |− X F (y > n)

by, (y = (x + x)) |− F (y > n)

by, (y = (x + x)) |− (y > n), X F (y > n)

by, (y > n) |− (y > n), X F (y > n) by, ((y = (x + x)) AND NOT((y > n))) |− (y > n), X F (y > n)

by, ((y = (x + x)) AND NOT((y > n))) |− X F (y > n)

bz, (y = ((x + x) + 1)) |− F (y > n)

bz, (y = ((x + x) + 1)) |− (y > n), X F (y > n)

bz, (y > n) |− (y > n), X F (y > n) bz, ((y = ((x + x) + 1)) AND NOT((y > n))) |− (y > n), X F (y > n)

bz, ((y = ((x + x) + 1)) AND NOT((y > n))) |− X F (y > n)

Figure 3. Proof Structure

{5,6,8,9}: (((pc = ’by’) AND (y = (x + x))) AND ((y = (x + x)) AND NOT((y > n))))

{10,11,13,14}: (((pc = ’bz’) AND (y = ((x + x) + 1))) AND ((y = ((x + x) + 1)) AND NOT((y > n))))

{0,1,3,4} (init): (((pc = ’ax’) AND (y = x)) AND ((y = x) AND NOT((y > n))))

Figure 4. Discharge automaton


