
Compositional Verification for Secure Loading of Smart Card Applets∗

Christoph Sprenger†

Swiss Federal Institute of
Technology, Zurich, Switzerland
christoph.sprenger@inf.ethz.ch

Dilian Gurov
Royal Institute of Technology

Kista, Sweden
dilian@imit.kth.se

Marieke Huisman
INRIA Sophia Antipolis
Sophia Antipolis, France

marieke.huisman@inria.fr

Abstract

We present an algorithmic compositional verification
method for smart card applets and control flow based safety
properties expressed in a modal logic with simultaneous
greatest fixed points. Our method builds on a technique
proposed by Grumberg and Long who use maximal mod-
els to reduce compositional verification of finite-state par-
allel processes to standard model checking. We adapt this
technique to applets, a class of infinite-state sequential pro-
cesses. This requires a refinement of the method, since for
a given applet interface and behavioural formula a max-
imal applet does not always exist. We therefore propose
a two-level approach, where local assumptions restrict the
control flow structure of applets, while the global guaran-
tee restricts the control flow behaviour of the system. We
present a novel maximal model construction for our logic
and then adapt it to applets. By separating the tasks of ver-
ifying global and local properties our method supports se-
cure post-issuance loading of applets onto a smart card.

1 Introduction

With the emergence of small secure devices, such as
open platform smart cards, it becomes important to set cri-
teria to decide whether an application can be accepted on
a device. Since such devices are typically used to store
privacy-sensitive data, for the acceptance of this new tech-
nology it is important that potential users have full trust in
the protection of their data.

For the new generation of smart cards, an interesting pos-
sibility is to have post-issuance loading of applications (ap-
plets). This means that once the card is issued and given to
the user, new applets can be installed on the card without the

∗This work was partially supported by the EU VerifiCard project IST-
2000-26328. This work was also partially supported by the Zurich Infor-
mation Security Center. It represents the views of the authors.

†Research done while at INRIA Sophia Antipolis, partially supported
by ERCIM Fellowship No. 2002-10.

mediation of the card provider. Post-issuance loading opens
many possibilities for new and powerful applications, but so
far has not found its way to industrial practice, mainly be-
cause of security concerns. The method proposed here is a
first step toward a framework for secure post-issuance load-
ing of smart card applets. Automatic checks are needed to
ensure that new applets can be trusted. These checks can
involve for example type safety, memory consumption, and
illicit data or control flow.

In this paper we focus on the last category of properties.
More precisely, we study sequential (single-threaded) ap-
plets and propose a specification and verification method for
safety properties of inter-procedural control flow, i.e. prop-
erties describing safe sequences of method invocations.
Since applets can be loaded on a card post-issuance, their
implementation might not be available at the time global
properties are verified. Therefore we propose a composi-
tional verification method, according to the following proof
principle:

` A : φ X : φ ` X ⊗B : ψ

` A⊗B : ψ

This reduces the problem of showing that the composition
of applets A and B satisfies ψ to three tasks:

1. decompose the global property ψ by finding a local
property φ of applet A,

2. prove correctness of the decomposition, i.e., verify
that, for any applet X satisfying φ, X composed with
B satisfies ψ (second premise), and

3. verify that A satisfies the local property φ (first
premise), when its implementation becomes available
for post-issuance loading.

The compositionality of the method supports different sce-
narios for secure post-issuance loading of applets, where
the tasks above can potentially be delegated to different au-
thorities. In the first scenario, the card issuer specifies both
the global and local properties and verifies – using the tech-
niques described in this paper – that the decomposition is

1

correct, meaning that the local specification is sufficient to
establish the global specification. Each time an applet is
loaded post-issuance, an algorithm provided by the card is-
suer checks whether the applet implementation satisfies the
required specification. An alternative scenario is that the
card issuer only provides the global specification (and local
specifications for its own applets), and leaves it to the applet
provider to come up with an appropriate local specification
for each post-issuance loaded applet. As in the previous
scenario, an algorithm provided by the card issuer checks
the applet against the local specification upon loading, but
now also the property decomposition needs to be verified at
loading time, potentially on-card.

Task (1) above is a manual one and requires some insight
into the system, while the other two can be automated in
our approach. We concentrate here on task (2); for task (3)
standard algorithmic techniques exist. In earlier work [3],
we explored deductive verification of correctness of decom-
positions based on a proof system. However, the generality
of this approach requires considerable time and expertise
from the user. Hence, an algorithmic method such as the
one presented here is preferable in many situations.

The approach that we take is inspired by the pioneer-
ing work on automatic modular verification by Grumberg
and Long [10]. To check whether X : φ ` X ⊗ B : ψ
holds we replace X by a maximal model θ(φ) and then ver-
ify ` θ(φ) ⊗ B : ψ algorithmically. The maximal model
θ(φ) represents all models satisfying φ in the sense that it
simulates exactly those models and thus satisfies precisely
the properties enjoyed by all these models. For this tech-
nique to be sound it is required that ⊗ preserves simulation
and that logical properties are preserved by simulation.

Contributions Most existing work on compositional
model checking focuses on the verification of parallel com-
positions of finite-state processes. Our main contribution is
the adaptation of this technique to infinite-state sequential
programs, more precisely to applets. We model applets by a
collection of method control flow graphs equipped with an
interface of provided and required methods. Applet com-
position essentially forms the disjoint union of the respec-
tive collections of method graphs and allows the composed
applets to communicate by method invocation. Our applet
models induce a subclass of pushdown processes, with po-
tentially infinite-state behaviour (cf. [8]).

We are interested in safety properties, which can be ad-
equately expressed in our simulation logic, a modal logic
with simultaneous greatest fixed points. This logic is equiv-
alent to the modal µ-calculus [13] without diamond modal-
ities and least fixed points. We establish a logical character-
isation of simulation and, vice versa, a behavioural charac-
terisation of logical satisfaction in terms of maximal mod-
els. In particular, we present a novel maximal model con-

struction, consisting of a step-wise transformation of the
formula into a semantically equivalent normal form, which
is isomorphic to a maximal model for the formula.

When tailoring the maximal model technique to applets,
we require that the maximal model for a given property
is itself an applet. This ensures that, if the verification of
` θ(φ) ⊗ B : ψ fails, there is indeed an applet among the
set of models F such that F satisfies φ but F ⊗B does not
satisfy ψ. In this case we can try to strengthen φ and iterate
the process. However, for a given property φ and interface
I , a maximal applet in general does not exist due to the pos-
sibility of re-entrance of methods, even if there are applets
with interface I satisfying φ. To overcome this problem, we
propose a two-level solution, distinguishing between struc-
tural and behavioural levels. We instantiate our logic and
simulation at each level. Local specifications are structural
properties, restricting the finite control flow structure of
applets, while global specifications are behavioural prop-
erties, restricting their potentially infinite control flow be-
haviour. We define the maximal applet for a given interface
I and structural property φ by θI(φ) = θ(φI ∧φ), where φI

is a structural formula capturing the basic properties of all
applets with this interface, thus ensuring that the resulting
maximal model is indeed an applet structure. This maxi-
mal applet is composed with applet B and the result can be
verified against ψ using a model checker for pushdown pro-
cesses such as Alfred [17] (based on an algorithm by Boua-
jjani et al. [5]). Combining our characterisation results with
results linking the structural and behavioural levels, we es-
tablish the soundness and completeness of our method.

Some additional results, examples and full proofs can be
found in a technical report accompanying the present pa-
per [19]. In a companion paper [12] we present a tool set
for our framework and show its practical usability by apply-
ing it on an industrial electronic purse case study.

Related Work There is a wealth of methods for compo-
sitional verification of concurrent programs, most notably
assumption/commitment based reasoning about processes
with synchronous message passing, and the rely/guarantee
method for shared-variable concurrency. A systematic
overview of these and related proof methods, some of which
have been adapted to support algorithmic verification is
given by de Roever et al. [9]. However, these techniques
do not address programs with recursive procedures.

As an example of an approach to compositional verifi-
cation based on theorem proving we mention the work by
Prensa [18]. She formalises the rely/guarantee method for
parallel programs with shared variables (but without proce-
dures) in Isabelle/HOL. The method is based on an exten-
sion of Hoare logic to parallel programs and does as such
not cover temporal properties.

The original maximal model technique by Grumberg and

2

Long [10] was designed for the universal fragment of CTL
and later extended to CTL* by Kupferman and Vardi [14].
These works study synchronous parallel compositions of se-
quential processes under fairness assumptions. Since we are
interested in safety properties of sequential programs, we
do not need to add fairness to our models. Our transforma-
tional approach to the maximal model construction avoids
some unnecessary exponential blowups appearing in their
global constructions.

Laster and Grumberg [16] present a compositional
method for sequential programs written in a high-level
While language (without procedures). Their technique par-
titions the program text into a sequence of sequentially com-
posed subprograms, which can be model checked individu-
ally using assumptions on the properties holding at the cut
points.

Characterisation results connecting logics and be-
havioural preorders similar to ours are described by Larsen
and Boudol [7] (see also [15]), who construct maximal
modal transition systems w.r.t. the refinement preorder for
Hennessy-Milner logic [11]. Since this logic does not in-
clude fixed points, the constructed models are essentially
finite forests. Bouajjani et al. [6] define maximal models
for a co-recursive modal logic to express safety properties.
Their logic has an expressive power similar to ours, but is
somewhat less standard as it includes a connective corre-
sponding to non-deterministic choice.

The method of partial model checking introduced by An-
dersen [1] is based on a reduction procedure that removes
the top-level operator from a process algebra term and com-
putes a new property for the reduced term. To verify that
the product P × Q of two processes has some property φ,
the reduction “divides” the property φ by Q to yield φ/Q,
which can be effectively computed only if Q is finite.

Structure Section 2 defines models, simulation and logic,
and describes a procedure to construct maximal models.
Section 3 instantiates this to applets (both at structural and
behavioural level) and derives the compositional proof prin-
ciple. Section 4 illustrates our approach with an example.
Finally, Section 5 contains some concluding remarks.

2 Simulation and Logic

This section develops several general results about sim-
ulation and its relation to logic. After the introduction of
specifications and simulations between them, we present
simulation logic, a subset of Hennessy-Milner logic [11] ex-
tended with simultaneous greatest fixed points. By defining
maps between specifications and logical formulae, we es-
tablish a logical characterisation of simulation in terms of
simulation logic and, vice versa, a behavioural characteri-
sation of logical satisfaction. In particular, the behavioural

characterisation of satisfaction involves the construction of
a model from a formula, which is maximal in the sense that
it simulates all models satisfying the formula. This will
serve as the basis for our compositional verification method
for applets explained in the next section.

For the rest of this section we fix two arbitrary finite sets
of labels L and atomic propositions A, parameterising the
models and logic introduced next.

2.1 Specifications and Simulation

First we define models, specifications and simulation.
These notions are standard up to some minor variations.

Definition 2.1. (Model and specification) A model is a
structure M = (S,L,→, A, λ), where S is a set of states,
→⊆ S × L× S is a transition relation and λ : S → P(A)
is a valuation assigning to each state a set of atomic propo-
sitions. A specification S is a pair (M, E), where M is a
model and E ⊆ S is a set of entry states.

The reachable part of a specification S = (M, E) is
defined by R(S) = (M′, E), where M′ is obtained from
M by deleting all states and transitions not reachable from
any entry state in E.

Example 2.2. Figure 1 shows the graphical representation
of a specification (where s1(p, q) means λ(s1) = {p, q}).

a

b
 a

 bb

s1(p, q)

s3()

s2(p)

L = {a, b}

E = {s1, s2}

A = {p, q}

Figure 1. Example specification S

Definition 2.3. (Simulation) A simulation is a binary re-
lation R on S such that whenever (s, t) ∈ R then λ(s) =

λ(t), and whenever s
a
−→ s′ then there is some t′ ∈ S such

that t
a
−→ t′ and (s′, t′) ∈ R. We say that t simulates s, writ-

ten s ≤ t, if there is a simulation R such that (s, t) ∈ R.

Simulation on two models M1 and M2 is defined as
simulation on their disjoint union M1] M2. The tran-
sitions of M1] M2 are defined by ini(s)

a
−→ ini(s

′) if
s

a
−→ s′ in Mi and its valuation by λ(ini(s)) = λi(s),

where ini injects Si into S1] S2. Simulation is ex-
tended to specifications (M1, E1) and (M2, E2) by defin-
ing (M1, E1) ≤ (M2, E2) if there is a simulation R on
M1]M2 such that for each s ∈ E1 there is some t ∈ E2

with (in1(s), in2(t)) ∈ R.

3

2.2 Simulation Logic

We define simulation logic in two steps: first we define a
basic logic and then we add recursion by using modal equa-
tion systems. Let V be a countably infinite set of propo-
sitional variables. Basic simulation logic is a variant of
Hennessy-Milner logic without diamond modalities:

φ ::= ff | tt | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ

where p ∈ A, a ∈ L andX ∈ V . The interpretation ‖φ‖ρ of
a basic formula φ is defined with respect to a model M and
an environment ρ interpreting the propositional variables.
The definition is standard (cf. [20]), in particular, for the box
modality we have s ∈ ‖[a]φ‖ρ if and only if for all t ∈ S

such that s
a
−→ t we have t ∈ ‖φ‖ρ. Formulae like p or ¬p

are called literals. We use n-ary versions of conjunction and
disjunction, setting

∨

∅ = ff (false) and
∧

∅ = tt (true).
As usual, for K ⊆ L, we write [K]φ for

∧

a∈K [a]φ and
[−]φ for [L]φ.

To make the logic expressive enough to characterise all
finite models, we follow Larsen [15] and add recursion to
basic simulation logic by introducing modal equation sys-
tems. A modal equation system Σ is a finite set of defining
equations of the shapeX = φX , whereX is a propositional
variable and φX is a formula of basic simulation logic. The
defined variables X are pairwise distinct and bound in Σ,
while all other variables are free. For a simpler presenta-
tion, we restrict our attention here to closed equation sys-
tems without free variables.

Since our equations systems are closed, it is sufficient to
work with environments ρ : bv(Σ) → P(S) mapping the
bound variables of Σ to sets of states. The equations in Σ
induce a map ΨΣ : P(S)bv(Σ) → P(S)bv(Σ) on such en-
vironments ρ defined by ΨΣ(ρ)(X) = ‖φX‖ρ. A solution
of Σ is an environment ρ such that all equations in Σ are
satisfied, that is, ΨΣ(ρ) = ρ. Environments are ordered
by point-wise inclusion. The semantics of a modal equa-
tion system Σ w.r.t. a model M, denoted ‖Σ‖, is its greatest
solution. By the Knaster-Tarski fixed point theorem [21] a
greatest solution always exists, since ΨΣ is monotone.

Definition 2.4. (Simulation Logic) A (closed) formula of
simulation logic has the shape φ[Σ], where φ is a formula
of basic simulation logic and Σ is a (closed) modal equa-
tion system such that all variables occurring in φ are bound
in Σ. The semantics of φ[Σ] with respect to model M is de-
fined by ‖φ[Σ]‖ = ‖φ‖‖Σ‖. We say a specification (M, E)
satisfies φ[Σ], written (M, E) |= φ[Σ], if E ⊆ ‖φ[Σ]‖.

Example 2.5. Consider the formulaφ = (X∨Y)[Σ], where

Σ =

[

X = [a]Y ∧ [b]X ∧ p
Y = [a] (X ∧ Y) ∧ ¬q

]

.

We would like to determine the semantics of this formula
with respect to the specification S in Figure 1. The greatest
fixed point ‖Σ‖ of Σ with respect to S can be computed
in the standard way by iteration of ΨΣ starting with ρ0 =
{X 7→ S, Y 7→ S}, where S = {s1, s2, s3}. This yields
‖Σ‖ = {X 7→ {s1}, Y 7→ {s2}}. So, E = {s1, s2} =
‖X ∨ Y ‖‖Σ‖, and hence the specification S satisfies φ.

Henceforth, we often omit the equation system Σ from
φ[Σ] if no confusion can arise. We say that φ1 is a logical
consequence of φ0, written φ0 v φ1, if for all specifications
S, S |= φ0 implies S |= φ1. The formula φ0 is logically
equivalent to φ1, written φ0 ≡ φ1, if φ0 v φ1 and φ1 v φ0.

Simulation logic is equally expressive as the modal µ-
calculus [13] without diamond modalities and least fixed
points. The translation from this fragment of the modal µ-
calculus to simulation logic is straightforward and replaces
each fixed point by an equation. As an example, the for-
mula νX.p1 ∧ (νY.X ∧ [a] (p2 ∨ Y)) is translated into the
equivalent formulaX [X = p1 ∧ Y, Y = X ∧ [a] (p2 ∨ Y)]
of simulation logic. The translation in the other direction is
based on Bekič’s principle (cf. [2]), which expresses a fixed
point in a product lattice in terms of a vector of component-
wise fixed points.

2.3 Representation Results

Next, we relate simulation logic to simulation by defin-
ing two functions, χ and θ. The map χ translates each finite
specification into a formula, while θ translates formulae into
(finite) specifications. The latter map is first defined on for-
mulae in so-called simulation normal form (SNF) and then
extended to all formulae by showing that any formula can be
transformed into an equivalent one in SNF. We show that χ
logically characterises simulation and θ behaviourally char-
acterises logical satisfaction. These two maps form a Galois
connection between finite specifications ordered by simula-
tion and formulae ordered by logical consequence. Similar
results for somewhat different settings appear in [7, 15, 6].
In this paper, we present a novel procedure θ to construct
maximal models. While its complexity is exponential in
the worst case, it avoids by its transformational nature some
unnecessary exponential blowups occurring in the respec-
tive procedures for the universal fragments of CTL [10] and
CTL* [14].

2.3.1 Characteristic Formulae

First we define the mapping from finite specifications to
formulae. A finite specification (M, E) is translated into
its characteristic formula χ(M, E) = φE [ΣM], where
φE =

∨

s∈E Xs and ΣM defines Xs for each s ∈ S by

Xs =
∧

a∈L

[a]
∨

s
a

−→t

Xt ∧
∧

p∈λ(s)

p ∧
∧

q∈A−λ(s)

¬q

4

Recall that
∨

∅ = ff (false) and
∧

∅ = tt (true).

Example 2.6. Consider the specification S displayed in
Figure 1. Its characteristic formula is χ(S) = Xs1

∨Xs2
[Σ],

where

Σ =





Xs1
= [a]Xs2

∧ [b]ff ∧ p ∧ q
Xs2

= [a]ff ∧ [b](Xs1
∨Xs3

) ∧ p ∧ ¬q
Xs3

= [a]Xs2
∧ [b]Xs1

∧ ¬p ∧ ¬q



 .

We can prove that if specification S1 is simulated by the
finite specification S2, this is equivalent to saying that S1

satisfies the characteristic formula of S2. This is a variation
of an earlier result by Larsen [15].

Theorem 2.7. Let S1, S2 be specifications and suppose S2

is finite. Then S1 ≤ S2 if and only if S1 |= χ(S2).

Note that using infinite equation systems this theorem
generalises to finitely branching S2.

2.3.2 Maximal Models

The next step is to define the inverse mapping. Not all for-
mulae correspond directly to a specification, but those in
simulation normal form do.

Definition 2.8. (Simulation normal form) A formula φ[Σ]
of simulation logic is in simulation normal form (SNF) if φ
has the form

∨

X for some finite set X ⊆ bv(Σ) and all
equations in Σ are in the following state normal form

X =
∧

a∈L

[a]
∨

YX,a ∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬q

where each YX,a ⊆ bv(Σ) is a finite set of variables and
BX ⊆ A is a set of atomic propositions.

Notice that any characteristic formula χ(S) is in SNF.
From a formula (

∨

X)[Σ] in SNF we derive the specifi-
cation θ((

∨

X)[Σ]) = ((S,L,→, A, λ), E) where S =
bv(Σ), E = X and, for each X ∈ bv(Σ), the equation
for X induces the transitions {X

a
−→ Y | Y ∈ YX,a} and

the valuation λ(X) = BX .

Lemma 2.9. χ and θ are each others inverse up to equiva-
lence, that is,

1. θ(χ(S)) ∼= S (∼= is isomorphism1) for finite S, and

2. χ(θ(φ)) ≡α φ (≡α is α-convertibility) for φ in SNF.

Theorem 2.10. For φ in SNF, we have S ≤ θ(φ) if and only
if S |= φ.

1Here, isomorphism means a label-preserving bijection between states
and transitions.

Transformation to SNF We now present one of the main
results of our paper, a step-wise transformation of any sim-
ulation logic formula into a logically equivalent formula in
SNF. Before describing the transformation in detail, we in-
troduce some auxiliary notions. First, we use a slightly
non-standard variant of disjunctive normal form: we say
that a formula φ of basic simulation logic is in disjunc-
tive normal form (DNF) if it is a disjunction of conjunc-
tions of box formulae and literals, i.e., it has the shape
φ =

∨

i(
∧

j [aij]ψij ∧
∧

Li) where Li are sets of literals
and ψij arbitrary formulae in basic simulation logic. Fur-
thermore, the conjunctive decomposition c(ψ) of a formula
ψ into its conjuncts is given by c(ψ) = {ψ1, . . . , ψm} such
that no ψi is a conjunction and ψ =

∧

i ψi (modulo associa-
tivity and commutativity). Note that c(tt) = ∅.

We call an occurrence of a subformula top-level if it is
not under the scope of a box operator. We say that Y is
unguarded in φX , written X . Y , if there is a top-level oc-
currence of Y in φX . A modal equation system Σ (or for-
mula φ[Σ]) is weakly guarded if the relation . is acyclic and
strongly guarded if . is empty.

Example 2.11. Consider the modal equation system

Σ =

[

X = [a]X ∨ (q ∧ Y)
Y = [b] (X ∧ [a]Y) ∧ p

]

Variable X is guarded in φX (the only occurrence of X is
under the scope of a box operator), but Y is not (it occurs
on the top-level). Both X and Y are guarded in φY . Hence,
. = {(X,Y)} being acyclic but not empty, Σ is weakly
guarded but not strongly guarded.

Any weakly guarded formula can be transformed into
a strongly guarded one by repeatedly rewriting each un-
guarded occurrence of a variable by its defining equation.
Moreover, using a result in [22] we can also show:

Lemma 2.12. (Weak Guardedness) Any formula of sim-
ulation logic can be transformed into an equivalent weakly
guarded one.

After these auxiliary definitions, we are ready to present
the transformation. It consists of three phases:

Phase I transforms each equation into a disjunction of for-
mulae in state normal form, where only single vari-
ables appear under modalities,

Phase II splits top-level disjunctions in each equation into
a set of new equations, one for each disjunct, yielding
an equation system in state normal form, and

Phase III is an optimisation phase removing unreachable
and redundant equations.

5

The transformation into SNF uses a partial function h map-
ping sets of formulae to variables. Its termination relies on
this map that avoids the repeated introduction of new equa-
tions for the same formula. If h maps a set of formulae Ψ
to variable X , this means that an equation X =

∧

Ψ (such
that c(

∧

Ψ) = Ψ) has been introduced earlier and that vari-
able X should be used instead of introducing any further
equation for

∧

Ψ. This bookkeeping is essential for the ter-
mination of the transformation.

Before going into the details, let us illustrate the basic
ideas on a simple example. A more elaborate example ap-
pears in Section 4.

Example 2.13. Let φ = [b] ff ∧ p be interpreted as a for-
mula over L = {a, b} and A = {p}. This formula holds for
specifications, where each initial state satisfies p and has no
outgoing b transition. We first translate φ to (

∨

X0)[Σ0]
with X0 = {X} and Σ0 = {X = [b] ff ∧ p}. In the follow-
ing, the numbers in parentheses refer to the transformation
steps detailed below.

The equation forX is already strongly guarded (I.1) and
in DNF (I.2). Next, we add the missing box [a] using the
equivalence tt ≡ [a] tt (I.3), yieldingX = [a] tt∧ [b] ff ∧ p.
In the next step (I.4), we introduce new variables for the
formulae under the boxes: Y = tt and Z = ff. This is
recorded in h with two new entries: (∅, Y) (since tt =
∧

∅) and ({ff}, Z). The equation for X becomes

X = [a]Y ∧ [b]Z ∧ p

which is already in state normal form. We proceed with
Y = tt. Again, the first step with an effect adds the miss-
ing boxes (I.3), producing Y = [a] tt ∧ [b] tt. Next, since
c(tt) = ∅ and h(∅) = Y , we know that Y stands for tt, so
we replace the subformulae tt under the boxes by Y , yield-
ing Y = [a]Y ∧ [b]Y . To get a disjunction of state normal
forms, we add the missing literals in positive and negative
form, yielding

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p).

The third equation Z = ff (=
∨

∅) is already a (trivial)
disjunction of state normal forms. Note that X remains
unchanged in Phase I. Next, Phase II splits each top-level
disjunction into a set of new equations and substitutes the
disjunction of new variables for the original variable. Con-
cretely, all occurrences of Y are replaced by Y1 ∨ Y2 and
Z = ff (=

∨

∅) is substituted back into φX , yielding

Σ =





X = [a] (Y1 ∨ Y2) ∧ [b]ff ∧ p
Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p
Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p





Since X is not split into several equations, X = {X} re-
mains unchanged. Phase III is the identity transformation in

this example as there are no unreachable or duplicate equa-
tions. Thus, the final result is X [Σ], which is in simulation
normal form. The derived maximal model θ(X [Σ]) is dis-
played in Figure 2.

a, b

a, b

a

X(p)

L = {a, b}

E = {X}

A = {p}

a

Y1(p) Y2()

a, ba, b

Figure 2. Maximal model for φ = [b] ff ∧ p

Now we describe the actual transformation in detail.
We assume w.l.o.g. that the initial formula has the shape
X0[Σ0], where Σ0 is weakly guarded (by Lemma 2.12).
We initialise X = {X0}, Σ = Σ0 and h = ∅. Here are
the three phases of the transformation in detail.

Phase I (Disjunction of state normal forms) This phase
transforms each equation into a disjunction of formulae in
state normal form. Its steps are applied once to each equa-
tion including the new ones introduced in step I.4 below.

1. (Strong guardedness) Make equation strongly guarded
by repeatedly rewriting unguarded occurrences of vari-
ables using the original system Σ0.

2. (DNF) Put equation into disjunctive normal form and
remove inconsistent disjuncts (those where ff or both
p and ¬p appear).

3. (Box grouping and completion) Group boxes together
using [a]φ1 ∧ [a]φ2 ≡ [a] (φ1 ∧ φ2) and add missing
boxes to each disjunct using tt ≡ [a] tt such that there
is a box formula for each a ∈ L. Resulting equation
shape is

X =
∨

i

(
∧

a∈L

[a]ψia ∧
∧

Li)

4. (Modal depth reduction) Apply the following to each
top-level box subformula [a]ψia where ψia is not a
variable. If (c(ψia), Y) ∈ h for some variable Y
then replace [a]ψia by [a]Y ; otherwise, choose a fresh
variable Z 6∈ bv(Σ), add the new equation Z =
ψia to Σ, replace [a]ψia by [a]Z and extend h to
h ∪ {(c(ψia), Z)}. Equation shape is then

X =
∨

i

(
∧

a∈L

[a]Zia ∧
∧

Li)

6

5. (Literal completion) Replace equationX = φ byX =
φ∧

∧

p∈A(p∨¬p), then repeat step (2) to put equation
back into DNF. Equation shape is (for some B ⊆ A)

X =
∨

i

(
∧

a∈L

[a]Zia ∧
∧

p∈B

p ∧
∧

q∈A−B

¬q) (1)

Phase II (Push disjunctions inside) This phase elimi-
nates the top-level disjunctions by introducing a new equa-
tion for each disjunct, thus pushing these disjunctions under
box modalities. It is applied once to each equation in Σ.

1. remove an equation of shapeX =
∨n

i=1 φi with n 6= 1
from Σ,

2. add a new equationXi = φi for each non-variable dis-
junct φi and substitute

∨n

i=1Xi for X in all equations
of Σ (where each Xi is either equal to φi or Xi is the
fresh variable introduced for φi),

3. if X ∈ X then replace X by (X − {X}) ∪
{X1, . . . , Xn}.

The resulting equation is in state normal form.

Phase III (Optimisation) This optimisation phase itera-
tively removes unreachable and duplicate equations.

1. Remove equationsZ = ψ from Σ in case Z can not be
reached from any variable in X via variable dependen-
cies (X depends on Y if Y occurs in φX)

2. If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ
such that ψ1[Z1/Z2] = ψ2[Z1/Z2], then removeZ2 =
ψ2 from Σ and substitute Z1 for Z2 in the remaining
equations as well as in X .

Theorem 2.14. The algorithm above terminates and trans-
forms any formula φ of simulation logic into an equivalent
formula snf(φ) in simulation normal form.

Proof. (Sketch; full proof in [19]) Let Xi, Σi and hi denote
the values of X , Σ and h after i transformation steps. We
concentrate in this sketch on phase I, which preserves the
following two invariants:

J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡
Y [Σ0], and

J2. if (Ψ, Z) ∈ hi then each ψ ∈ Ψ occurs boxed, that
is, as a top-level subformula of shape [a]ψ, in some
equation of Σ0.

Preservation of the semantics by the transformation steps
follows from J1 and the fact that X is constant in phase I. To
see that Phase I terminates, note first that step I.1 terminates,
because Σ0 is weakly guarded (by assumption) and all steps

preserve weak guardedness. Overall non-termination of
Phase I due to the introduction of equations in step I.4 is
ruled out by J2: since there are only a finite number of sub-
sets Ψ of boxed subformulae in Σ0, the map h fills up and
thus phase I eventually terminates.

We extend the mapping θ to all formulae of simulation
logic by defining θ(φ) = θ(snf(φ)). Since snf preserves the
semantics, Theorem 2.10 can be extended to all formulae,
showing that θ(φ) is the maximal model of φ with respect
to the simulation preorder.

Theorem 2.15. S ≤ θ(φ) if and only if S |= φ.

We conclude this section with two important conse-
quences of Theorems 2.7 and 2.15. The first one is that
simulation preserves logical properties.

Corollary 2.16. S1 ≤ S2 and S2 |= φ implies S1 |= φ.

The second corollary expresses that the maps χ and θ
form a Galois connection between the preorder (S,≤) of
(isomorphism classes of) finite specifications ordered by
simulation and be the preorder (L,v) of formulae of simu-
lation logic ordered by logical consequence.

Corollary 2.17. χ and θ are monotone and, for finite spec-
ifications S, S ≤ θ(φ) if and only if χ(S) v φ.

Finally, it is worth noting that all results can be trans-
ferred to the setting of weak simulation and logic (see [19]).

3 Compositional Verification of Applets

Having so far developed our results for arbitrary spec-
ifications, we shall now concentrate on a particular ap-
plication, namely, the representation of applets (i.e. smart
card applications) as specifications. We study sequential
(single-threaded) applets and safety properties of their inter-
procedural control flow. As explained above, we are inter-
ested in the decomposition of properties, in order to guaran-
tee the secure post-issuance loading of applets. We do this
by instantiating the general framework of the previous sec-
tion on two different levels: (1) the structural level, where a
specification represents the control flow graph of an applet,
and (2) the behavioural level, where a specification repre-
sents the behaviour of an applet. This yields a version of
simulation and simulation logic for each level. We develop
a compositional verification principle, where assumptions
about individual applets are stated in the structural simula-
tion logic and properties of the composed system are ex-
pressed in the behavioural logic.

3.1 Applets

We model the control structure of an applet as a collec-
tion of method specifications. However, for compositional

7

reasoning about applets, we need to know which methods
exist and/or are used. Therefore, we first define the no-
tion of an applet interface. Let Meth be an infinite set of
method names not containing the special symbols r and ε.

Definition 3.1. (Applet interface) An applet interface is a
pair I = (I+, I−), where I+, I− ⊆ Meth are finite sets
of names of provided and required methods, respectively.
We say I is closed if I− ⊆ I+. The composition of two
interfaces I1 = (I+

1 , I
−
1) and I2 = (I+

2 , I
−
2) is defined by

I1 ∪ I2 = (I+
1 ∪ I+

2 , I
−
1 ∪ I−2).

Next, we define method specifications, which are the ba-
sic building blocks of applets.

Definition 3.2. (Method specification) A method graph for
m ∈ Meth over a set M of method names is a finite model
Mm = (Vm, Lm,→m, Am, λm), where Vm is the set of
control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, m ∈
λm(v) for all v ∈ Vm, i.e. each node is tagged with the
method name. A method specification for m ∈ Meth over
M is a specification (Mm, Em) such that Mm is a method
graph for m overM .

The nodes labelled with the distinguished atomic propo-
sition r are the return points of m. An applet is a col-
lection of method specifications. For the formal defini-
tion we extend the notion of disjoint union from mod-
els (as defined below Definition 2.3) to specifications by
(M1, E1)] (M2, E2) = (M1]M2, E1] E2).

Definition 3.3. (Applet) Applets A with interface I , written
A : I , are inductively defined by

• 0M : (∅,M), where 0M is the empty applet over M
defined by 0M = ((∅,M ∪ {ε},∅, {r},∅),∅),

• (Mm, Em) : ({m},M) if (Mm, Em) is a method
specification for m over M ,

• A1]A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet A : I is closed if its interface I is closed.

The definition requires that each provided method m ∈
I+ of an applet A : I has to be implemented in a method
graph form. The interface of an applet can be derived from
its implementation: a straightforward induction shows that
if A is an applet built from a model over L and A then its
interface is (A − {r}, L − {ε}). We write S : I for an
arbitrary specification S to mean that S is (isomorphic to)
an applet with interface I . Note that, up to isomorphism,]
is associative and commutative with neutral element 0∅.

3.2 Structural Level

Structural simulation on applets coincides with simula-
tion on the specifications defining applets. For convenience

we write A1 ≤s A2 instead of A1 ≤ A2 to denote struc-
tural simulation. Structural simulation is preserved by ap-
plet composition.

Theorem 3.4. If A1 ≤s B1 and A2 ≤s B2 then A1]
A2 ≤s B1] B2.

We also instantiate simulation logic to this level. For
an applet A : I and a formula φ of simulation logic over
L = I−∪{ε} andA = I+ ∪{r}, we write A |=s φ instead
of A |= φ for clarity.

Maximal Applets Let I = (I+, I−) be an applet inter-
face. Define φI [ΣI], the characteristic formula for I , by

φI =
∨

m∈I+ Xm

ΣI = {Xm = [I−, ε]Xm ∧ pm | m ∈ I+}
pm = m ∧

∧

{¬m′ | m′ ∈ I+,m′ 6= m}

The formula φI [ΣI] axiomatises the basic structure of an
applet with interface I , namely, each initial node belongs to
a unique method m and no transition leaves m. Note that
ΣI is not in SNF (proposition r is missing).

Example 3.5. The characteristic formula for interface I =
({m1,m2}, {m1,m3}) is given by the formula φI [ΣI],
where φI = Xm1

∨Xm2
and

ΣI =

[

Xm1
= [m1,m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1,m3, ε]Xm2

∧m2 ∧ ¬m1

]

The specifications satisfying φI are essentially the applets
with interface I as we will show below. Using the character-
istic formula for interfaces, we can define maximal applets.

Definition 3.6. (Maximal applet) The maximal applet w.r.t.
interface I and formula φ[Σ] is defined as θI(φ[Σ]) =
θ(φ∧φI [Σ,ΣI]) (where it is assumed w.l.o.g. that the bound
variables of Σ and ΣI are disjoint).

The following result records the main properties of char-
acteristic formulae and maximal applets.

Theorem 3.7. Let I be an applet interface. For any speci-
fication S = (M, E) over labels L = I− ∪ {ε} and atomic
propositions A = I+ ∪ {r} we have

(i) S |=s φI if and only if R(S) : I , and

(ii) S ≤s θI(φ) if and only if S |=s φ and R(S) : I .

Proof. (i) (Sketch) “⇒” By an induction on the size of I+.
The restriction to the reachable part of S is required, be-
cause the φI does not constrain the unreachable parts of
S. “⇐” By inspection of the definition of applets. (ii) Us-
ing the definition of θI (φ) and Theorem 2.15 we know that
S ≤s θI(φ) is equivalent to S |=s φ and S |=s φI . The
result then follows from (i).

8

Point (i) of the theorem essentially expresses that the for-
mula φI characterises those specifications that are applets
with interface I , while point (ii) extends Theorem 2.15 from
specifications to applets. As a consequence of (ii) we have
θI(φ) |= φI and θI(φ) : I , since all nodes of θI (φ) are
reachable by construction.

3.3 Behavioural Level

Next, we change our focus to the behavioural level,
where we first define the operational semantics of a closed
applet. Since our compositional method uses structural as-
sumptions, there is no need to compose applets on the be-
havioural level, so an operational semantics of closed ap-
plets is sufficient. In contrast, in previous work on semi-
automatic compositional applet verification [3], the use of
behavioural assumptions required a more involved open se-
mantics of applets.

Definition 3.8. (Behaviour) Let A = (M, E) : (I+, I−)
be a closed applet and let M = (V, L,→, A, λ). The
behaviour of A is described by the specification b(A) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) is defined by
Sb = V × V ∗, that is, states are pairs of control points
and stacks, Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈
I+} ∪ {ε}, →b is defined by the transition rules of Table 1,
Ab = A and λb((v, σ)) = λ(v). The set of initial states Eb

is defined by Eb = E × {ε}.

(transfer)
m ∈ I+ v →m v′ v |= ¬r

(v, σ)
ε
−→ (v′, σ)

(call)

m1,m2 ∈ I+ v1
m2−−→m1

v′1 v1 |= ¬r
v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′1 · σ)

(return)
m1,m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

Table 1. Applet Transition Rules

Note that the applet transition rules define a pushdown
process (cf. survey paper [8]).

Applet A1 behaviourally simulates applet A2, written
A1 ≤b A2, if b(A1) ≤ b(A2). The notions of applet struc-
ture and behaviour have been carefully chosen to ensure that
any two applets related by structural simulation are also re-
lated by behavioural simulation. In general, the inverse does
not hold.

Theorem 3.9. (Simulation Correspondence) IfA1 ≤s A2

then A1 ≤b A2.

Proof. Let R be a structural simulation between A1 and
A2. We lift R from the structural level to Rb on the be-
havioural level by defining ((v, σ), (v′, σ′)) ∈ Rb if and
only if (v, v′) ∈ R, |σ| = |σ′| and (σ(i), σ′(i)) ∈ R for all
0 ≤ i < |σ|. It is easy to check that Rb is a behavioural
simulation between A1 and A2.

Finally, we instantiate simulation logic on the be-
havioural level. Behavioural properties are more abstract
than structural ones as they do not refer to the program con-
trol structure. We define behavioural satisfaction A |=b ψ
as b(A) |= ψ for applets A : I and ψ a formula of simula-
tion logic over Lb and Ab.

3.4 Compositional Reasoning

The general results of Section 2 together with those of
this section form the basis for the main contribution of our
paper, the following compositional reasoning principle for
applets, which combines reasoning at the structural and be-
havioural levels. Let A : I and B : J be applets such that
I∪J is closed and let φ and ψ be formulae of structural and
behavioural simulation logic, respectively. Then we have

(compos)
A |=s φ θI(φ)] B |=b ψ

A] B |=b ψ
A : I

This principle says that in order to show that a composed
applet A]B has a behavioural property ψ, it is sufficient to
find a structural property φ that is satisfied by A and such
that θI(φ)] B |=b ψ. We prove its soundness and com-
pleteness using the following result, which characterises the
second premise of rule (compos).

Proposition 3.10. Let B : J be an applet and I an interface
s.t. I ∪ J is closed. Then θI(φ)] B |=b ψ if and only if for
all A : I with A |=s φ we have A] B |=b ψ.

Proof. “⇒” Suppose θI(φ)] B |=b ψ, A : I and A |=s φ.
Then certainly also R(A) : I and so we get A ≤s θI(φ) by
Theorem 3.7(ii). From Theorems 3.4 and 3.9 we derive that
A]B ≤b θI(φ)]B. Hence, A]B |=b ψ by Corollary 2.16.
“⇐” By Theorem 3.7(ii) we have θI(φ) : I and θI(φ) |=s

φ, thus θI(φ)] B |=b ψ.

Theorem 3.11. Rule (compos) is sound and complete.

Proof. Soundness is immediate by Proposition 3.10. For
completeness suppose A] B |=b ψ and set φ = χ(A).
By Theorem 2.7 we have A |=b χ(A). To establish the
second premise of the rule, we use Proposition 3.10 and
show C] B |=b ψ for an arbitrary C : I with C |=s X (A).
We use Theorem 2.7 to derive C ≤s A. The result then
follows by Theorems 3.4 and 3.9 and Corollary 2.16.

Other useful compositional reasoning principles are
thinkable. For example, a rule with a similar shape as the
one above, but involving structural properties only, is easily
justifiable with the results presented above (see [19]).

9

4 Example

To demonstrate the use of our approach in practice, we
present a small example, which is a highly distilled version
of a larger case study on the verification of security proper-
ties for an electronic purse. We refer the interested reader
to [12] for more details, including a more detailed motiva-
tion of why this kind of security properties are important for
smart card applications and how they can be formalised.

Suppose we have a smart card on which we allow in-
stances of applets A and B with the following respective
interfaces: IA = ({m1,m2}, {m1,m2,m3}) and IB =
({m3}, {m1,m2,m3}). Suppose method m1 is called by
an instance of applet B whenever this instance is in a partic-
ular state. However, it could be that only certain instances
of applet A are supposed to know when an instance of B
is in such a state - possibly because they have paid to get
this information. Thus, as a global security property we re-
quire that within invocations of method m1, no other calls
to instances of A are triggered. This can be considered
as a confidentiality property: it prevents certain informa-
tion (namely: m1 is called) to flow to unauthorised applica-
tions [4]. We specify this as the global property

(ψ) ¬m1 ∨ Z [Z = [K] ff ∧[−]Z]

where K = {mi callmj | 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2}. For-
mula ψ expresses that within method m1 there cannot be
any calls to other methods of A. Notice that this also dis-
allows indirect calls via an instance of applet B, i.e. m3 is
not allowed either to call methods declared in the interface
of A. The verification of property ψ can be decomposed in
several ways. A trivial way is to disallow any method calls
in method m1. However, this would also exclude imple-
mentations of method m1 that communicate with instances
of B. Hence, we propose less restrictive structural specifi-
cations for A and B:

(σA) ¬m1 ∨X [X = [m1,m2]ff ∧ [ε,m3]X]
(σB) ¬m3 ∨ Y [Y = [m1,m2]ff ∧ [ε,m3]Y]

Formula σA says that the method graph for m1 does not
contain any call edge labelled m1 or m2, while σB ex-
presses a similar property for the graph of m3.

Applying the compositional reasoning principle
(compos) twice, we know that to establish A] B |=b ψ,
it is sufficient to prove A |=s σA, B |=s σB and
θIA(σA)] θIB (σB) |=b ψ. We have assembled a tool set
to support all these verification tasks [12]. The former
two local properties are checked using existing finite-state
model checking techniques. The maximal applets for
σA and σB are generated by an implementation of the
algorithm in Section 2. Finally, θIA(σA)] θIB(σB) |=b ψ
is verified using Alfred [17], a model checker for pushdown

systems based on the algorithm by Bouajjani et al. [5], thus
establishing the correctness of the property decomposition.

For illustration, we present in some detail the construc-
tion of the maximal applet forσB; the construction is similar
for σA. First, we build the characteristic formula for inter-
face IB, that is, φIB = Xm3

[Xm3
= [m1,m2,m3, ε]Xm3

∧
m3]. Introducing a new variable Z for φIB ∧ σB yields

Z





Z = (¬m3 ∨ Y) ∧Xm3

Y = [m1,m2]ff ∧ [m3, ε]Y
Xm3

= [m1,m2,m3, ε]Xm3
∧m3





The next step is to transform this formula into SNF. First, in
Phase I of the transformation, each equation is transformed
into a disjunction of state normal forms. Suppose we start
with the equation defining Z.

1. Make equation strongly guarded, by rewriting with the
original equations:

Z = (¬m3 ∨ ([m1,m2] ff ∧[m3, ε]Y))∧
[m1,m2,m3, ε]Xm3

∧m3

2. Put equation into DNF and simplify:

Z = [m1,m2] ff ∧[m3, ε]Y ∧
[m1,m2,m3, ε]Xm3

∧m3

3. Group and complete boxes. No boxes are missing, thus
we only group them:

Z = [m1,m2] ff ∧[m3, ε](Y ∧Xm3
) ∧m3

4. Introduce new equations for formulae under boxes.
Since the map h does not yet contain an entry for
{Y,Xm3

}, we choose a fresh variable U and add
({Y,Xm3

}, U) to h. The equation definingZ becomes

Z = [m1,m2] ff ∧[m3, ε]U ∧m3

while we introduce the new equation U = Y ∧Xm3
.

5. Finally, complete the equation by adding missing lit-
erals and put the formula into DNF again. Here, only
literal r is missing. Adding this gives:

Z = ([m1,m2] ff ∧[m3, ε]U ∧m3 ∧ r)∨
([m1,m2] ff ∧[m3, ε]U ∧m3 ∧ ¬r)

The equations defining Y and Xm3
are handled in a similar

way. The only step that has some effect is step 5, which
introduces the missing literal r. More interesting is to look
how Phase I is applied to the new equation U = Y ∧Xm3

.

1. Rewriting into strongly guarded form yields:

U = [m1,m2] ff ∧[m3, ε]Y ∧
[m1,m2,m3, ε]Xm3

∧m3

10

m3,
ε

m3,
ε

m3,
ε

m3,
ε

U2(m3)

U1(m3, r)

E = {U1, U2}
A = {m3, r}

m3,
ε

m3,
ε

m3,
ε

m3,
ε

m1,m2,m3
 ε

m1,m2,m3
 ε

m1,m2,m3
 ε

E = {X11,X12,X21,X22}
A = {m1,m2,r}

X12(m1)

X11(m1,r)

X21(m2)

m1,m2,m3
 ε

X21(m2,r)

θIB(σB) θIA(σA)

Figure 3. Maximal applets for σB and σA

2. Formula φU is already in DNF and cannot be simpli-
fied.

3. Grouping boxes results in the following equation:

U = [m1,m2] ff ∧[m3, ε](Y ∧Xm3
) ∧m3

4. The map h contains the pair ({Y,Xm3
}, U), so we re-

place Y ∧Xm3
by U .

U = [m1,m2] ff ∧[m3, ε]U ∧m3

5. Literal completion again introduces r.

U = ([m1,m2] ff ∧[m3, ε]U ∧m3 ∧ r)∨
([m1,m2] ff ∧[m3, ε]U ∧m3 ∧ ¬r)

After applying Phase I to all equations, Phase II introduces
a new equation for each disjunct and replaces each old vari-
able by the disjunction of the new variables. For example,
the equation defining U gets replaced by:

U1 = [m1,m2] ff ∧[m3, ε](U1 ∨ U2) ∧m3 ∧ r

U2 = [m1,m2] ff ∧[m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

The remaining equations are treated similarly. Notice that
also Z in X gets replaced by {Z1, Z2}, where Z1 and Z2

are the equations replacing Z.
During the optimisation in Phase III, we find that the

equations for Z1 and U1, and Z2 and U2 are duplicates
of each other. Therefore, we remove the equations for Z1

and Z2, and replace {Z1, Z2} in X by {U1, U2}. Further,
the equations Y1, Y2, Xm31 and Xm32 (replacing Y and
Xm3

in Phase II), are not reachable from any variable in
X = {U1, U2}. Hence, the final result is U1 ∨U2[Σ], where

Σ =

[

U1 = [m1,m2]ff ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ r
U2 = [m1,m2]ff ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

]

Figure 3 displays the maximal applet corresponding to this
equation system (in its left column). It also shows the max-
imal applet for σA, found in a similar way.

5 Conclusions

We propose an algorithmic compositional verification
method for control flow based safety properties of smart
card applets, where local assumptions on individual ap-
plets are structural, while global guarantees are behavioural.
Safety properties are adequately expressed in our simulation
logic, a modal logic with simultaneous greatest fixed points.
We establish representation results connecting logical satis-
faction to simulation in a general setting, including a char-
acterisation of logical satisfaction in terms of maximal mod-
els. Our novel maximal model construction transforms the
formula into an equivalent simulation normal form, isomor-
phic to a maximal model.

For compositional applet verification we define maximal
applets at the structural level as the maximal model of the
local structural property restricted by a formula character-
ising the given interface. From these results and the fact
that structural simulation implies behavioural simulation,
we derive a sound and complete compositional method,
reducing the correctness of property decompositions to a
model checking problem for pushdown processes and thus
extending existing compositional techniques for finite-state
systems to a useful class of infinite-state systems.

The companion paper [12] presents a tool set that we
have developed and applied to an industrial electronic purse
case study to demonstrate the practical applicability of the
approach. Section 4 contains a highly distilled version of
this work. It is noteworthy that, in the present setting, the
method supports secure post-issuance loading of applets,
but it could be applied to any type of sequential programs
with recursive procedures for which compositional verifica-
tion of control flow properties is desired.

There are several possible directions for future work,
including (i) adding diamond modalities to the simulation
logic, (ii) refining the notion of interface, by defining pub-
lic and private interfaces, and (iii) investigating under what
restrictions the proposed method can be adapted to allow
behavioural assumptions in place of structural ones.

References

[1] H. R. Andersen. Partial model checking (extended abstract).
In Logic in Computer Science (LICS 95), pages 398–407.
IEEE Computer Society Press, 1995.

[2] A. Arnold and D. Niwiński. Rudiments of µ-calculus, vol-
ume 146 of Studies in Logic and the Foundations of Mathe-
matics. Elsevier Publishing, 2001.

[3] G. Barthe, D. Gurov, and M. Huisman. Compositional ver-
ification of secure applet interactions. In R.-D. Kutsche
and H. Weber, editors, Fundamental Approaches to Soft-
ware Engineering 2002, number 2306 in LNCS, pages 15–
32. Springer, 2002.

11

[4] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L.
Lanet. Electronic purse applet certification: extended ab-
stract. In S. Schneider and P. Ryan, editors, Workshop on se-
cure architectures and information flow, volume 32 of Elect.
Notes in Theor. Comp. Sci. Elsevier Publishing, 2000.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analy-
sis of pushdown automata: Application to model-checking.
In International Conference on Concurrency Theory, pages
135–150, 1997.

[6] A. Bouajjani, J. Fernandez, S. Graf, C. Rodriguez, and
J. Sifakis. Safety for branching time semantics. In Automata,
Languages and Programming, pages 76–92, 1991.

[7] G. Boudol and K. Larsen. Graphical versus logical specifi-
cations. TCS, 106:3–20, 1992.

[8] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verifi-
cation on infinite structures. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages
545–623. North Holland, 2000.

[9] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Veri-
fication: Introduction to Compositional and Noncomposi-
tional Methods. Number 54 in Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cam-
bridge, UK, Nov. 2001.

[10] O. Grumberg and D. Long. Model checking and modular
verification. ACM Trans. on Prog. Lang. & Syst., 16(3):843–
871, 1994.

[11] M. Hennessy and R. Milner. Algebraic laws for nondeter-
minism and concurrency. Journal of the ACM, 32:137–161,
1985.

[12] M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov.
Checking absence of illicit applet interactions: a case study.
In M. Wermelinger and T. Margaria, editors, Fundamental
Approaches to Software Engineering, FASE 2004, number
2984 in LNCS, pages 84–98. Springer, 2004.

[13] D. Kozen. Results on the propositional µ-calculus. TCS,
27:333–354, 1983.

[14] O. Kupferman and M. Vardi. An automata-theoretic ap-
proach to modular model checking. ACM Trans. on Prog.
Lang. & Syst., 22(1):87–128, 2000.

[15] K. Larsen. Modal specifications. In Automatic Verifica-
tion Methods for Finite State Systems, number 407 in LNCS.
Springer, 1989.

[16] K. Laster and O. Grumberg. Modular model checking of
software. In Tools and Algorithms for the Analysis and Con-
struction of Software, TACAS 98, LNCS. Springer, 1998.

[17] D. Polanský. Verifying properties of infinite-state systems.
Master’s thesis, Masaryk University, Faculty of Informatics,
Brno, 2000.

[18] L. Prensa Nieto. The Rely-Guarantee method in Is-
abelle/HOL. In P. Degano, editor, European Symposium
on Programming (ESOP’03), volume 2618 of LNCS, pages
348–362. Springer, 2003.

[19] C. Sprenger, D. Gurov, and M. Huisman. Simulation logic,
applets and compositional verification. Technical Report
RR-4890, INRIA, 2003.

[20] C. Stirling. Modal and Temporal Logics of Processes.
Springer, 2001.

[21] A. Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific J. of Math., 5, 1955.

[22] I. Walukiewicz. Pushdown processes: games and model
checking. In Proceedings of CAV’96, number 1102 in
LNCS, pages 62–75, 1996.

12

