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Version AbregéeCette thèse traite de la véri�
ation formelle de propriétés temporelles dessystèmes réa
tifs à états in�nis. Nous proposons un système de preuve basésur des tableaux et permettant la véri�
ation, par model 
he
king, de pro-priétés exprimées dans la logique arbores
ente CTL* 
onstruite sur un lan-gage d'assertions L. Le système de preuve est 
apable de traiter des formulesCTL* arbitraires sans avoir besoin de les transformer dans une forme 
ano-nique.Notre méthode repose sur la 
onstru
tion de stru
tures de preuve aussi
onnues sous le nom de tableaux. Il existe deux types de stru
tures de preuve(LTL et ELL), 
ha
un 
orrespondant à une sous-logique de CTL*, et deuxensembles de règles lo
ales pour les 
onstruire. L'appli
ation de quelquesunes de 
es règles exige la démonstration de la validité de 
ertains assertionsde L. Chaque type de stru
ture de preuve est lié à son propre 
ritère desu

ès. Ce dernier assure que les sous-formules exprimant des promessessont satisfaites d'une manière appropriée: seuls les tableaux satisfaisant 
e
ritère sont des démonstrations légales d'une propriété.Chaque 
ritère de su

ès est exprimé sous la forme d'une propriété tem-porelle parti
ulière. Cette dernière doit être satisfaite par le système de tran-sition asso
ié à un tableau donné et au système que l'on véri�e. Un par
oursdans 
e système asso
ié, appelé un trail du tableau, 
ombine un par
ours dusystème ave
 un 
hemin du tableau. Une règle de preuve supplémentaire estintroduite pour 
haque 
ritère de su

ès. Ces règles utilisent un argumentde bonne-fondation pour établir le su

ès d'une stru
ture de preuve. Unepreuve d'une propriété CTL* est alors une 
olle
tion �nie de stru
tures depreuve LTL et ELL, dont le su

ès a été démontré par l'appli
ation de la règleappropriée. Du fait que les règles de su

ès sont aussi ex
lusivement baséessur le raisonnement dans le langage d'assertions L, notre méthode réduittout raisonnement temporel à la démonstration de la validité d'assertionstirées de L. En 
onséquen
e, il n'y a pas besoin de prouver de theorèmesde la logique temporelle elle-même. Nous appelons notre méthode de preuvemodel 
he
king lo
al dedu
tive, 
ar elle généralise en même temps des te
h-vii



viii Version Abregéeniques de model 
he
king pour des systèmes à états �nis et des systèmes depreuve pour LTL et CTL qui ont été proposés dans la litérature.Nous démontrons que notre systéme de preuve est 
orre
t et 
ompletrelatif à la validité d'assertions tirée de L. Une partie majeure de 
ette preuveest basée sur la théorie des jeux. Dans une première étape la notion d'unjeux CTL* in�ni pour deux joueurs est introduite. Selon 
e jeu l'obje
tifdu premier joueur (appelé ∃) est de montrer qu'une propriété CTL* estsatisfaite, alors que l'autre (appelé ∀) essaie de montrer le 
ontraire. Nousdonnons une 
hara
térisation de la satisfa
tion d'une propriété CTL* enfon
tion de l'existen
e d'une stratégie gagnante pour le joueur ∃. Dans undeuxième temps, nous analysons la stru
ture interne des 
hemins et trailsd'une stru
ture de preuve et nous mettons 
ette stru
ture en relation ave
l'idée des jeux dévelopée auparavant. En parti
ulier, à 
haque trail d'unestru
ture de preuve LTL (ELL) 
orrespond une stratégie du joueur ∀ (∃) pourun jeu LTL (ELL). Nous montrons qu'une preuve d'une propriété LTL ouELL par notre système existe pré
isement si le joueur ∃ possède une stratégiegagnante pour le jeu 
orrespondant. Pour 
e faire, on doit 
omparer la notionde su

ès à 
elle d'admissibilité, qui est une notion alternative de su

èsproposée dans la literature. Les résultats pour LTL et ELL sont ensuitegénéralisés à CTL* entier. La dernière étape 
onsiste en la démonstration dela 
orre
tion et de la 
omplétude des règles de su

ès.Di�érents types d'équité sont ensuite étudiés et nos règles de su

ès sontétendues pour les prendre en 
ompte. Finalement, l'appli
ation du systèmede preuve est illustrée sur un exemple non banal.



Abstra
tThe present thesis is about the formal veri�
ation of temporal properties ofin�nite-state rea
tive systems. We propose a tableau proof system for themodel-
he
king of properties expressed in the full bran
hing time temporallogi
 CTL* over an assertion language L. The proof system applies to anarbitrary CTL* formula. There is no need to transform formulas into some
anoni
al form.The basi
 proof obje
t in our method is a proof stru
ture (a.k.a. tableau).There are two types of proof stru
tures (LTL and ELL), ea
h 
orrespondingto a sublogi
 of CTL*. A

ordingly, there are two dual sets of proof rules.Some of these rules require the validity of an assertion from L to be provenas part of their appli
ation. Ea
h type of proof stru
ture has its own su

ess
riterion, whi
h ensures that eventuality subformulas of the original formulaare satis�ed as appropriate. Only su

essful tableaux qualify as legal proofsof a property.Ea
h su

ess 
riterion is formulated as a temporal property of some spe-
i�
 form. The latter has to be satis�ed by a 
ertain transition systemasso
iated with a given tableau and the rea
tive system to be veri�ed. Arun of this asso
iated transition system, 
alled a trail of the proof stru
ture,
ombines a run of the system with a path in the proof stru
ture. We intro-du
e one additional proof rule for ea
h su

ess 
riterion. These rules employa well-foundedness argument to establish that a proof stru
ture of the re-spe
tive type is su

essful. A proof of a CTL* property of a given systemis then a �nite 
olle
tion of LTL and ELL proof stru
tures the su

ess ofwhi
h has been established using the respe
tive rules. As the su

ess rulesalso ex
lusively rely on reasoning in L our method redu
es all temporal rea-soning to proving the validity of formulas from L. Therefore, no theoremproving in the temporal logi
 itself is required. We 
all our method dedu
tivelo
al model 
he
king, as it generalises both lo
al model 
he
king te
hniquesfor �nite-state systems as well as proof systems for LTL and CTL that havebeen des
ribed in the literature.We show that our proof system for model 
he
king is sound and 
ompleteix



x Abstra
trelative to validity of formulas from the assertion language L. The majorpart of the proof relies on a game-theoreti
 argument. As a �rst and quiteindependent step we introdu
e the notion of a CTL* game, an in�nite two-player game, where one player (∃) tries to show that a property holds of thesystem, while the other player (∀) tries to refute it. We give a 
hara
terisationof the satisfa
tion of a CTL* property in terms of the existen
e of a winningstrategy for Player ∃. In a se
ond step, we analyse the internal stru
ture ofpaths and trails in proof stru
tures and link it up with the game-theoreti
ideas developed in the previous step. In parti
ular, to ea
h trail of a LTL(ELL) proof stru
ture 
orresponds a ∀-strategy (∃-strategy) of a LTL (ELL)game. We show that a su

essful proof stru
ture for a given LTL or ELLformula and system exists pre
isely if Player ∃ has a winning strategy forthe 
orresponding game. In doing so, we 
ompare our notion of su

ess withadmissibility, an alternative notion of su

ess proposed in the literature. Theresults for LTL and ELL are then lifted to full CTL*. As a �nal step we showthat the su

ess rules are sound and relatively 
omplete.We then study di�erent types of fairness and extend our su

ess rules toa

ount for them. Finally, the appli
ation of the proof system is illustratedon a non-trivial example.
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Chapter 1Introdu
tionModern so
iety depends more and more on its own te
hnologi
al a
hieve-ments. Powerful 
omputer systems 
onstitute the ba
kbone of almost any
on
eivable te
hnology today, be it in its development or in its implementa-tion. The 
omplexity of these systems is growing 
easelessly. Most of today's
omputing systems are 
hara
terised by an ongoing intera
tion with their en-vironment. This intera
tion o

urs in various forms su
h as the transmissionof data over a 
ommuni
ation network to another ma
hine, intera
tion witha human user, or the ex
hange of information with the sensors and a
tuatorsof an embedded 
ontrol system. Su
h systems are 
alled rea
tive, in 
ontrastto transformational systems whi
h 
ompute an output from a given input.Considering our dependen
y on these systems, it is 
lear that they shouldbe 
orre
t. The development of 
orre
t rea
tive systems represents a serious
hallenge for hardware and software engineering. Rea
tive systems are mostoften 
omposed of several 
ommuni
ating 
on
urrent pro
esses. The inherent
omplexity of 
on
urren
y and 
ommuni
ation makes the dis
overy of designerrors a di�
ult task. Not only may there be mistakes in the 
al
ulationssu
h systems perform (as in transformational systems), but there is alsothe possibility of syn
hronisation failures (su
h as as deadlo
ks, starvation,unexpe
ted message re
eption et
.). The behaviour of rea
tive systems isbest des
ribed in terms of their ongoing intera
tion with the environmentrather than a relation between input and output data as for transformationalsystems. In fa
t, while termination is most often a required property oftransformational programs, it is often undesirable for rea
tive systems.Traditional software engineering methods for error dete
tion su
h as sim-ulation and testing 
an qui
kly be
ome insu�
ient in this 
ontext. This doesnot mean that they should be abandoned. Simulation, for example, is a veryvaluable and e�
ient method for error dete
tion in the initial phase of de-sign validation. However, due to the sheer number of possible evolutions of1



2 [1.0
on
urrent systems, simulation and testing are unable to rea
h a satisfying
overage, leaving the more subtle errors buried in the depths of the statespa
e. As the 
ost for the elimination of errors in
rease the later they aredete
ted, there is also an immediate e
onomi
al interest to eliminate errorsas early as possible in the development 
y
le.Formal Spe
i�
ation and Veri�
ationResear
hers in the �eld of formal methods ta
kle this problem with math-emati
al methods that allow the rigorous veri�
ation of designs. A formalframework for the spe
i�
ation and veri�
ation of rea
tive systems shouldin
lude at least the following parts:
• a mathemati
al model of rea
tive systems
• a requirement spe
i�
ation language, and
• a veri�
ation methodModels The large majority of frameworks (and this thesis is no ex
eption)that in
lude a veri�
ation method use transition systems as their 
omputa-tional model of rea
tive systems. This is 
ertainly due to the simpli
ity of thismodel. A transition system is essentially a graph, where the nodes representsystem states and the edges atomi
 transitions between these states. Con
ur-ren
y is modeled by non-deterministi
 interleaving of atomi
 a
tions. Manyother models of rea
tive 
omputation have been proposed in the literature(see [SNW96℄ for an overview), some of whi
h like Petri Nets [Rei85℄ expli
-itly represent the 
on
ept of 
on
urren
y as distin
t from non-determinism,but many of them la
k veri�
ation frameworks.Spe
i�
ation Two di�erent 
lasses of requirement spe
i�
ation 
an bedistinguished. The �rst 
lass 
ould be 
alled relational. In this approa
h thedesired behaviour of a system design is formulated as another, more abstra
tsystem. Here the system des
ription language and requirement spe
i�
ationlanguage 
oin
ide. Systems are 
ompared w.r.t. some behavioural preorder orequivalen
e relation. As there is no general agreement on what aspe
ts of thebehaviour of a pro
ess should be visible to an outside observer, a plethoraof di�erent behavioural relations has been proposed in the literature (see[dN87, vG90, vG93℄ for overviews). This type of requirement spe
i�
ation is
omplete in the sense that all 
onstraints on the behaviour of an implemen-tation are represented in the abstra
t system.



1.0] Introdu
tion 3The method of spe
i�
ation re�nement is an example of this approa
h tospe
i�
ation. Starting from an initial abstra
t system a series of more andmore 
on
rete spe
i�
ations is produ
ed by the pro
ess of re�nement until thedesired level of detail of the implementation is obtained. Ea
h spe
i�
ationis related to the previous one by a behavioural preorder relation su
h assimulation. Frameworks based on set theory (see e.g., [Sta88, AL91℄) as wellas on temporal logi
 (see e.g., [Pnu92, KMP93, Lam94℄) have been proposed.Pro
ess algebras are another instan
e of this 
lass (see e.g., [Mil89, Hoa85,BW90, Mil99℄), where algebrai
 theories of pro
ess terms and behaviouralrelations between them are developed.The se
ond type of requirement spe
i�
ation follows a logi
al approa
h:the spe
i�
ation language is a modal or temporal logi
 that is interpreted overthe states or 
omputations of a transition system. The behaviour of a designis spe
i�ed in terms of a 
olle
tion of desired properties expressed as formulasof the logi
. Depending on the parti
ular logi
 a system satis�es a propertyif all its initial states or all its 
omputations do. Many useful properties ofrea
tive systems 
an be expressed in these logi
s, in
luding safety properties(�nothing bad happens�) and liveness properties (�something good happens�).The approa
h followed in this thesis falls into this 
ategory. The logi
 weuse as our spe
i�
ation language is CTL* [EH86℄, a full bran
hing-time logi
that allows quanti�
ation over 
omputations to be freely mixed with linear-time operators. As su
h it is more expressive than linear-time temporal logi
(LTL) or 
omputation tree logi
 (CTL), but less expressive than the modal
µ-
al
ulus. For a survey of temporal and modal logi
s see [Eme90, Sti92℄.Veri�
ation In this thesis we 
on
entrate on the veri�
ation of logi
alspe
i�
ations, also 
alled model 
he
king. For �nite-state systems model
he
king is de
idable and e�
ient algorithms exist for various logi
s (see[CGL93, CGP99℄ for a survey). An obvious advantage of algorithmi
 model
he
king is that it is fully automati
. In 
ase a property fails to hold, thealgorithm 
an also produ
e a 
ounterexample, whi
h is of invaluable helpin understanding the reason for the failure. The main drawba
k of algo-rithmi
 model 
he
king is the so-
alled state spa
e explosion problem: theexponential growth of the state spa
e in the number of 
omponent pro
esses.Although many sophisti
ated heuristi
s have been developed to alleviate thisfundamental problem, memory shortage is still the main limiting fa
tor forthe appli
ation of algorithmi
 model 
he
king.Model 
he
king methods based on dedu
tive reasoning on the other handare appli
able to arbitrary in�nite-state systems. Their strength lies in theirgenerality. As in general the model 
he
king problem is unde
idable, it 
an-



4 S
ope of the Thesis [1.1not be fully automati
 and therefore requires a 
ertain expertise from theuser, whi
h is the main drawba
k of this method.More re
ently, there has been a trend in 
ombining the good sides ofboth approa
hes, for example, by 
onstru
ting a �nite-state abstra
tion ofthe system by dedu
tive means whi
h is then model-
he
ked algorithmi
ally[DF95, DGG97, GS97, RSS95, MBSU98℄.1.1 S
ope of the ThesisIn this thesis we address the problem of model 
he
king CTL* properties ofsystems with possibly in�nite state spa
es.Systems are spe
i�ed by a synta
ti
al representation of transition systemsformulated in an assertion language L. In order to 
ompensate for the mod-eling of 
on
urren
y by non-determinism in the transition system model, oursystem spe
i�
ations in
lude fairness 
onstraints to model the fair s
hedulingof system 
omponents. Only runs of the system where all these 
omponentsre
eive fair treatment are 
onsidered as 
omputations.We present a tableau-based proof system for ground-quanti�ed CTL*,whi
h is obtained from pure propositional CTL* by repla
ing atomi
 propo-sitions by assertions of L over the system variables. These assertions may
ontain �rst-order quanti�ers, but no �rst-order quanti�
ation is allowed inthe s
ope of temporal operators. The proof system is 
omposed of two dualsets of lo
al rules, one dealing with the universal path quanti�ers and theother with the existential path quanti�ers of CTL*. These rules are used to
onstru
t the basi
 proof obje
ts of our method, 
alled LTL and ELL proofstru
tures. A CTL* proof stru
ture is in turn essentially a 
olle
tion of LTLand ELL proof stru
tures.In order to be a

epted as a proof of a property, a proof stru
ture has tosatisfy a su

ess 
riterion formulated in terms of the runs of an asso
iatedsystem (
alled trails) derived from the original system and the proof stru
-ture. An additional (global) rule for proving su

ess is introdu
ed for ea
htype of proof stru
ture. Our proof system redu
es all temporal reasoning toshowing the validity of veri�
ation 
onditions formulated in L and arisingeither as side 
onditions of the lo
al rules used in the 
onstru
tion of proofstru
tures or as premises of the su

ess rules.We show that our proof system is sound and 
omplete. Soundness meansthat every provable statement is true and 
ompleteness means that every truestatement is provable in our system. By the expressiveness of our assertionlanguage we 
annot expe
t that every veri�
ation 
ondition is provable insome formal system, so 
ompleteness is proved relative to the validity of



1.3] Introdu
tion 5assertions (veri�
ation 
onditions). Soundness and 
ompleteness is shownto hold for LTL and ELL proof stru
tures and is then lifted to CTL* proofstru
tures. A large part of the soundness and 
ompleteness proof is based ona game-theoreti
 argument. We 
hara
terise satisfa
tion of CTL* formulasin terms of the existen
e of a winning strategy for one player in an in�nitetwo-player game and then pro
eed by a �ne-grained game-theoreti
 analysisof paths and trails in proof stru
tures, dis
overing that trails 
orrespond tostrategies in CTL* games.1.2 ContributionsThe main 
ontribution of this thesis is the presentation of a sound and rel-atively 
omplete proof system for the model 
he
king of CTL* propertiesof in�nite-state rea
tive systems. The system spe
i�
ations in
lude a quitegeneral type of fairness 
onstraints. To the best of our knowledge no su
hproof system for CTL* has been proposed before in the literature. Our proofsystem generalises existing methods for �nite-state model 
he
king as well asseveral existing dedu
tive proof systems.Another 
ontribution is our novel approa
h of using a game-theoreti
argument to establish soundness and 
ompleteness of the proof system. Infa
t, our game-theoreti
 analysis of the �ne stru
ture of paths and trails inproof stru
tures has an interest of its own as it o�ers interesting insights intothe inner working of proof stru
tures. Games and strategies are parti
ularlyattra
tive in this 
ontext as they provide a very intuitive point of view ofotherwise rather abstra
t stru
tures.1.3 Chapter OutlineIn Chapter 2 we introdu
e the transition system model, the temporal logi
CTL* and some ba
kground on model 
he
king. An abstra
t notion of gamesand strategies is also de�ned.LTL proof stru
tures are the topi
 of Chapter 3. We introdu
e a suitablesequent format and a set of lo
al rules for the 
onstru
tion LTL proof stru
-tures. A su

ess 
riterion is then presented that quali�es a proof stru
tureas a legal proof. This 
riterion is de�ned in terms of trails whi
h are runs ofa system derived from a proof stru
ture and the original system. Intuitively,a trail 
ombines a run of the system with a path in the proof stru
ture. Wethen introdu
e a global proof rule that allows us to establish su

ess. Theappli
ation of the proof system for LTL is illustrated by a series of examples.



6 Chapter Outline [1.3In the following Chapter 4 we establish the soundness and relative 
om-pleteness of the proof system for LTL. The proof is largely based on a game-theoreti
 argument. The �rst step 
onsists in a 
hara
terisation of the sat-isfa
tion of a CTL* formula in terms of the existen
e of a winning strategyfor one player in an in�nite two-player game, where Player ∃ tries to estab-lish the truth of the formula, while his opponent, Player ∀, tries to refute it.By observing that to ea
h trail 
orresponds a strategy of Player ∀ we 
anshow that a su

essful proof stru
ture for a system S with initial 
ondition
Θ and property φ exists pre
isely if Player ∃ has a winning strategy for thegame GS(Θ, φ) (and hen
e S,Θ |= φ). The �nal step of the proof 
onsists inshowing that the LTL su

ess rule is sound and relatively 
omplete.In Chapter 5 we extend our proof system to full CTL*. To this end, we�rst introdu
e the duals of LTL proof stru
tures 
alled ELL proof stru
turesto handle existentially path-quanti�ed formulas. The ELL su

ess 
riterion isdual to the one for LTL. A rule is introdu
ed to prove ELL su

ess. Soundnessand relative 
ompleteness are then shown along the lines of Chapter 4. Someresults transfer dire
tly by duality, while others need to be reviewed.Chapter 6 addresses the problem of proving su

ess for proof stru
turesfor systems with fairness 
onstraints. The LTL as well as the ELL su

essrules are extended to 
ope with both weak and strong fairness 
onstraints.The new rules are shown to be sound and 
omplete. By this result we 
anlift the restri
tion to saturated systems (without fairness 
onstraints) in thesoundness and 
ompleteness theorem for CTL* proof stru
tures, whi
h wasne
essary for the only reason that the previous su

ess rules did not a

ountfor fairnessThe appli
ation of our proof system is illustrated on a non-trivial examplein Chapter 7, where we verify some properties of the bakery proto
ol formutual ex
lusion. In parti
ular, we prove that the properties of mutualex
lusion, a

essibility and unboundedness hold for the bakery proto
ol. Thelatter shows that there is possibility of unbounded growth of some systemvariables, whi
h makes the system in�nite-state.The �nal 
hapter 
on
ludes the thesis by a review of its goals and theira
hievement, a 
omparison with related work as well as an outlook on futureresear
h.



Chapter 2Ba
kgroundIn this 
hapter we introdu
e transition systems, our 
omputational model ofrea
tive systems, and the temporal logi
 CTL*, our requirement spe
i�
ationlanguage. We then survey some existing te
hniques for model 
he
king, thatis, for the veri�
ation of temporal properties of rea
tive systems. Algorithmi
as well as dedu
tive approa
hes are 
onsidered. Finally, we de�ne the notionsof games and strategies. We start with some basi
s on words and languages.2.1 Words and LanguagesLet A be an alphabet. We denote by A∗ the set of �nite words (sequen
es)and by Aω the set of in�nite words over A. Let A∞ = A∗ ∪ Aω. A subsetof A∗ (Aω,A∞) is 
alled a language (ω-,∞-language). We denote the emptyword by ǫ and the 
on
atenation of a �nite word u ∈ A∗ with a word v ∈ A∞by u · v (or just uv). De�ne the (�nite) pre�x ordering on A∞ by u ≤ w if
u ∈ A∗ and there is a v ∈ A∞ su
h that uv = w. In this 
ase v is 
alled theresiduum and is denoted by w/u.For a �nite word u, let |u| denote its length, that is, the number ofletters appearing on u. For an in�nite word v, we de�ne |v| = ω. Let
w = a0a1 · · ·aj · · · be a �nite or in�nite word. De�ne for 0 ≤ i < |w|:

• w(i) = ai, the ith letter,
• w[i] = aoa1 · · ·ai−1, its pre�x of length i
• wi = aiai+1 · · · be its ith su�x.We use the quanti�er ∃ω and its dual ∀ω as shorthands for �there are in�nitelymany� and �for all but �nitely many�, respe
tively. De�ne the set of letters7



8 Transition Systems [2.2appearing in�nitely many times in w by
inf(w) = {a | ∃ωi. w(i) = a}.The stuttering removal operator ♮ : Aω → Aω is indu
tively de�ned by

♮ǫ = ǫ

♮(abw) =





w if a = b and w = aω

♮(bw) if a = b and w 6= aω

a♮(bw) otherwiseIt repla
es any �nite repetition of a letter in an in�nite word by a singleo

urren
e of that letter.Given two alphabets A and B, a map f : A → B ∪ {ǫ} is extended towords in the following way: for w ∈ A∞ we de�ne f∞ : A∞ → B∞ by
f∞(w) = f(w(0)) · f(w(1)) · · · · · f(w(j)) · · · ·Note that f∞ may map some in�nite words to �nite ones. We write fω and

f ∗ for the restri
tion of f∞ to the domains Aω and A∗, respe
tively.2.2 Transition SystemsWe use transition systems as our 
omputational model of rea
tive systems.2.2.1 Basi
 Transition SystemsDefinition 2.2.1. A labeled transition system (LTS) is a stru
ture
T = (S, {

λ
→| λ ∈ Λ}),where S is a non-empty set of states, Λ is a non-empty set of transition labels(or transitions, for short) and λ

→⊆ S × S is a transition relation for ea
hlabel λ ∈ Λ. ♦We write s λ
→ s′ for (s, s′) ∈

λ
→ and say that there is an λ-transitionleading from state s to state s′. An λ-transition is said to be enabled in astate s if there exists a state s′ su
h that s λ

→ s′. For a set of transitions
Λ′ ⊆ Λ, we say that Λ′ is enabled in state s if some transition λ ∈ Λ′ isenabled in s. A transition or set of transitions that is not enabled is 
alleddisabled. Let → denote the unlabeled global transition relation ⋃λ∈Λ

λ
→.



2.2] Ba
kground 9Assumption 2.2.2. For 
onvenien
e, we will only 
onsider LTS with a totalglobal transition relations, where some λ-transition is always enabled in ea
hstate. We 
all su
h LTS total.In 
ase some transition system T is not total, there is a simple �tri
k� totransform it into a total one: add an idle transition λi to Λ with s λi→ s forany state s with Λ disabled.RunsA run of an LTS T = (S, {
λ
→| λ ∈ Λ}) is an in�nite sequen
e of states

σ : s0s1 · · · sj · · · su
h that for all i ∈ ω there is an λ ∈ Λ su
h that si λ
→ si+1.We say that a λ-transition is taken at sk on σ if sk λ

→ sk+1. For a set Λ′ ⊆ Λof transitions, we say that Λ′ is taken at sk on σ if some λ ∈ Λ′ is taken at
sk. For U ⊆ S we de�ne a U-run to be a run starting in some state s ∈ U .States appearing on a U-run are 
alled U-rea
hable. For singleton sets wewill write s-run instead of {s}-run. We write RT (U) for the set of U-runsand RT for the set of all runs of T .2.2.2 Fair Transition SystemsIntuitively, fairness [Fra86, Kwi89, AFK88℄ is a property of runs expressingthat if some 
omponent of the system is su�
iently often ready to pro
eed,then its progress will not be delayed inde�nitely. An unfair run is then a runalong whi
h the exe
ution of some 
omponent is unduly delayed, though isis su�
iently often ready for exe
ution. Of 
ourse, one has to spe
ify morepre
isely what is meant by �su�
iently often� and �
omponent�.Fairness is a way to 
ompensate for the modeling of 
on
urren
y by non-determinism (interleaving of 
on
urrent transitions) in the transition systemmodel. When it 
omes to spe
ifying and proving properties of a transitionsystem, one typi
ally only requires that the fair runs of a system satisfy itand generally ignore the unfair ones. Fair runs will be 
alled 
omputations.In pra
ti
e, fairness is realised by a s
heduler.The most 
ommon notions of fairness are un
onditional, weak and strongfairness (also 
alled impartiality, justi
e and 
ompassion [LPS81, MP92℄)
orresponding to di�erent interpretations of �su�
iently often�. Consider atransition system T = (S, {

λ
→| λ ∈ Λ}), subset Λ′ ⊆ Λ of its transitions. We
all a run σ of T

• un
onditionally fair w.r.t. Λ′ ⊆ Λ if Λ′ is taken in�nitely many timeson σ,
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• strongly fair w.r.t. Λ′ ⊆ Λ if whenever Λ′ is enabled in�nitely often,then Λ′ is taken in�nitely many times on σ, and
• weakly fair w.r.t. Λ′ ⊆ Λ if whenever Λ′ is enabled 
ontinuously fromsome point on, then Λ′ is taken in�nitely many times on σ.Note the de
reasing strength: an un
onditionally fair run is also strongly fairand a strongly fair is also weakly fair (w.r.t. some Λ′ ⊆ Λ).For our purpose, we de�ne a fairness 
onstraint w.r.t. a set of transitions

Λ to be a triple F = (P,W, F ), where P ⊆ P(Λ) is a �nite partition of Λ,
W ⊆ P is a set of weakly fair sets of transitions and F ⊆ P is a set of stronglyfair sets of transitions. The elements of P 
an be seen as an abstra
t form ofpro
esses. They are the �
omponents� referred to in the informal de�nitionof fairness above. A run σ is 
alled fair if it is weakly fair w.r.t. all Λw ∈Wand strongly fair w.r.t. all Λf ∈ F . We informally write σ |= F to mean that
σ is fair.By varying the type of partition P of a fairness requirement F = (P,W, F )we 
an 
hange the granularity of the �
omponents� that the fairness require-ments apply to. For example:weak pro
ess fairness [LT87℄:

F = (P,W,∅) with W = P for any partition P ,strong pro
ess fairness [CS87℄:
F = (P,∅, F ) with F = P for any partition P , andtransition fairness [MP92℄:
F = (Pid,W, F ) with the partition Pid indu
ed by the identity relationon Λ and W and F arbitrary subsets of P .There are other notions of fairness, whi
h do not �t this s
heme. We referthe reader to [Kwi89℄ for a survey and to Fran
ez' book [Fra86℄ for moredetailed information.Definition 2.2.3. A fair transition system (FTS) is a stru
ture

T = (S, {
λ
→| λ ∈ Λ},F)with (S, {

λ
→| λ ∈ Λ}) a LTS and F a fairness 
onstraint for Λ. A fair run of

T is 
alled a 
omputation. ♦For a set U ⊆ S, a U-
omputations is a 
omputation starting in a state
s ∈ U . We write CT (U) for the set of U-
omputations and CT for the set ofall 
omputations of T .



2.3] Ba
kground 11Initial statesIt is sometimes useful to add a non-empty set of initial states IT ⊆ ST to a(fair) transition system T . Su
h a transition system is 
alled initialised. Oneis then generally interested in the IT -
omputations only.What Type of Transition System now?Any type of transition system introdu
ed above 
an be seen as an instan
eof an initialised fair transition system
T = (S, {

λ
→| λ ∈ Λ}, I,F),hen
eforth just 
alled transition system for brevity. Putting I = S is equiv-alent to dropping I. Setting F = (P,∅,∅) for any partition P of Λ has thesame e�e
t as dropping F . We will 
all a transition system with trivial orno fairness 
onstraints saturated, as all of its runs are 
omputations.2.3 Synta
ti
 RepresentationFor the purpose of spe
i�
ation and dedu
tive veri�
ation, a more synta
ti
representation of transition systems is desirable.2.3.1 Assertion languageLet L be an assertion language in
luding at least the predi
ate 
al
ulus overthe 
ountable set of variables V and some �xed �rst-order stru
ture A 
on-taining symbols for all the usual operations over integers and booleans thatmay o

ur in a system spe
i�
ation. Formulas of L are 
alled assertions. For

X ⊂ V we write L[X] for the set of assertions with all free variables in X.Further Assumptions on LFor the purpose of showing relative 
ompleteness of our proof system a pure�rst-order language is not su�
iently expressive (see, e.g., [SdRG89℄) andwe have to extend L to in
lude least and greatest �xed point operators (µand ν, respe
tively). We denote this extension of L by Lµ (see also Park's
µ-
al
ulus [Par76℄ and [Mos74, SdRG89℄).Furthermore, we will assume that the �rst-order stru
ture A we are work-ing with supports an elementary (�rst-order de�nable in the stru
ture) 
odings
heme, allowing us to 
ode �nite sequen
es of elements of the domain D of



12 Synta
ti
 Representation [2.3the stru
ture A as single elements of D. Stru
tures with this property are
alled a

eptable in [Mos74, SdRG89℄.2.3.2 System Spe
i�
ationsDefinition 2.3.1. A (transition) system spe
i�
ation (or system for short)is a stru
ture
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F)where

• X = {x1, . . . , xn} ⊆ V is a �nite set of typed program variables. Oftenthese are subdivided into 
ontrol variables indi
ating the lo
ations inthe program where 
ontrol 
urrently resides and data variables. Weoften use ve
tor notation x for the ordered set x1, . . . , xn of programvariables.
• Σ is the state spa
e, the set of type-
onsistent interpretations of theprogram variables. An element s ∈ Σ is 
alled a state.
• ρλ(x, x

′) is the transition relation for transition label λ ∈ Λ, an as-sertion whi
h may refer to two 
opies of the program variables, anunprimed 
opy x representing the 
urrent state and a primed 
opy
x′ = x′1, . . . , x

′
n representing a su

essor state,

• Θ(x) is the initial 
ondition, a satis�able assertion des
ribing the setof starting states, and
• F is a fairness 
onstraint over ΛA state assertion (over X) is an assertion all of whose free variables areprogram variables. Let p be a state assertion. We write s |= p and say that ssatis�es p if p is true when interpreting the free variables of p by s. If s |= pwe also say that s is a p-state. We say that p is satis�able if there is a state

s su
h that s |= p. An assertion is 
alled state valid (w.r.t. stru
ture A),written |= p, if s |= p for all states s ∈ Σ1. A state assertion p des
ribes theset of states ‖p‖ satisfying it, that is, ‖p‖ = {s ∈ Σ | s |= p}. For the sake ofbrevity, we will hen
eforth just say assertion for state assertion and validity1Note that state validity is not to be 
onfused with general validity of a �rst-orderformula, whi
h states that a formula is true in all �rst-order stru
tures over the givensignature and all interpretations of its free variables.



2.4] Ba
kground 13for state validity. To avoid 
onfusion, we will expli
itly indi
ate the set offree variables of an assertion in 
ase not all of them are program variables.A pair of states (s, s′) satis�es a transition relation ρλ(x, x′), denoted by
(s, s′) |= ρλ(x, x

′), if the assertion ρλ(x, x
′) is true when interpreting ea
hunprimed variable x ∈ X by s(x) and ea
h primed variable x′ ∈ X ′ by s′(x).For Λ′ ⊆ Λ we write ρΛ′(x, x′) to abbreviate ∨λ∈Λ′ ρλ(x, x

′). Hen
e, ρΛ(x, x′)denotes the global transition relation.Using the transition relation ρλ, we are now able to express enablednessof a set of transitions Λ′ ⊆ Λ by the assertion
enΛ′(x)

def
= ∃x′.ρΛ′(x, x′)and write enλ(x) instead of en{λ}(x).A system spe
i�
ation S as above indu
es the obvious transition system

TS = (Σ, {
λ
→| λ ∈ Λ}, I,F), with transitions λ

→= {(s, s′) | (s, s′) |= ρλ} forea
h λ ∈ Λ, initial states I = {s ∈ Σ | s |= Θ}. Given a system S, we willwrite RS for RTS and CS for CTS . For a state assertion Ξ let RS(Ξ) and
CS(Ξ) denote RS(‖Ξ‖) and CS(‖Ξ‖), respe
tively.2.4 Temporal Logi
In this se
tion, we present the syntax and semanti
s of our requirement spe
-i�
ation language, the temporal logi
 CTL* [EH86℄ and its sublogi
s.2.4.1 SyntaxLet Prop be a set of atomi
 propositions and de�ne the set of literals by
Lit = Prop∪{¬p | p ∈ Prop}.Definition 2.4.1. The syntax of the logi
 CTL* is de�ned by

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕVϕ | ϕUϕ | Aϕ | Eϕwhere p ∈ Lit is a literal. The 
onne
tives Next (X), Release (V) and Until (U)are 
alled temporal operators. The operators A and E are 
alled universaland existential path quanti�ers, respe
tively. We will often 
all a formulawith top-level 
onne
tive ∇ ∈ {∧,∨,X,V,U,A,E} a ∇-formula and use Z asa pla
eholder for either U or V. So a Z-formula is either a U- or a V-formula.We write φ 4 φ′ to mean that φ is a subformula of φ′. The relation 4 indu
esa partial order on CTL* formulas. Let V(φ) denote the set of V-subformulas



14 Temporal Logi
 [2.4of φ and similarly for U(φ). The (path-)quanti�er depth of a CTL* formulais indu
tively de�ned by:
qd(p) = 0
qd(Xφ) = qd(φ)
qd(φ1 ⋄ φ2) = max(qd(φ1), qd(φ2)) for ⋄ ∈ {∧,∨,V,U}
qd(Aφ) = qd(Eφ) = 1 + qd(φ)We say that a formula φ is of level k ≥ 0 if qd(φ) = k. We now de�ne threesublogi
s of CTL*:

• the logi
 LTL 
onsists of the path-quanti�er free (depth 0) formulas ofCTL*.
• the logi
 ALL (ELL) 
onsists of the CTL* formulas of the form Aϕ(Eϕ), where ϕ is a LTL formula.
• the logi
 CTL 
onsists of those CTL* formulas, where every temporaloperator is immediately pre
eded by a path quanti�er. In other words,the syntax of CTL is de�ned by

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | Q Xϕ | Q(ϕVϕ) | Q(ϕUϕ),where p ∈ Lit and Q ∈ {A,E} is a path quanti�er. ♦In our presentation of these logi
s, negation on formulas other than as-sertions is a meta-level notion indu
tively de�ned by
¬(φ1 ∧ φ2) = ¬φ1 ∧ ¬φ2 ¬(φ1 ∨ φ2) = ¬φ1 ∨ ¬φ2

¬(ψ1 Vψ2) = ¬ψ1 U¬ψ2 ¬(ψ1 Uψ2) = ¬ψ1 V¬ψ2

¬Xψ = X¬ψ
¬Aψ = E¬ψ ¬Eψ = A¬ψIn this de�nition the duality of operators is exploited thereby avoiding anexponential blow-up in the size of the formula.The propositions true and false as well as the 
onne
tives for impli
ation(→) and equivalen
e (↔) are de�ned in the usual way using the boolean
onne
tives. Some other frequently used temporal operators are 'always'(G), 'eventually' (F) and 'unless' (W) whi
h 
an be de�ned from the basi
ones by

Gψ
def
= false Vψ

Fψ
def
= true Uψ

ψ1 Wψ2
def
= ψ2 ∨ (Xψ2 Vψ1)In order to save us some parenthesis, we adopt the 
onvention that unaryoperators have higher pre
eden
e than binary operators and binary temporal
onne
tives have pre
eden
e over binary boolean 
onne
tives.



2.4] Ba
kground 152.4.2 Semanti
sA model M for a CTL* formula is a pair (T , V ), where T is a transitionsystem and V : Lit → 2ST is a valuation map assigning to ea
h atomi
proposition p the states V (p) ⊆ ST where p holds. We require that V (¬p) =
ST − V (p).Definition 2.4.2. For a CTL* modelM = (T , V ), a run σ ∈ RT and CTL*formulas ϕ, ϕ1, ϕ2, the satisfa
tion relation |= is indu
tively de�ned by
M, σ |= p i� p ∈ Lit and σ(0) ∈ V (p)
M, σ |= ϕ1 ∧ ϕ2 i� M, σ |= ϕ1 and M, σ |= ϕ2

M, σ |= ϕ1 ∨ ϕ2 i� M, σ |= ϕ1 or M, σ |= ϕ2

M, σ |= Xϕ i� M, σ1 |= ϕ
M, σ |= ϕ1 Vϕ2 i� ∀k ∈ ω : M, σk |= ϕ2 if M, σi 6|= ϕ1 for all i < k
M, σ |= ϕ1 Uϕ2 i� ∃k ∈ ω : M, σk |= ϕ2 and M, σi |= ϕ1 for all i < k
M, σ |= Aϕ i� M, σ′ |= ϕ for all σ′ ∈ CT (σ(0))
M, σ |= Eϕ i� M, σ′ |= ϕ for some σ′ ∈ CT (σ(0))

♦Our presentation of CTL* follows the non-standard approa
h of Stir-ling [Sti89℄, in whi
h all formulas are interpreted over paths (i.e., 
omputa-tions of a transition system), thus eliminating the distin
tion between stateand path formulas (interpreted over states and 
omputations, respe
tively)made in the standard presentation [EH86℄.We de�ne a posteriori a state formula to be a boolean 
ombination ofliterals and path-quanti�ed formulas. A formula that is not state formula is
alled a path formula2. For any state formula ψ and two runs σ, σ′ ∈ RT (s)we have
M, σ |= ψ i� M, σ′ |= ψThus, satisfa
tion of a state formula depends only on the �rst state of a runand we 
an writeM, s |= ψ in this 
ase3. We extend the notion of satisfa
tionto arbitrary CTL* formulas and sets of states. Let U ⊆ ST and de�ne

M, U |= ϕ i� M, σ |= ϕ for all σ ∈ CT (U).2Note that this de�nition of path formulas does not 
oin
ide with the one in [EH86℄,where all state formulas are also path formulas.3The 
onverse does not hold; 
onsider for example the path formula X p ∨ X¬p.
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 [2.4For s ∈ ST we write M, s |= ϕ instead of M, {s} |= ϕ. When there is norisk of 
onfusion we will drop the indi
ation of the model M and write, forinstan
e, just σ |= ϕ instead of M, σ |= ϕ and U |= ϕ for M, U |= ϕ.We say that a model M = (T , V ) satis�es a CTL* formula ϕ, written
M |= ϕ, if M, IT |= ϕ. A CTL* formula is valid, written |= ϕ, if M |= ϕ forall models M.Classi�
ation of PropertiesThere are two main 
lassi�
ations of (linear-time) temporal logi
 properties.The most 
ommon 
lassi�
ation distinguishes safety properties (�nothing badhappens�) from liveness properties (�something good happens�, possibly re-peatedly) [AS85℄. Examples of safety properties are deadlo
k freedom, par-tial 
orre
tness and any form of invariant. Examples of liveness propertiesare freedom from starvation, total 
orre
tness and fairness. Topologi
ally, asafety property is a 
losed set, while a liveness property is a dense set in theCantor topology on Σω for a set of states Σ [AS85, CMP93℄.The alternative safety-progress 
lassi�
ation [CMP93℄ is tailored to prop-erties des
ribable in LTL. This 
lassi�
ation of properties is hierar
hi
al,a

ording to the alternation of G and F operators. The 
lasses are: safety(G p), guarantee (F p), obligation (∧n

i=1 G pi ∨ F qi), response (GF p), persis-ten
e (F G p) and rea
tivity (∧n
i=1 GF pi ∨ F G qi). A property of a 
lass otherthan safety is 
alled a progress property. It is shown in [LPZ85℄ that everyLTL formula with past operators is equivalent to a rea
tivity formula. Topo-logi
ally, this 
lassi�
ation 
orresponds to the lower two and a half levels ofthe Borel hierar
hy (see also [TL94℄).Equivalen
esWe introdu
e two equivalen
es on CTL* formulas, one based on states andthe other based on 
omputations. Let M = (T , V ) be a model. Then wede�ne:

ϕ1 ≡M,U ϕ2 if M, σ |= ϕ1 if and only if M, σ |= ϕ2 for all σ ∈ CT (U)
ϕ1 ≡M ϕ2 if ϕ1 ≡M,I ϕ2 for I the set of initial states of T
ϕ1 ≡ ϕ2 if ϕ1 ≡M ϕ2 for all models M

ϕ1 ≈M,U ϕ2 if M, s |= ϕ1 if and only if M, s |= ϕ2 for all s ∈ U
ϕ1 ≈M ϕ2 if ϕ1 ≈M,I ϕ2 for I the set of initial states of T
ϕ1 ≈ ϕ2 if ϕ1 ≈M ϕ2 for all models MSome properties of these equivalen
es are summarised in
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kground 17Proposition 2.4.3. (CTL* Equivalen
es) We have:(i) ≡⊂≈,(ii) ϕ1 ≈ ϕ2 i� Aϕ1 ≡ Aϕ2,(iii) ϕ ≈ Aϕ for all CTL* formulas ϕ;(iv) ψ ≡ Aψ for CTL* state formulas ψ, and(v) ≡ is a 
ongruen
e on CTL*, while ≈ is not.Proof. (i) The in
lusion follows from the de�nition. It is also easy to seethat G p ≈ A G p, while G p 6≡ A G p. (ii),(iii),(iv) Easy. (v) A routine indu
-tion on 
ontexts shows that ≡ is a 
ongruen
e. On the other hand, ≈ is nota 
ongruen
e as G p ≈ A G p, but A F G p 6≈ A F A G p.It follows from (ii) and (iii) that the two equivalen
es 
oin
ide on stateformulas. As another 
onsequen
e of (iii) the distin
tion of the logi
s LTLand ALL appears rather arti�
ial when talking about satisfa
tion of formulasw.r.t. a set of states or a model. Therefore, we will take the freedom ofidentifying the two logi
s in that 
ontext.The reason for introdu
ing the two equivalen
es is that ≡ is a 
ongruen
e,whereas the weaker ≈ is useful in 
omparing the expressive power of CTL*with logi
s interpreted over states.ExpressivenessLet L1 and L2 be two temporal (or modal) logi
 languages interpreted overstates of a transition system. We say that L1 is no more expressive than
L2 and write L1 ≤ L2, if for all ϕ1 ∈ L1 there is some ϕ2 ∈ L2 su
h that
ϕ1 ≈ ϕ2. We say that L1 is stri
tly less expressive than L2, written L1 < L2,if L1 ≤ L2, but not L2 6≤ L1.Denote by µK the modal µ-
al
ulus [Koz83℄. Then the following relationshold:Proposition 2.4.4. (Relative Expressiveness) We have:(i) L < CTL∗ for L ∈ {ELL,LTL,CTL},(ii) CTL∗ < µK, and(iii) ELL, LTL and CTL are mutually in
omparable w.r.t. ≤.In lieu of proving this proposition we just remark that an e�e
tive (butdouble exponential) translation from CTL* to µK was given by Dam in[Dam94℄ (see also [Ref96℄).
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 Model Che
king [2.52.4.3 Ground-quanti�ed CTL*Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system. If we take as the set ofpropositions of CTL* the set of state assertions over X, we move from apure propositional setting to what we 
all ground-quanti�ed CTL* (over X),written CTL*[X]. This is a restri
ted form of �rst-order CTL*, where nopath-quanti�er or temporal operator may o

ur in the s
ope of a �rst-orderquanti�er.The system S indu
es a model MS = (TS , VS), where TS is the transitionsystem indu
ed by S as above and VS : L[X] → 2Σ is de�ned by VS(p) = ‖p‖ .We then write S,Ξ |= ϕ for MS , ‖Ξ‖ |= ϕ and S |= ϕ for S,Θ |= ϕ.For surveys on temporal and modal logi
s we refer the reader to [Eme90,Sti92, Sti96b, MP92℄.2.4.4 The Model Che
king ProblemGiven formula ϕ of a modal or temporal logi
 L and model M for L, themodel 
he
king problem 
onsists in verifying whether or not
M |= ϕholds. There are algorithmi
 as well as dedu
tive approa
hes to model 
he
k-ing4. In the last de
ade, model 
he
king has developed into a vast �eld ofresear
h, so the following short overview of the existing work on algorithmi
and dedu
tive approa
hes must ne
essarily remain in
omplete.2.5 Algorithmi
 Model Che
kingThe method of algorithmi
 model 
he
king of �nite state systems was pio-neered in the early eighties independently by Clarke and Emerson [CE81℄ andby Queille and Sifakis [QS82℄ for the logi
 CTL. A tableau-based algorithmfor LTL model 
he
king was developed a few years later by Li
htenstein andPnueli in [LP85℄. Emerson and Lei [EL85℄ published at the same time the�rst model 
he
ker for CTL*. CTL model 
he
king is more e�
ient thanLTL and CTL* model 
he
king. Its time 
omplexity is linear both in thesize of the model and the formula, while for LTL as well as CTL* it is alsolinear in the size of the model but exponential in the size of the formula. This4The term 'model 
he
king' has traditionally been used for algorithmi
 methods only.In this thesis, we understand model 
he
king in this broader sense, independently of themethod used.
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kground 19advantage of CTL over LTL and CTL* is 
ontrasted by the fa
t that fairnessis not expressible in CTL. This situation is partially remedied in [CES86℄,where their CTL model 
he
ker is extended to handle fairness 
onstraints.On the other hand, the size of formulas in typi
al requirement spe
i�
ationsis usually small enough to make LTL or CTL* model 
he
king appli
able inpra
ti
e.2.5.1 The Automata-theoreti
 Approa
hA uniform theoreti
al framework for the design of model 
he
king algorithmsis provided by the theory of automata on in�nite obje
ts [Tho90℄. Vardiand Wolper [VW86℄ were the �rst to reformulate LTL model 
he
king interms of automata on in�nite words (ω-automata). In this approa
h, theveri�
ation of M |= ϕ is redu
ed to 
he
king whether the produ
t of the two
ω-automata AM and A¬ϕ a

epts the empty language. The ω-automaton
AM a

epts exa
tly the 
omputations of M, while the A¬ϕ a

epts exa
tlythe sequen
es of states that satisfy ¬ϕ. Any 
omputation a

epted by theprodu
t automaton is thus a 
omputation that does not satisfy ϕ, that is,a 
ounterexample for M |= ϕ (see also [Kur94℄). More re
ently, bran
hingtime model 
he
king has also been formulated in the automata-theoreti
framework using alternating tree automata [BVW℄.2.5.2 Lo
al Model Che
kingThe prin
ipal drawba
k of algorithmi
 model 
he
king is that it su�ers fromthe so-
alled state spa
e explosion problem, whi
h is due to the state spa
egrowing exponentially in the number of 
on
urrent pro
esses.Lo
al (a.k.a. on-the-�y) algorithms have been developed to potentiallyredu
e the number of states that have to be explored in order to establishor refute a property. Whereas global algorithms 
ompute all states satisfyinga given formula and hen
e need to explore the whole rea
hable state spa
e,lo
al algorithms answer the question whether a given set of states (typi
allythe initial states) satisfy the formula. In this way, 
ounterexamples 
an befound faster and even in 
ase the property holds it is not always ne
essaryto visit the whole state spa
e. A lo
al algorithm for LTL was presentedby Gerth et al. in [GPVW95℄ and an e�
ient lo
al CTL* model 
he
ker isdes
ribed by Bhat, Cleaveland and Grumberg in [BCG95℄.
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 Model Che
king [2.52.5.3 Symboli
 Model Che
kingIn the early nineties, the advent of symboli
 model 
he
king [BCM92℄ hasdramati
ally pushed the limits of automati
 veri�
ation. This te
hnique,originally developed for Park's µ-
al
ulus [Par76℄, is based on 
omputing�xed points of fun
tions τ : P(S) → P(S) on sets of states and the sym-boli
 representation of these sets ordered binary de
ision diagrams (OBBDs)[Bry86℄. OBDDs provide a 
anoni
al representation of boolean fun
tionsand relations, therefore enabling model 
he
king algorithms to operate onentire sets of states without enumerating the individual states or transitions.Symboli
 model 
he
king algorithms for CTL and the modal µ-
al
ulus areimmediately obtained by the straightforward embedding of these logi
s intoPark's µ-
al
ulus, but symboli
 model 
he
kers have also been developed forLTL [KRP95, CGH97℄.Symboli
 model 
he
king has been parti
ularly su

essful in 
ir
uit ver-i�
ation, where state spa
es often exhibit 
onsiderable regularity and thusallow for 
ompa
t BDD representations.2.5.4 Redu
tion Te
hniquesState spa
es of software systems are usually not as regular as those foundin 
ir
uit designs. Therefore, alternative methods have been developed to
ombat the state spa
e explosion problem. These redu
tion te
hniques maybe grouped into three 
lasses:Quotienting Te
hniques 
onstru
t the quotient of the state spa
e w.r.t.some equivalen
e relation; examples are partial order redu
tion, sym-metry redu
tion and partition re�nement; these methods are 
hara
-terised by a strong preservation of properties, that is, a property holdsof the redu
ed model pre
isely if it holds on the 
omplete modelAbstra
tion Te
hniques 
onstru
t an abstra
t model by 
olle
ting many
on
rete states into a single abstra
t state; the relation between 
on-
rete and abstra
t system 
an be des
ribed by a simulation or a Galois
onne
tion between their state spa
es; the te
hnique of network invari-ants for veri�
ation of in�nite families of systems falls is also a formof abstra
tion (of a whole family of systems); abstra
tion te
hniquesusually only guarantee weak preservation of properties, that is, onlythe truth but not the falsity of properties 
arries over to the 
on
retesystemCompositional Te
hniques try to infer a property of a system from prop-erties of its 
omponents; properties of 
omponents are often established



2.6] Ba
kground 21by making assumptions about its environment (assumption-guaranteestyle of spe
i�
ations)For bibliographi
 referen
es and examples of most of these redu
tion te
h-niques we refer the interested reader to [CGP99℄.General surveys of algorithmi
 model 
he
king 
an be found in [CGL93,Sti96b, MP95℄ and in the re
ently published book [CGP99℄.2.6 Dedu
tive Approa
hes to Model Che
kingThe model 
he
king problem is de
idable only for �nite-state systems andspe
ial 
ases of in�nite-state systems, so the appli
ability of algorithmi
methods is restri
ted to these 
lasses of systems. Limited 
omputing re-sour
es even make the automati
 veri�
ation of many �nite-state state sys-tems impossible despite the sophisti
ated redu
tion te
hniques available to-day. These 
ases as well as general in�nite-state systems 
an only be ta
kledby dedu
tive methods.Dedu
tive approa
hes to model 
he
king use a set of proof rules to redu
ethe global temporal properties to lo
al �rst-order veri�
ation 
onditions. Theproof rules may redu
e temporal properties to simpler temporal properties,but ultimately all reasoning is redu
ed to showing the validity of assertions,thus avoiding reasoning in the temporal logi
 itself. In the rest of this se
tion,we �rst introdu
e some of the ingredients of proof rules and then give a briefoverview of some existing dedu
tive approa
hes to model 
he
king.2.6.1 Veri�
ation ConditionsHoare triples and possibility triples are (besides impli
ations) the most 
ur-rent veri�
ation 
onditions appearing in proof rules. They abstra
tly des
ribeproperties of (sets of) transitions in terms of two assertions, 
alled pre- andpost-
onditions. These triples are presented below, along with their relationto some standard predi
ate transformers.Let Λ ⊆ ΛS be a subset of the transitions of some system S. We use thestandard Hoare triple notation
{p}Λ {q}for the assertion p(x)∧ρΛ(x, x′) → q(x′), meaning that a Λ-transition startingin a p-state always leads to a q-state. The assertion p is 
alled the pre-
ondition and q is 
alled the post-
ondition of the Hoare triple.



22 Dedu
tive Approa
hes to Model Che
king [2.6Two well-known predi
ate transformers are the weakest pre-
ondition andthe strongest post-
ondition of an assertion p relative to Λ, whi
h are de�nedas follows:
wpcΛ(p)(x)

def
= ∀x′. ρΛ(x, x′) → p(x′)

spcΛ(p)(x)
def
= ∃x0. p(x0) ∧ ρΛ(x0, x)The weakest pre-
ondition wpcΛ(p) des
ribes the set of states from whi
h all

Λ-transitions lead to a state satisfying p. On the other hand, the strongestpost-
ondition spcΛ(p) denotes the set of states whi
h are rea
hable fromstates satisfying p. Their relation to Hoare triples is 
hara
terised by thefollowing 
hain of equivalen
es
{p}Λ {q} ≡ spcΛ(p) → q ≡ p→ wpcΛ(q).The dual notion of Hoare triples, 
alled possibility triples in [Sip99℄, andwritten

{p} 〈Λ〉 {q}stands for the predi
ate p(x) → ∃x′.ρΛ(x, x′) ∧ q(x′), meaning that from any
p-state there is some Λ-transition leading to a q-state. The dual w̃pcΛ of thepredi
ate transformer wpcΛ is de�ned by

w̃pcΛ(p)
def
= ¬wpcΛ(¬p),yielding

w̃pcΛ(p)(x) ≡ ∃x′. ρΛ(x, x′) ∧ p(x′).Hen
e we 
an 
hara
terise {p} 〈Λ〉 {q} as follows:
{p} 〈Λ〉 {q} ≡ p→ w̃pcΛ(q).Notation. Borrowing some notation from modal logi
, we sometimes write

[Λ] q and 〈Λ〉 q for the assertions wpcΛ(q) and w̃pcΛ(q), respe
tively. For asingleton set Λ = {λ}, we write {p} λ {q}, wpcλ(p), . . . instead of {p} {λ} {q},
wpc{λ}(p), . . ..2.6.2 Well-founded Relations and RankingsRoughly speaking, satisfa
tion of liveness properties involves rea
hing somegoal (on
e or repeatedly). Rules for proving this type of property rely onan important auxiliary devi
e for measuring progress towards a goal: well-founded relations and ranking fun
tions.
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kground 23Definition 2.6.1. (Well-founded Relation) Let W be some set. Abinary relation ≺⊆W ×W is well-founded if there is no in�nite des
endingsequen
e
w0 ≻ w1 ≻ w2 ≻ · · ·of elements w0, w1, w2, . . . of W . In this 
ase the stru
ture (W,≻) is 
alled awell-founded domain. We write u � w if u ≺ w or u = w. ♦Definition 2.6.2. (Ranking Fun
tion) Let Σ be the state spa
e of asystem S and let (W,≻) be a well-founded domain. A fun
tion δ : Σ → Wmapping states to elements of the well-founded domainW is 
alled a rankingfun
tion. ♦2.6.3 Manna and Pnueli's SystemManna and Pnueli present in [MP91℄ a dedu
tive system for proving that area
tive system S satis�es a LTL property ϕ. It is 
omposed of a set of rulesfor three 
lasses of properties. These are safety properties (as expressed byformulas of the form G p), response properties (as expressed by formulas ofthe form G(p→ F q)) and rea
tivity properties (as expressed by a 
onjun
tionof formulas of the form G F p ∨ F G q), where p and q are formulas that mayin
lude past, but no future temporal operators. As is shown in [LPZ85℄any property spe
i�able in LTL 
an be rewritten to an equivalent rea
tivityproperty (possibly using past operators).Let ϕ and p be assertions.I1. Θ → ϕI2. ϕ→ pI3. {ϕ}Λ {ϕ}

S ⊢ G pFigure 2.1: General invarian
e rule INVAs an example, we 
onsider rule INV (see also [MP95℄) for invarian
eproperties of the form G p, where p is an assertion (see Figure 2.1). The rulehas three premises. It requires that we �nd an assertion ϕ that is implied



24 Dedu
tive Approa
hes to Model Che
king [2.6by the initial 
ondition (premise I1), strengthens the assertion p (premiseI2) and is preserved by all system transitions (premise I3). An assertionsatisfying I3 is 
alled indu
tive. It is easy to see that this rule is sound: as
ϕ holds in all initial states (I1) and is preserved by all transitions (I3) ϕ(and hen
e p by I2) invariantly holds along any 
omputation. Thus, p is aninvariant of S.Rule INV is also 
omplete relative to assertional validity. This is shown byusing for ϕ the strongest possible invariant, namely, an assertion des
ribingexa
tly the set of Θ-rea
hable states (the assertion language is required to beexpressive enough to formulate su
h an assertion). Note that even if p holdson all rea
hable states, it need not be indu
tive. In parti
ular, it is possiblethat a transition from some unrea
hable state leads to a state not satisfying
p. For this reason the auxiliary assertion ϕ is needed in this rule to obtain
ompleteness.2.6.4 Diagram-Based Veri�
ationSome of the proof rules mentioned above have been re
ast into the graph-i
al form of veri�
ation diagrams in [MP94℄. A veri�
ation diagram D =
(N,E, µ) for a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) is a graph (N,E) withnodes N and edges E, where ea
h node n ∈ N is labeled by an assertion µ(n)over X5. Depending on the rule some nodes may be terminal nodes with nooutgoing edges. We will below identify a node and its labeling.Veri�
ation diagrams des
ribe a set of Hoare triple veri�
ation 
onditions.Suppose a non-terminal node ϕ has an outgoing edge to ea
h of the su

essornodes ϕ1, . . . , ϕn. The Hoare triple asso
iated with ϕ is

{ϕ}Λ {
n∨

i=1

ϕi}No Hoare triple is asso
iated with a terminal node. A veri�
ation diagram
an be seen as an abstra
t representation of the system to be veri�ed: thenodes are the abstra
t states that a system traverses during its exe
ution.Veri�
ation 
onditions other than Hoare triples needed in proof rules areformulated externally to the diagrams.As an example, invarian
e diagrams are veri�
ation diagrams with noterminal nodes used to prove properties of the form G p, for an assertion
p. Suppose {ϕ1, . . . , ϕn} is the set of nodes of an invarian
e diagram for asystem S with initial 
ondition Θ and let ϕ def

=
∨n
i=1 ϕi. It easy to see that the5We slightly simplify w.r.t. the presentation in [MP94℄.
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kground 25validity of all Hoare triples asso
iated with the nodes of the diagram impliesthat S |=G(ϕ → Gϕ) (�on
e ϕ, always ϕ�) holds. By proving the additional
onditions Θ → ϕ and ϕ → p (
ompare with I1 and I2 in rule INV) we 
an
on
lude S |= G p.Generalised Veri�
ation DiagramsThe idea of veri�
ation diagrams is further developed and generalised in[BMS95, MBSU98℄ (see also the theses [Uri98, Sip99℄). A generalised veri�-
ation diagram (GVD) Ψ = (N,N0, E, µ, ν,A) for a system S and temporalproperty φ extends a veri�
ation diagram as des
ribed above by
• designating a set of initial nodes N0 ⊆ N ,
• adding a labeling fun
tion ν that labels nodes with (boolean 
ombina-tions of) assertions appearing in the property formula φ, and
• adding an a

eptan
e 
ondition A ⊆ P(N) in the form of a subset ofthe strongly 
onne
ted subgraphs6 (SCS) of the underlying graph (aMüller-type a

eptan
e 
ondition as known from ω-automata theory,see [Tho90℄).An in�nite sequen
e σ : s0s1 · · · of states of S is a

epted by the GVD Ψ, ifthere is a path π : n0n1 · · · su
h that inf(π) ∈ A and we have si |= µ(ni) forall i ∈ ω. The veri�
ation method proposed by GVDs is the following. Inorder to verify S |= φ a GVD Ψ for S and φ is 
onstru
ted su
h that

L(S) ⊆ L(Ψ) ⊆ L(φ)where L(S)
def
= CS(Θ), L(Ψ) is the language a

epted by the the GVD Ψ and

L(φ) is the language des
ribed by the formula φ (that is, the set of statesequen
es that satisfy φ).The �rst in
lusion states that the diagram faithfully represents all 
om-putations of the system. In 
ontrast to the veri�
ation diagrams des
ribedabove, Ψ not only represents the �nitary behaviour of S but also its in�nitary(limit) behaviour. In other words, Ψ is a sound abstra
tion of the system
S. This in
lusion is proved dedu
tively by dis
harging a set of veri�
ation
onditions for Ψ. In addition to the Hoare triples asso
iated with Ψ, thediagram initiation 
ondition requires that Θ → µ(N0), where µ(N0) is thedisjun
tion of µ(n) over all n ∈ N0 and the diagram a

eptan
e 
ondition6a subgraph S of a graph G is strongly 
onne
ted if for every pair of nodes of S thereis a path in S 
onne
ting them



26 Trees, Games and Strategies [2.7requires that any non-a

epting SCS S is shown to have a fair exit (that is,any run staying in S is unfair) or is well-founded (that is, there is no run andhen
e no 
omputation staying in S). The latter 
ondition ensures that non-a

epting SCSs do not ex
lude any 
omputation of S from being a

eptedby Ψ.Proving the se
ond in
lusion involves showing that µ(n) → ν(n) for ea
hnode n ∈ N . Then the in
lusion 
an be model 
he
ked algorithmi
ally byabstra
ting the assertions in ν(n) and φ into atomi
 propositions.Dedu
tive Model Che
kingThe method of dedu
tive model 
he
king [SUM99℄ (see also the theses [Uri98,Sip99℄) also uses diagrams, but follows a di�erent approa
h. It is based on thesu

essive transformation of diagrams, 
alled falsi�
ation diagrams. Givena system S the 
omponents of a falsi�
ation diagram7 G = (N,N0, E, µ,A)are the same as the 
orresponding 
omponents of a GVD.The notion of a sequen
e of states a

epted by G remains the same aswith GVDs. A proof of S |= φ starts from an initial falsi�
ation diagram
G0 su
h that L(G0) = L(¬φ) and all edges are labeled by Λ, that is, G0represents all sequen
es of states not satisfying φ. The diagram G0 
an be
onstru
ted algorithmi
ally. Falsi�
ation diagram Gi+1 is obtained from Giby the appli
ation of a transformation rule. These are designed in su
h away that the invariant

L(S) ∩ L(¬φ) ⊆ L(Gi)is preserved. Ea
h diagram Gi a

epts all 
omputations of S violating φ. Theidea is to 
ontinue the transformations until it 
an be ex
luded that there is a
ounterexample, that is, until a falsi�
ation diagram Gm with L(Gm) = ∅ hasbeen 
onstru
ted. It then follows from the invariant above that L(S) ⊆ L(φ),that is, S |= φ. The method is not guaranteed to terminate for in�nite-statesystems, but is 
omplete relative to assertional validity.2.7 Trees, Games and StrategiesTreesAn A-tree is a non-empty, pre�x-
losed subset of A∗. Denote by Tr∞(A) theset of all trees and by Tr*(A) the set of �nite trees over alphabet A. If T ⊆ T ′for two A-trees T and T ′, we say that T is a tree-pre�x of T ′.7again slightly simplifying w.r.t. the presentation in [Sip99℄



2.7] Ba
kground 27Let T be an A-tree. Elements of T are 
alled nodes. De�ne nT = {n · a ∈
T | a ∈ A}, the set of 
hildren of n in T . A node n is a leaf if nT = ∅.Otherwise, it is 
alled an interior node. The subtree at node n is de�ned as
T/n = {m/n | n ≤ m and m ∈ T}. A �nite path in T is a leaf of T . Anin�nite path in T is a sequen
e π ∈ Aω su
h that all of its �nite pre�xes arenodes of T . Call Pth(T ) the set of all paths in T .GamesLet B be a two-element set whose elements denote players. Ω denotes anyplayer, Ω his opponent. A game is a stru
ture G = (A, T, λ,Ω,W ), where

• A is an alphabet whose elements are 
alled 
on�gurations,
• T is an A-tree whose nodes are 
alled positions and the paths of whi
hare 
alled plays (we write Play(G) for the set of all plays in T ),
• λ : T → B is a fun
tion spe
ifying whose turn it is in ea
h position,and
• W ⊆ Play(G) is the subset of plays won by player Ω, 
alled the winning
ondition for player Ω.Player Ω wins a play µ ∈ Play(G) if µ ∈ W , otherwise Player Ω wins. Thegame G is equivalently spe
i�ed as (A, T, λ,Ω,W ), where W = Play(G)−Wis the 
omplement of W . Denote by Pos(Ω) = {p ∈ T | λ(p) = Ω} the set of

Ω-positions, that is, positions where it is player Ω's turn to move.StrategiesA (non-deterministi
) Ω-strategy for G = (A, T, λ,Ω,W ) is a tree-pre�x τ ⊆
T satisfying the 
ondition

p ∈ τ, λ(p) = Ω, pτ 6= ∅ ⇒ pτ = pT ,that is, whenever p is an interior node of τ that is a Ω-position then τ 
ontainsall the 
hildren of p in T.We will write Strat(Ω) for the set of all Ω-strategies.For an Ω-strategy τ and an Ω-strategy τ ', we de�ne the set of playsresulting from playing these two strategies against ea
h other as
〈τ | τ ′〉 = Pth(τ ∩ τ ′) ∩ Play(G).We now introdu
e a 
ouple of properties of strategies. Let τ be an Ω-strategy. Then
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• τ is deterministi
 if any Ω-position in τ has at most one 
hild, that is,
pa, pb ∈ τ, λ(p) = Ω ⇒ a = b

• τ is history-free (or memory-less) if its 
hoi
es depend only on the lastmove, i.e.,
pa, qa ∈ τ, λ(pa) = λ(qa) = Ω ⇒ (pa)τ/(pa) = (qa)τ/(qa).

• τ is 
omplete, if Ω-positions have some su

essor whenever possible and
Ω-positions have all su

essors, that is,

p ∈ τ, λ(p) = Ω, pT 6= ∅ ⇒ pτ 6= ∅

q ∈ τ, λ(q) = Ω ⇒ qτ = qT

• τ is non-losing, if all plays resulting from playing against opponentstrategies are won by Player Ω, i.e., 〈τ | τ ′〉 ⊆ W for all Ω-strategies
τ '.

• τ is a winning strategy, if it is 
omplete and non-losing.We say that player Ω wins G if there exists a winning Ω-strategy. A game
G is determined if one of the players wins.Useful 
hara
terisations of some of the properties of strategies are statedinProposition 2.7.1. Let τ be an Ω-strategy. Then(i) τ is 
omplete if and only if all its paths are plays of G, that is, Pth(τ) ⊆

Play(G),(ii) τ is non-losing if and only if all its paths that are plays of G are wonby Player Ω, that is, Pth(τ) ∩ Play(G) ⊆ W , and(iii) τ is winning if and only if all its paths are plays of G won by Player Ω,that is, Pth(τ) ⊆ W.From the se
ond statement of the proposition we learn that in order todetermine whether a Ω-strategy τ is non-losing (losing) it is su�
ient to playit against the va
uous strategy T and 
he
k that ea
h (some) resulting playis won by Player Ω (Ω).Note that any player has a simple (though rather 
owardly) non-losingstrategy: leave the s
ene of the game before it is too late!



Chapter 3LTL Proof Stru
turesDedu
tive lo
al model 
he
king is a generalisation of �nite-state algorithmi
lo
al model 
he
king to in�nite state systems. It is a tableau-based proofmethod that allows us to establish arbitrary CTL* properties of (potentially)in�nite-state systems. There is no need to transform formulas into some
anoni
al form and all temporal reasoning is redu
ed to showing the validityof formulas from the assertion language L. In this 
hapter we introdu
e thesubsystem for LTL, whi
h will be extended to 
over full CTL* in Chapter 5.Our proof system for LTL 
onsists of a set of proof rules that are usedto 
onstru
t graphs, 
alled LTL proof stru
tures (a.k.a. tableaux), in a goal-dire
ted way starting from a root node. Some of the rules have side 
onditionsrequiring that the validity of an assertion from L is proved. The 
onstru
tionof a bran
h stops when we rea
h a terminal node (an axiom or anti-axiom)or when a rule appli
ation generates a subgoal that is already present in thegraph 
onstru
ted so far, in whi
h 
ase we 
an loop ba
k to that node. Assome of the 
y
les introdu
ed in this way are �bad� ones, a su

ess 
riterionidenti�es the proof stru
tures that are legal proofs of the 
onsidered property.Unlike with �nite-state systems, where the su

ess 
riterion 
an be veri�edalgorithmi
ally by analysing the strongly 
onne
ted subgraphs of a proofstru
ture and where (at least in the absen
e of fairness) any unsu

essful
y
le immediately produ
es a 
ounter-example 
omputation, the generalityof our approa
h requires a well-foundedness argument for proving that thesu

ess 
riterion holds. We will present an additional proof rule (Rule A(S))implementing this argument. In summary, the method of dedu
tive lo
almodel 
he
king establishes in two steps that a system S satis�es a LTLproperty Aφ:1. 
onstru
t a proof stru
ture Π for S and Aφ, and2. use Rule A(S) to prove that Π is su

essful.29



30 Definition of LTL Proof Stru
tures [3.1The se
ond step 
an be omitted if there are no anti-axioms in Π and φ issynta
ti
ally re
ognisable as des
ribing a safety property, that is, if thereare no U-subformulas in φ. The method is sound and 
omplete relative tovalidity of assertions from L as will be demonstrated in the next 
hapter.The outline of the present 
hapter is as follows. Se
tion 3.1 de�nes proofstru
tures and the proof rules used to 
onstru
t them. The rules are thendis
ussed in detail and some useful new rules are derived. The su

ess 
rite-rion is de�ned in Se
tion 3.2 as a property of a system derived from the proofstru
ture and the original system, 
alled the asso
iated system. A synta
ti

hara
terisation of the su

ess 
riterion is formulated, serving as the basisfor the design of the proof rule A(S) for su

ess in Se
tion 3.3. Finally, inse
tion 3.4 we illustrate our proof method with some examples.3.1 De�nition of LTL Proof Stru
turesGiven a transition system spe
i�
ation S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), asequent in our proof system is of the form p ⊢ A(Φ) where p is a stateassertion over X from our assertion language L (see Se
tion 2.3) and Φis a �nite, non-empty set of ground-quanti�ed, path-quanti�er-free CTL*formulas. A sequent p ⊢ A(Φ) is 
alled valid if all p-
omputations of Ssatisfy the disjun
tion of the formulas in Φ, that is, p |= A(
∨
φ∈Φ φ). Unlikein the �nite-state 
ase, where a sequent would have a single state on itsleft-hand side, the assertion p denotes a (possibly in�nite) set of states of S.Notation. We will write p ⊢ A(φ1, . . . , φn) instead of p ⊢ A({φ1, . . . , φn})and use p ⊢ A(Φ, φ) to mean p ⊢ A(Φ ∪ {φ}). With Φ = {φ1, . . . , φn}, wealso use X Φ and X(φ1, . . . , φn) as a shorthand for the set {Xφ1, . . . ,Xφn}.Furthermore, for a given sequent γ = p ⊢ A(Φ) we let pγ and Φγ denote pand Φ, respe
tively.The proof rules (see Table 3.1) are stated and used in a goal-orientedupside-down style with the 
on
lusion above the line and the premises below,with the intention that a rule is applied to a (sub-)goal to redu
e it to othersubgoals (ba
kwards reasoning). We 
an distinguish four di�erent groups ofrules:1. The terminal rules (A(ax), A(nx)) are not, stri
tly speaking, properrules. They de�ne the sequents that do not have any su

essors. Asequent to whi
h rule A(ax) (A(nx)) is applied is 
alled an axiom (anti-axiom). The axioms and anti-axioms are also 
alled terminal sequents.
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tures 312. The propositional rules (A(bsf),A(∨),A(∧)) deal with assertions andwith the boolean operators. An assertion 
an be removed from thesequent in 
ase it does not 
ontribute to its truth (Rule A(bsf)1). Theboolean rules eliminate the respe
tive boolean 
onne
tive.3. The temporal rules (A(U),A(V),A(X)) deal with the temporal 
onne
-tives. The rules for Z-formulas exploit the �xed point 
hara
terisationof these operators and simply unfold the respe
tive formula. The Nextrule A(X) requires that all right-hand side formulas exhibit a Next op-erator at the top-level and is applied to all of them at on
e to eliminateall the Next operators. This is the only rule 
on
erned with state tran-sitions. It requires a Hoare triple to be dis
harged as part of its side
ondition.4. The Split rule (A(sp)) is used for 
ase analysis and weakening. It a�e
tsonly the left-hand side of the sequent by dividing it up into several 
ases.In order to prove that for a system S, an assertion Ξ and an LTL formula
Aφ the statement S,Ξ |= Aφ holds, a graph whose nodes are sequents,
alled a proof stru
ture for system S and sequent Ξ ⊢ A(φ), is built. The
onstru
tion is goal-dire
ted, starting from the root sequent Ξ ⊢ A(φ) andpro
eeding by su

essively applying proof rules to the remaining subgoals.The 
onstru
tion of a given bran
h 
an be terminated whenever we eitherrea
h a terminal node (an axiom or anti-axiom) or a rule appli
ation 
reatesa subgoal that already exists in the graph 
onstru
ted so far, in whi
h 
asewe 
an loop ba
k to that node. This looping ba
k avoids the 
onstru
tionof in�nite bran
hes due to su

essive unfolding of Z-formulas. Here is theformal de�nition of a proof stru
ture:Definition 3.1.1. Given a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), an as-sertion Ξ and a LTL formula Aφ, a LTL proof stru
ture for system S andsequent Ξ ⊢ A(φ) is a rooted graph

Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ),where Γ is a �nite set of sequents, γr = Ξ ⊢ A(φ) is the root sequent and forea
h node γ ∈ Γ we require that(A-SAT) pγ is satis�able,1The abbreviation 'bsf ' means basi
 state formula, whi
h is either an assertion or apath-quanti�ed formula. The rule applies only to assertions for the moment, but will beextended in Chapter 5 to 
over path-quanti�ed formulas.
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tures [3.1(A-RCH) γ is rea
hable from γr,(A-RUL) if γ has n ≥ 0 su

essors {γ1, . . . , γn} = {γ′ | (γ, γ′) ∈ ∆} then
R

γ

γ1 · · · γn
CRis the 
orre
t appli
ation of some rule R from Table 3.1, that is,the rules' side 
ondition CR is satis�ed, and(A-SPL) if (γ, γ′) ∈ ∆ then rule A(sp) is not applied to both γ and γ′.If the assertion Ξ is identi
al with the initial 
ondition Θ of S then we saythat Π is a proof stru
ture for system S and property Aφ. ♦Note that we write the side 
onditions of the proof rules in Table 3.1 inthe form p |= r for the respe
tive assertion r, whi
h is in fa
t equivalentto |= p → r. Re
all also that the side 
ondition p |= [Λ] q of rule A(X) isequivalent to the Hoare triple {p}Λ {q}. This notational style for the side
onditions was 
hosen, be
ause it will more 
learly exhibit the duality withthe side 
onditions of the ELL rules to be introdu
ed in Chapter 5.Definition 3.1.2. Let Π be a LTL proof stru
ture. We de�ne ΓR to bethe set of sequents of Π where rule R is applied. We also write Γterm

def
=

ΓA(ax) ∪ ΓA(nx) for the set of terminal sequents.A pseudo-proof stru
ture Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ) for a system S andsequent Ξ ⊢ Aφ is de�ned in the same way as a proof stru
ture for S and
Ξ ⊢ A(φ), ex
ept that

• the set Γ of sequents need not be �nite, and
• 
ondition (A-RUL) of De�nition 3.1.1 is relaxed to apply to a sequent
γ only if it has at least one su

essor.A �nite pseudo-proof stru
ture is 
alled a pre-proof stru
ture. ♦Note that in a pseudo-proof stru
ture there may be nodes other thanterminal sequents with no su

essors. Thus, a pre-proof stru
ture 
an beseen as a partially 
onstru
ted proof stru
ture.Definition 3.1.3. A path π : γ0γ1 · · · γi · · · in a pseudo-proof stru
ture Π isa maximal sequen
e of nodes su
h that γ0 = γr and (γi, γi+1) ∈ ∆ for all isu
h that i+ 1 < |π|. ♦
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A(ax)
p ⊢ A(Φ, q)

·
p |= q

A(nx)
p ⊢ A(q)

·
p |= ¬q

A(bsf)
p ⊢ A(Φ, q)

p ⊢ A(Φ)
p |= ¬q

A(∨)
p ⊢ A(Φ, φ1 ∨ φ2)

p ⊢ A(Φ, φ1, φ2)

A(∧)
p ⊢ A(Φ, φ1 ∧ φ2)

p ⊢ A(Φ, φ1) p ⊢ A(Φ, φ2)

A(U)
p ⊢ A(Φ, φ1 Uφ2)

p ⊢ A(Φ, φ2 ∨ (φ1 ∧ X(φ1 Uφ2)))

A(V)
p ⊢ A(Φ, φ1 V φ2)

p ⊢ A(Φ, φ2 ∧ (φ1 ∨ X(φ1 V φ2)))

A(X)
p ⊢ A(X Φ)

q ⊢ A(Φ)
p |= [Λ] q

A(sp)
p ⊢ A(Φ)

q1 ⊢ A(Φ) · · · qn ⊢ A(Φ)
p |=

∨n
i=1 qiTable 3.1: LTL proof rules
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tures [3.13.1.1 Dis
ussion of the RulesThe need to have a set of formulas on the right-hand side of a sequent insteadof just a single formula is imposed by the semanti
s of disjun
tion. Supposewe want to prove p |= A(φ1 ∨ φ2). A hypotheti
 rule like
A(∨)′

p ⊢ A(φ1 ∨ φ2)

q1 ⊢ A(φ1) q2 ⊢ A(φ2)
p |= q1 ∨ q2would be sound, but put a serious threat on the 
ompleteness of the proofsystem. Supposing p |= A(φ1 ∨ φ2), it is essential for 
ompleteness2 that we
an �nd assertions q1 and q2 su
h that q1 |= Aφ1, q2 |= Aφ2 and p→ q1 ∨ q2is valid, but this is not possible in general. Consider a state s |= p. Then

s |= A(φ1 ∨ φ2), but neither s |= Aφ1 nor s |= Aφ2 need to hold, sin
e there
ould be s-
omputations σ1 and σ2 with σ1 satisfying φ1 but not φ2 and σ2satisfying φ2 but not φ1. In this 
ase, the required assertions q1 and q2 donot exist. This is the reason for making the right-hand side of a sequenta �nite set of formulas whi
h is to be interpreted as a disjun
tion over allset members. This naturally leads to rule A(∨) in Table 3.1 whi
h simplydis
ards the disjun
tion symbol.The 
onjun
tion rule A(∧) just splits the two 
onjun
ts as expe
ted. Theassertion rule A(bsf) eliminates an assertion q in 
ase it does not 
ontributeto the truth of the disjun
tion of the formulas on the right-hand side, thatis, if no state 
an at the same time satisfy the left-hand side predi
ate p andassertion q on the right-hand side. Note that, by the de�nition of a sequent,the set of formulas Φ must be non-empty. In general, an appli
ation of A(bsf)will have to be pre
eded by an appli
ation of the Split rule A(sp) in order toseparate the states satisfying q from those that do not (see also derived rule
A(bsf)′ below).The rules A(U) and A(V) for Z-formulas exploit the �xpoint 
hara
teri-sations of these operators. The following equivalen
es hold:

φ1 Uφ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 Uφ2))
φ1 V φ2 ≡ φ2 ∧ (φ1 ∨ X(φ1 V φ2))The appli
ation of a Z-rule simply unfolds the respe
tive Z-formula. We de-note by unf(φ1 Zφ2) the respe
tive unfolding (right-hand side formula above).Case analysis is implemented in the Split rule A(sp). The n ≥ 1 
asesneed not be disjoint. It is the only rule not modifying the right-hand sideof sequents. We note the following spe
ial 
ase of the Split rule, 
alled2Completeness proofs most often rely on the ba
kwards preservation of satisfa
tion.
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tures 35weakening
A(wk)

p ⊢ A(Φ)

q ⊢ A(Φ)
p |= qWeakening 
an also be useful for repla
ing a left-hand side assertion by anequivalent one.The Next rule A(X) is the only one 
on
erned with state transitions. Itre�e
ts the fa
t that proving p |= A(

∨
φ∈Φ Xφ) 
an be redu
ed to proving

q |= A(
∨
φ∈Φ φ) provided that any system transition starting in a p-stateleads to a q-state as required by the side 
ondition. The rule is not ba
kwardsound in general. Choosing q to be the strongest post-
ondition spcΛ(p)w.r.t. all system transitions leads to the following spe
ial 
ase of A(X) whi
his forward and ba
kward sound

A(X)0
p ⊢ A(X Φ)

spcΛ(p) ⊢ A(Φ)Rule A(X)0 would be su�
ient for 
ompleteness and rule A(X) is derivablefrom it with the help of weakening (rule A(wk) above). However, we havede
ided to in
lude the more general rule A(X) for 
onvenien
e.3.1.2 The Split Condition (A-SPL)Condition (A-SPL) in De�nition 3.1.1 disallows two su

essive appli
ationsof the Split rule and deserves some explanation. The Split rule A(sp) is quitea powerful rule as it does not only allow us to reason by 
ase analysis, butalso to generalise the sequent to whi
h it is applied (the side 
ondition beingan impli
ation in 
ontrast to an equivalen
e, the latter being su�
ient forpure 
ase analysis). It turns out that when applied without the restri
tionimposed by 
ondition (A-SPL), this rule is even too powerful in the sense thatthe proof system would be
ome unsound, as is illustrated by the followingExample 3.1.4. Consider the three node proof stru
ture displayed below.
Ξ ⊢ A(φ)

Ξ ∧ p ⊢ A(φ) Ξ ∧ ¬p ⊢ A(φ)Here the Split rule has been applied to the root sequent Ξ ⊢ A(φ) toobtain two su

essor sequents Ξ∧p ⊢ A(φ) and Ξ∧¬p ⊢ A(φ) whi
h are then
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tures [3.1re
onne
ted to the root sequent by weakening. Su
h 
ir
ular propositionalreasoning is obviously unsound and leads to an in
onsistent system. ♣Note that 
ondition (A-SPL) also pre
ludes self-loops on nodes where theSplit rule is applied. More generally, soundness requires that every in�nitepath through a proof stru
ture must 
ontain an in�nite number of appli
a-tions of the Next rule A(X), ea
h appli
ation 
orresponding to a transition ofthe system. The reason is that the Next rule is the only one making (qual-itative) time advan
e, thus e�e
tively introdu
ing the temporal aspe
t intothe reasoning.The following Lemma identi�es the su

essive appli
ation of the Splitrule A(sp) as the malefa
tor and shows that 
ondition (A-SPL) is su�
ientto avoid 
ir
ular reasoning �on the spot�.Lemma 3.1.5. (Temporal Consisten
y) Let Π be a pseudo-proof stru
-ture for system S and sequent Ξ ⊢ A(φ) and let π be an in�nite path in Π.Then rule A(X) is applied in�nitely often on π.Proof. Let π : γ0 · · · γj · · · be an in�nite path in a pseudo-proof stru
ture Π.Suppose for a 
ontradi
tion that rule A(X) is applied only �nitely many timeson π. De�ne a ranking fun
tion r on sequents by r(p ⊢ A(Φ)) =
∑

φ∈Φ r0(φ),where the fun
tion r0 is indu
tively de�ned on formulas by
r0(q) = r0(Xφ) = 1
r0(φ1 ∧ φ2) = r0(φ1 ∨ φ2) = r0(φ1) + r0(φ2) + 1
r0(φ1 V φ2) = r0(φ1 Uφ2) = r0(φ1) + r0(φ2) + 4An inspe
tion of the proof rules shows that all rules ex
ept A(sp) and A(X)de
rease the ranking r. Rule A(sp) applied to some γi leaves the rank 
onstantfrom γi to γi+1, but by 
ondition (A-SPL) in De�nition 3.1.1 it is alwaysfollowed by some rule other than A(sp) applied to γi+1. By assumption, rule

A(X) is never applied on π from some point k on. It follows that the ranking
r de
reases in�nitely often along πk, 
ontradi
ting the well-foundedness ofthe natural numbers.Translated to (pre-)proof stru
tures this lemma says that there is no 
y
lewithout at least one appli
ation of the Next rule A(X) appearing on it.Finally, we note that 
ondition (A-SPL) does not really restri
t the sounduse of the Split rule, sin
e su

essive appli
ations not introdu
ing 
y
les 
analways be merged into a single appli
ation.
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tures 373.1.3 Derived RulesA number of interesting rules 
an be derived from the basi
 ones in Table 3.1.Some of these are displayed in Table 3.2. The derived rule for weakening(A(wk)) has already been dis
ussed above.
A(wk)

p ⊢ A(Φ)

q ⊢ A(Φ)
p |= q

A(bsf)′
p ⊢ A(Φ, q)

p ∧ ¬q ⊢ A(Φ)

p ∧ q, p ∧ ¬qboth satis�able
A(U)′

p ⊢ A(Φ, φ1 Uφ2)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ1 Uφ2))

A(V)′
p ⊢ A(Φ, φ1 V φ2)

p ⊢ A(Φ, φ2) p ⊢ A(Φ, φ1,X(φ1 V φ2))

A(F)
p ⊢ A(Φ, Fψ)

p ⊢ A(Φ, ψ,X Fψ)

A(G)
p ⊢ A(Φ,Gψ)

p ⊢ A(Φ, ψ) p ⊢ A(Φ,X Gψ)

A(W)
p ⊢ A(Φ, φ1 W φ2)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ1 W φ2))

A(X)′
p ⊢ A(X Φ)

q1 ⊢ A(Φ) · · · qn ⊢ A(Φ)
p |= [Λ]

∨n

i=1 qiTable 3.2: Derived LTL rulesRule A(bsf)′ is derivable from rule A(bsf) and the Split rule A(sp). Itallows one to shift the assertion q from the right to the left-hand side of thesequent.The unfolded formula in the two Z-rules A(U) and A(V) 
an be furtherde
omposed by applying rules A(∨) and A(∧), yielding their more e
onomi
versions A(U)′ and A(V)′. In rules A(F) and A(G) these are further spe
ialisedfor the derived operators 'eventually' and 'always'. Rule A(W) is sound, but� stri
tly speaking � not derivable in our system. However, the following
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tures [3.2rule is derivable:
p ⊢ A(Φ, φ2, (Xφ2) V φ1)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ2, (Xφ2) V φ1))By a slight abuse of notation, writing φ1 W φ2 for φ2, (Xφ2) V φ1 in sequents(whi
h is semanti
ally justi�ed), we get exa
tly rule A(W).Finally, rule A(X)′ is a variant of the next rule derivable from A(X) and
A(sp). We will use these derived rules freely in our examples.A Simple ExampleExample 3.1.6. Consider the very simple system S0 with a single naturalnumber variable x, initial 
ondition Θ0

def
= x = M for some given parameter

M ≥ 0 and with the only possible transition in
rementing x by an arbitrarypositive number n:
ρinc

def
= ∃n > 0. x′ = x+ nThe property we want to prove for this system is expressed by the invarian
eformula ψ0

def
= A G(x ≥M). Figure 3.1 shows a proof stru
ture for S0 and ψ0.

x = M ⊢ A(G(x ≥M))

x ≥M ⊢ A(X G(x ≥M))

✓

x ≥M ⊢ A(G(x ≥M))

x ≥M ⊢ A(x ≥M)

A(X)

A(wk)

A(G)

Figure 3.1: Proof stru
ture Π0 for S0 and ψ0Note the use of weakening in the �rst step, generalising the statement tobe proved. The veri�
ation 
onditions generated by this proof stru
ture are
x = M |= x ≥ M from weakening rule A(wk)
x ≥M |= x ≥M from axiom rule A(ax)
x ≥M |= [inc] x ≥M from Next rule A(X)and are all easily dis
harged. As we will see later in this 
hapter, this proofstru
ture is indeed a valid proof for S0 |= ψ0. ♣
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tures 393.2 The Su

ess CriterionSimilarly to �nite-state model 
he
king, not every proof stru
ture for system
S and sequent Ξ ⊢ Aφ 
an be 
onsidered as a valid proof of S,Ξ |= φ. Thisis be
ause proof stru
tures generally 
ontain 
y
les. In this se
tion, we �rstde�ne a notion of su

ess for paths and then lift it to proof stru
tures. Onlysu

essful proof stru
tures will be 
onsidered as legal proofs.3.2.1 Su

essful PathsLet Π be a proof stru
ture for S and Ξ ⊢ Aφ. The signi�
an
e of su

essfulpaths is best stated negatively as:a path π of Π is unsu

essful pre
isely if any 
omputation follow-ing it provides a 
ounter-example to S,Ξ |= AφInformally, a 
omputation σ follows a path π if σ 
an be laid along π su
hthat transitions on σ are mat
hed with appli
ations of rule A(X) and thestates on σ satisfy the 
onstraints imposed by the left-hand side assertionsof the sequents on π.For instan
e, any 
omputation σ of system S0 of Example 3.1.6 followsthe (unique) in�nite path in proof stru
ture Π0 of Figure 3.1, sin
e it startsin the initial state (where x = M) and all states of σ satisfy x ≥M .Definition 3.2.1. For a Z-formula ψ de�ne the set Uψ of unfolding formsof ψ by

Uψ
def
= {θ | ψ 4 θ 4 unf(ψ)}.

♦An unfolding form of a Z-formula ψ is thus any formula that is a subfor-mula of the unfolding of ψ and 
ontains at the same time ψ as a subformula.Definition 3.2.2. Let Π = (Γ,∆, γr) be a proof stru
ture for system S.De�ne the set of sequents Qψ for a Z-formula ψ = φ1 Zφ2 by
Qψ

def
= {γ ∈ Γ | Φγ ∩ Uψ 6= ∅ ∧ φ2 6∈ Φγ},that is, Qψ 
onsists of those sequents of Π the right-hand side of whi
h
ontains some unfolding form of ψ, but not its se
ond subformula φ2. ♦For example, for ψ = φ1 V φ2 we get Uψ = {ψ,Xψ, φ1∨Xψ, φ2∧(φ1∨Xψ)}and p ⊢ A(Xψ, φ1 ∧ φ2) ∈ Qψ, but q ⊢ A(φ1 ∨ Xψ, φ2) 6∈ Qψ as well as

q ⊢ A(φ1 ∧ Xψ, φ2 ∨ ψ) 6∈ Qψ.
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ess Criterion [3.2Definition 3.2.3. Let Π be a proof stru
ture Π for S and Ξ ⊢ A(φ). A path
π in Π is su

essful if one of the following holds:(a) π is �nite and ends in an axiom, or(b) π is in�nite and there is a V-formula ψ ∈ V(φ) su
h that inf(π) ⊆ Qψ.

♦Re
all from Se
tion 2.4 that V(φ) is the set of V-subformulas of φ andobserve that, sin
e proof stru
tures are �nite, inf(π) ⊆ Qψ means that fromsome position in π on all sequents are in Qψ.Let us try to give an intuitive motivation for this de�nition. Suppose Πis a proof stru
ture for system S and sequent Ξ ⊢ A(φ). The �rst part ofthe de�nition is quite obvious: any path ending in an axiom should 
ountas su

essful, as it provides, by soundness of the proof rules, a de�nitive
ontribution to the truth of the root sequent.The se
ond part states that an in�nite path π is su

essful if, from somepoint on, some unfolding form of a V-subformula φ1 V φ2 of the original prop-erty φ appears in every sequent, but without φ2 ever o

urring beyond thatpoint. The absen
e of φ2 implies that φ1 V φ2 in�nitely often regenerates it-self along the path π by unfolding and subsequent elimination of the booleanand next 
onne
tives. Let us 
all ω-regenerated (along π) any Z-subformulawith this inde�nite unfolding property. But why should su
h a path π 
ountas su

essful and not others?Although the de�nitive answer of this question has to be deferred to thenext 
hapter, we 
an say at this point that the ω-regeneration of a U-formula
ψ1 Uψ2 along a path π 
orresponds to inde�nitely delaying the satisfa
tionof ψ2, whi
h is in 
ontradi
tion to the semanti
s of the Until operator, while
ω-regenerating a V-formula φ1 V φ2 on the other hand 
orresponds to thepossibility that φ2 always holds, whi
h is a possible way to satisfy φ1 V φ2. Aswill be shown in the next 
hapter, some Z-formula is ω-regenerated along anyin�nite path. Sin
e all propositions are eliminated on an in�nite path π onthe basis of their falsity (see side 
ondition of rule A(bsf)), there should betterbe a V-formula that is ω-regenerated along π if π is supposed to be su

essful.Otherwise, any 
omputation following π provides a 
ounter-example.3.2.2 A Tentative Su

ess Criterion for Proof Stru
-turesOne 
ould now be tempted to de�ne a proof stru
ture to be su

essful if allits paths are su

essful. Let us examine this de�nition in this se
tion. This
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tures 41notion of su

ess is sound. Disregarding fairness issues, it is also 
ompletein the 
ase of �nite-state model 
he
king [BCG95℄: any unsu

essful pathprodu
es a 
ounter-example, namely, the 
omputation that 
an be extra
tedfrom it. However, in the in�nite state 
ase, it is insu�
ient and would makethe proof system in
omplete as the following two examples illustrate.Example 3.2.4. Let the system S1 have a single natural number variable xwith initial 
ondition Θ1
def
= true and transition relations ρdec, ρzero and ρtende�ned by

ρdec
def
= x > 0 ∧ x′ = x− 1

ρzero
def
= x = 0 ∧ x′ = x

ρten
def
= x = 10 ∧ x′ = xA proof stru
ture Π1 for this system and property φ1

def
= A F(x = 0) is shown inFigure 3.2 below. Clearly, φ1 does not hold for S1. As required for soundness,proof stru
ture Π1 is unsu

essful a

ording to our tentative de�nition ofsu

ess, sin
e the only in�nite path indu
ed by the 
y
le in Π1 is unsu

essful.

true ⊢ A(x = 0,XF(x = 0))

x > 0 ⊢ A(x = 0,XF(x = 0)) x = 0 ⊢ A(x = 0,XF(x = 0))

true ⊢ A(F(x = 0))

x > 0 ⊢ A(XF(x = 0))

✓Figure 3.2: Proof stru
ture Π1 for S1 (S ′
1) and φ1

def
= A F(x = 0)Now 
onsider the system S ′

1 obtained from S1 by removing transition ten.For this modi�ed system property φ1 holds. Proof stru
ture Π1 is still anunsu

essful proof stru
ture for system S ′
1 and property φ1. The di�eren
ebetween the two 
ases lies in the way that system 
omputations 
an follow thein�nite path π arising from the 
y
le in the proof stru
ture. Any 
omputation

σ of system S1 ending in the 
y
le at x = 10 
an follow π inde�nitely (sin
eall states on σ satisfy x > 0). On the other hand, every 
omputation σ′of system S ′
1 leaves π towards the axiom when it eventually rea
hes a statewhere x = 0, as required to ful�ll the eventuality.It is not di�
ult to see that when working with our tentative de�nitionof su

ess there does not exist any su

essful proof stru
ture for S ′

1 and φ1
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ess Criterion [3.2at all. Sin
e there is no V-subformula in φ1, su
h a proof stru
ture must notin
lude an in�nite path. Sin
e the property is to be proved for an in�niteset of initial states, there is no hope to �nd a 
y
le-free, su

essful proofstru
ture. Nonetheless, for 
ompleteness, Π1 should 
ount as su

essful. ♣The se
ond example shows that not even all anti-axioms need to be 
on-sidered as harmful, as there might be no 
omputation (pre�x) following apath leading to it.Example 3.2.5. Let system S2 be the same as system S1 of the previousexample ex
ept that the initial 
ondition is strengthened to Θ2
def
= x > M forsome parameter M ≥ 0. Figure 3.3 shows proof stru
ture Π2 for system S2and the simple one-step property φ2

def
= A X(x ≥M).

x > M ⊢ A(X(x ≥M))

true ⊢ A(x ≥M)

x < M ⊢ A(x ≥M) x ≥M ⊢ A(x ≥M)

✓✗Figure 3.3: Proof stru
ture Π2 for system S2 and property φ2
def
= A X(x ≥M)In this proof stru
ture, the Next rule is applied to the root sequent therebyweakening the left-hand side assertion to true. Then Split is applied yieldingan anti-axiom and an axiom. Thus, a

ording to our preliminary de�ni-tion, Π2 is unsu

essful due to the presen
e of the anti-axiom. However, theproperty obviously holds for S2, so Π2 should 
ount as su

essful.3Observe that, sin
e the assertion x ≥ M is the strongest post-
onditionof x > M w.r.t. the transition relation, it is 
lear that there 
an be no
omputation of S2 following the path to the anti-axiom, that is, rea
hing astate satisfying x < M after only one transition. ♣As these examples 
learly demonstrate, the in�nite-state 
ase requires are�ned, weaker notion of su

ess. Of 
ourse, the intri
a
y stems from thefa
t that the left-hand side assertion of ea
h sequent des
ribes (potentially)in�nite set of states. As a 
onsequen
e, given a path in a proof stru
ture,it is not only possible that in�nitely many 
omputations follow it, but also3At least for the strong 
ompleteness result we are striving at, whi
h states that anyproof stru
ture for a system S and LTL property Aψ is su

essful, provided S |= Aψ.
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tures 43that no 
omputation at all follows the path. In the latter 
ase, there is no
ounter-example 
omputation and the unsu

essful path is thus harmless.Hen
e, a proof stru
ture should be de�ned to be su

essful if(A-SUC) every path that is followed by some 
omputation is su

essfulThis notion of su

ess is now formalised in the next se
tion.3.2.3 Trails and Su

ess for Proof Stru
turesIn order to formally de�ne the su

ess 
riterion (A-SUC) for proof stru
tures,we have to make more pre
ise what it means for a run or 
omputation tofollow a path in a proof stru
ture. To this end, we will de�ne a systemderived from a given original system S and a proof stru
ture Π for S, 
alledthe asso
iated system, a run of whi
h is 
alled a trail of Π and 
ombinesa path of Π with a run of S that satis�es the 
onstraints imposed by theassertions along Π. The notion of Π-fairness is then introdu
ed for trails andsu

ess of a proof stru
ture de�ned in terms of Π-fair trails.The System Asso
iated with a Proof Stru
tureTo this end, we �rst slightly extend proof stru
ture Π by adding an edgefrom every axiom to the pseudo-sequent ⊤ def
= true ⊢ true and an edge fromevery anti-axiom to the pseudo-sequent ⊥ def

= true ⊢ false plus self-loops on ⊤and ⊥.Definition 3.2.6. Let Π = (Γ,∆, γr) be a LTL proof stru
ture. De�ne
Γ+ def

= Γ ∪ {⊤ | ΓA(ax) 6= ∅} ∪ {⊥ | ΓA(nx) 6= ∅}

∆+ def
= ∆ ∪ ∆⊤ ∪ ∆⊥

∆⊤
def
= {(γ,⊤) ∈ Γ+ × Γ+ | γ ∈ ΓA(ax) ∪ {⊤}}

∆⊥
def
= {(γ,⊥) ∈ Γ+ × Γ+ | γ ∈ ΓA(nx) ∪ {⊥}}

♦A pseudo-sequent and the 
orresponding edges are added only in 
ase thatthe 
orresponding terminal sequent appears in the proof stru
ture. Supposethat we have a �xed enumeration of the (pseudo-)sequents in Γ+ and let inthe following ⌈γ⌉ be the number assigned to γ. For a set Γ0 ⊆ Γ+ we de�ne
⌈Γ0⌉

def
= {⌈γ⌉ | γ ∈ Γ0}.
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ess Criterion [3.2Definition 3.2.7. Let Π = (Γ,∆, γr) be a proof stru
ture for system S =
(X,Σ, {ρλ | λ ∈ Λ},Θ,F) and sequent Ξ ⊢ Aφ. The system

SΠ = (XΠ,ΣΠ, {ρΠ
(γ,λ,γ′) | (γ, λ, γ′) ∈ ΛΠ},ΘΠ,FΠ)asso
iated with Π is de�ned by

XΠ def
= X ∪ {K} where K ∈ V −X

ΣΠ def
= Σ extended by mapping K to elements of ⌈Γ+⌉

ΘΠ def
= (K = ⌈γr⌉) ∧ Ξ

ΛΠ def
= ΛΠ

sys ∪ ΛΠ
log

ΛΠ
sys

def
= {(γ, λ, γ′) | (γ, γ′) ∈ ∆+, γ ∈ Γsys, λ ∈ Λ}

ΛΠ
log

def
= {(γ,=, γ′) | (γ, γ′) ∈ ∆+, γ 6∈ Γsys}where Γsys

def
= ΓA(X) ∪ Γterm ∪ {⊥,⊤}, and

ρΠ
(γ,λ,γ′)

def
= p̂γ(x,K) ∧ p̂γ′(x′, K ′) ∧ ρλ(x, x′) for (γ, λ, γ′) ∈ ΛΠ

sys

ρΠ
(γ,=,γ′)

def
= p̂γ(x,K) ∧ p̂γ′(x′, K ′) ∧ x′ = x for (γ,=, γ′) ∈ ΛΠ

logwhere p̂γ def
= (K = ⌈γ⌉) ∧ pγ, and �nally

FΠ def
= (PΠ,WΠ, FΠ)

PΠ def
= {π−1

2 (Λ′) | Λ′ ∈ P} ∪ {ΛΠ
log}

WΠ def
= {π−1

2 (Λw) | Λw ∈W}

FΠ def
= {π−1

2 (Λf) | Λf ∈ F}where π−1
2 (Λ′)

def
= {(γ, λ, γ′) ∈ ΛΠ | λ ∈ Λ′} for Λ′ ⊆ Λ. ♦The state spa
e of SΠ extends the state spa
e of S with an additional
ontrol variable K indi
ating the position in the proof stru
ture. The labelset ΛΠ is divided into a set ΛΠ

sys of system-related transitions and a set ΛΠ
logof �logi
al� transitions. Ea
h transition (γ, λ, γ′) ∈ ΛΠ

sys departs from a Γsys-sequent γ (that is, γ is an A(X)-sequent, a terminal or a pseudo-sequent) andinvolves the underlying system transition λ. On the other hand, a transition
(γ,=, γ′) ∈ ΛΠ

log departs from a sequent other than a Γsys-sequent and requiresthat the values of system variables are preserved. All transitions, in additionto moving 
ontrol K along an edge in (γ, γ′) ∈ ∆+, are 
onstrained by theleft-hand side assertions pγ and pγ′ appearing in the (pseudo-)sequents γ and
γ′. Note that, as these assertions are true for the pseudo-sequents ⊤ and
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⊥, on
e 
ontrol variable K has rea
hed a pseudo-sequent on a run of SΠ, itsfurther behaviour is governed essentially by the underlying system transitionsonly.The partition PΠ of the fairness 
onstraint FΠ extends the original parti-tion P to a

ount for the modi�
ation of the transition labeling set: ea
h set
Λ0 ∈ P is turned into a set ΛΠ

0 ∈ PΠ 
ontaining all (γ, λ, γ′) ∈ ΛΠ su
h that
λ ∈ Λ0. The transitions in ΛΠ

log have no equivalent in S, so this set appearsas an additional element of PΠ. The fairness sets WΠ and FΠ are derived inthe same way from W and F . Note that there is no fairness 
onstraint on
ΛΠ
log ∈ PΠ.Trails and Π-FairnessFor the rest of this se
tion, unless otherwise stated, let Π = (Γ,∆, γr) be anarbitrary but �xed proof stru
ture for system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F)and sequent Ξ ⊢ Aφ. Furthermore, let SΠ be the system asso
iated with Π,the 
omponents of SΠ being denoted as in De�nition 3.2.7.Definition 3.2.8. A trail of the proof stru
ture Π is a ΘΠ-run of its asso
i-ated transition system SΠ. ♦Loosely speaking, a trail of Π knits together a Ξ-run of the system and apath in the proof stru
ture. We 
an now de�ne two proje
tions on trails of

Π, one to the underlying run in S and the other to the underlying path in
Π. De�ne the maps hΣ : ΣΠ → Σ ∪ {ǫ} and hΓ : ΣΠ → Γ ∪ {ǫ} by

hΣ(t)
def
=

{
t|X if t(K) ∈ ⌈Γsys⌉
ǫ otherwise

hΓ(t)
def
=

{
γ if t(K) = ⌈γ⌉ and γ 6∈ {⊥,⊤}
ǫ otherwiseThese maps are now extended to trails.Definition 3.2.9. Let ϑ be a trail of Π. De�ne

• the run σϑ of S indu
ed by ϑ: σϑ def
= hωΣ(ϑ), and

• the path πϑ of Π indu
ed by ϑ: πϑ def
= hωΓ(ϑ).Furthermore, we say that a run σ of S follows a path π of Π, if there is atrail ϑ of Π indu
ing σ and π. ♦In order to obtain a 
lose mat
h between system 
omputations and fairtrails, we need to strengthen the notion of fairness for trails.
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ess Criterion [3.2Definition 3.2.10. (Π-Fairness) Suppose that ΛΠ
w ∈ WΠ, ΛΠ

f ∈ FΠ and
Λw ∈ W , Λf ∈ F su
h that ΛΠ

w = π−1
2 (Λw) and ΛΠ

f = π−1
2 (Λf), where

FΠ = (PΠ,WΠ, FΠ) and F = (P,W, F ) are the fairness 
onstraints of SΠand S, respe
tively. A trail ϑ of Π is 
alled
• weakly Π-fair w.r.t. ΛΠ

w, if in 
ase Λw is enabled on ϑ from some pointon, then ΛΠ
w is taken in�nitely often on ϑ,

• strongly Π-fair w.r.t. ΛΠ
f , if in 
ase Λf is in�nitely often enabled on ϑ,then ΛΠ

f is taken in�nitely often on ϑ, and
• Π-fair if it is weakly Π-fair w.r.t. ea
h ΛΠ

w ∈ WΠ and strongly Π-fairw.r.t. ea
h ΛΠ
f ∈ FΠ. ♦We remark that a Π-fair trail is also fair w.r.t. FΠ in the usual sense. Wenote some basi
 properties of trails inLemma 3.2.11. (Trail Lemma) We have:(i) all trails of Π are in�nite, and(ii) any run σ of S follows some path π of Π,(iii) a trail ϑ of Π is Π-fair i� σϑ is a 
omputation of S.Proof. (i) and (ii): From the de�nitions by the totality of the (global)transition relation ρΛ of S (Assumption 2.2.2) and the side 
ondition of theSplit rule.(iii) Let ΛΠ

0 ∈WΠ∪FΠ and Λ0 ∈W ∪F (where FΠ = (PΠ,WΠ, FΠ) and
F = (P,W, F ) are the fairness 
onstraints of SΠ and S, respe
tively) su
hthat ΛΠ

0 = π−1
2 (Λ0). It is not di�
ult to see that ΛΠ

0 is taken in�nitely oftenon ϑ if and only if Λ0 is taken in�nitely often on σϑ. Furthermore, sin
e Λ0is enabled on an extended state t ∈ ΣΠ (of SΠ) pre
isely if it is enabled onits proje
tion t|X ∈ Σ (of S) and σϑ di�ers from ϑ|X only by a repetition ofstates, we 
on
lude that Λ0 is enabled on ϑ from some point on (in�nitelyoften) if and only if Λ0 is enabled on σϑ from some point on (in�nitely often).The result then follows immediately.The LTL Su

ess CriterionNow we are ready to formally de�ne our su

ess 
riterion, by lifting thesu

ess 
ondition for paths to trails and then to proof stru
tures.Definition 3.2.12. (Su

essful Trail) A trail ϑ of a LTL proof stru
-ture Π is su

essful if the indu
ed path πϑ is su

essful. ♦



3.2] LTL Proof Stru
tures 47Definition 3.2.13. (LTL Su

ess Criterion) A LTL proof stru
ture Πis su

essful if all its Π-fair trails are su

essful. ♦Note that by the Trail Lemma (ii) and (iii), this de�nition 
aptures ex-a
tly the informal de�nition given in 
ondition (A-SUC) above. On the otherhand, in any unsu

essful proof stru
ture Π for S and sequent Ξ ⊢ Aφ thereis an unsu

essful Π-fair trail ϑ whi
h proje
ts to a Ξ-
omputation σϑ of Sand to an unsu

essful path πϑ. The 
omputation σϑ provides a 
ounter-example, that is, it does not satisfy Aφ, a fa
t that will be proved in thenext 
hapter.Example 3.2.14. Consider proof stru
ture Π1 of Example 3.2.4 (depi
tedin Figure 3.2). The (unique) in�nite path π is unsu

essful and is followedby exa
tly the (
ounter-example) 
omputations σm of S1 of the form
σm : 〈x = m〉 〈x = m− 1〉 · · · 〈x = 11〉 (〈x = 10〉)ωfor allm ≥ 10. Therefore, Π1 is unsu

essful when viewed as a proof stru
turefor S1. On the other hand, there is no 
omputation of S ′

1 following π. Thus,
Π1 is su

essful for S ′

1. ♣For the purpose of designing proof rules for su

ess, we need a moresynta
ti
 formulation of the su

ess 
riterion.Definition 3.2.15. Let ΨA

def
= V(φ) ∪ {⊤}4 and let Qψ be as in De�ni-tion 3.2.2. De�ne the assertions Kψ for ψ ∈ ΨA by

Kψ
def
=

{
K ∈ ⌈Qψ⌉ for ψ ∈ V(φ)
K = ⌈⊤⌉ for ψ = ⊤

♦Note as the sets Qψ are �nite, the assertions Kψ are de�nable in ourassertion language. It is now easy to lift the su

ess 
ondition for paths totrails:Proposition 3.2.16. (LTL Su

ess, Synta
ti
ally)(i) A trail of Π is su

essful i� it satis�es the su

ess formula
ΩA

def
=
∨

ψ∈ΨA

F GKψ4The index A in ΨA and in ΩA below is to distinguish these sets from their 
ousins ΨEand ΩE, whi
h will be de�ned in Chapter 5.
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ess [3.3(ii) A proof stru
ture Π is su

essful i� all its Π-fair trails satisfy ΩA, thatis,
SΠ |= AΠ ΩA,where AΠ quanti�es over all Π-fair trails.Proof. (i) Observe that ϑ |= F GK⊤ if and only if πϑ ends in an axiom.Thus, the su

ess formula ΩA holds for a trail ϑ pre
isely if the indu
ed path

πϑ is su

essful. (ii) Immediate.3.3 A Rule for Proving Su

essThe su

ess 
riterion (De�nition 3.2.13) lays down the 
ondition for a

eptinga proof stru
ture for a system S and sequent Ξ ⊢ Aφ as a legal proof of
S,Ξ |= Aφ. What is missing for a full-blown proof system is a rule forproving su

ess.We restri
t ourselves, for the time being, to saturated systems (trivialfairness 
onstraint). Su

ess rules in
luding fairness are presented in Chap-ter 6. Let S be su
h a system and suppose Π is a proof stru
ture for S andsome sequent γr. By Proposition 3.2.16, su

ess of Π 
an be established byproving that all trails satisfy ΩA, that is, SΠ |= A(

∨
ψ∈ΨA

F GKψ).3.3.1 Rule A(F,
∨

F G)Let us �rst somewhat generalise the setting and present a rule (see Figure 3.4)allowing us to prove the validity of a formula of the form A(F q∨
∨m
i=1 F G pi)over an arbitrary saturated system S (but still with a total transition rela-tion). The reason for adding the formula F q will be
ome 
lear in the nextse
tion.The appli
ation of Rule A(F,

∨
F G) requires that we �nd an intermediateassertion βi for ea
h pi, a well-founded domain (W,≻) and a ranking fun
tion

δ : Σ → W mapping system states to elements of W . Condition P1 statesthat the initial 
ondition implies q or β, the latter being the disjun
tion ofall the βi. The Hoare triple in premise P2 requires that from a βi-state alltransitions lead to a q-state, to a β-state with a lower rank or again to a
βi-state with a rank not higher than the sour
e state. By the �nal premiseP3 transitions from a βi-state where pi does not hold lead to a q-state or toa β-state with a lower rank.Rule A(F,

∨
F G) is derived from Rule F-RESP presented in [MP91℄ forproving response properties of the form G(p → F q) under weak and strong



3.3] LTL Proof Stru
tures 49Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let
p1, . . . , pm and q be assertions. In order to apply this rule, �nd:(a) a ranking fun
tion δ : Σ → W mapping states of S into ele-ments of a well-founded domain (W,≻), and(b) assertions {β1, . . . , βm} (setting β def

=
∨m

i=1 βi),and 
he
k the validity of 
onditions P1-P3.P1. Θ → q ∨ βP2. {βi ∧ δ = w} Λ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)}P3. {βi ∧ δ = w ∧ ¬pi} Λ {q ∨ (β ∧ δ ≺ w)}

S ⊢ A(F q ∨
∨m

i=1 F G pi)Figure 3.4: Rule A(F,
∨

F G)(transition) fairness. Note the equivalen
es
F q ∨

∨m

i=1 F G pi ≡S

∧m

i=1 G F¬pi → F q

≡S

∧m

i=1 G F¬pi → G(Θ → F q)
(e1)for a system S with initial 
ondition Θ. The subformula ∧m

i=1 G F¬pi on theright-hand side 
an be interpreted as a (generalised) un
onditional fairness
onstraint. Un
onditional fairness being 
losely related to weak fairness, ourrule A(F,
∨

F G) is very similar to Rule F-RESP under weak fairness only.Let us now explain why this rule is sound. As a 
onsequen
e of P1 and P2,on any run of S the assertion β is invariant and the ranking never in
reasesunless q be
omes true. The idea behind this rule is then that by the de
reasein rank ea
h time βi∧¬pi-state is met, a run σ is for
ed by well-foundednessto either rea
h q (hen
e σ |= F q) or stabilise eventually in βj ∧ pj-states(hen
e σ |= F G pj). In words 
orresponding to the se
ond formula in (e1),ea
h en
ounter of a βi ∧ ¬pi-state brings us 
loser to a q-state. With this inmind, it is not di�
ult to see thatProposition 3.3.1. (Soundness of Rule A(F,
∨

F G)) Let S be a satu-rated system and let p1, . . . , pm (with m ≥ 1) and q be assertions. Then
S ⊢ A(F q ∨

∨m

i=1 F G pi) implies S |= A(F q ∨
∨m

i=1 F G pi).



50 A Rule for Proving Su

ess [3.3Note that the appli
ation of the rule requires that the set of assertions
{p1, . . . , pn} is non-empty. However, in order to apply the rule to prove A F q(with an empty set of assertions pi) we 
an simply use the single dummyassertion p1

def
= false. Condition P3 then requires that the ranking de
reaseson every transition until q is rea
hed.3.3.2 Rule A(S)In order to obtain a proof rule for LTL su

ess, all we have to do is toinstantiate Rule A(F,

∨
F G) with the asso
iated system SΠ for S, assertions

{Kψ | ψ ∈ ΨA} for {p1, . . . , pn} and to set q def
= false, thus yielding a rule forproving SΠ |= A(

∨
ψ∈ΨA

F GKψ). This is 
orre
t, sin
e all trails are in�niteby Lemma 3.2.11. However, as we know that 
ontrol K always stabilises at
⊤ on
e it got there, there is no need to prove this every time. So a morepra
ti
al instantiation is based on the equivalen
e:

(ΩA =)
∨

ψ∈ΨA

F GKψ ≡SΠ FK⊤ ∨
∨

ψ∈V(φ)

F GKψ (e2)The right-hand side formula more 
losely re�e
ts the semanti
 de�nition ofsu

ess5 (De�nition 3.2.13).In order to a

ount for the 
ase where there are no V-subformulas (thatis, V(φ) = ∅), we de�ne
Ω̂A

def
= FK⊤ ∨

∨

ψ∈Ψ̂A

F GKψwhere Ψ̂A

def
= V(φ) ∪ {•}. Assertion K• 
ould be set to false as suggested atthe end of the previous se
tion. Again for pra
ti
al reasons, we 
an do betterthan that:

K•
def
= ¬Ksys

Ksys
def
= K ∈ ⌈Γsys⌉where Ksys is the synta
ti
al 
ounterpart of Γsys. Observe that sin
e in ea
htrail the 
ontrol variable K either traverses in�nitely many A(X)-sequents(by Lemma 3.1.5), or eventually stabilises at ⊥ or ⊤, we have F GK• ≡SΠ

F G false ≡SΠ false and therefore Ω̂A ≡SΠ ΩA. For later referen
e we state5At this point the reader may wonder why we did not use the right-hand side formula inthe synta
ti
 
hara
terisation of LTL su

ess (Proposition 3.2.16) right from the beginning.This is be
ause the formula ΩA =
∨
ψ∈ΨA

F GKψ more 
leanly exhibits the duality betweenLTL su

ess and ELL su

ess (de�ned in Se
tion 5.2).



3.3] LTL Proof Stru
tures 51Let Π be a LTL proof stru
ture for a saturated system S. Let{
Kψ | ψ ∈ Ψ̂A

} be as dis
ussed in the text. Find:(a) a ranking fun
tion δ : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (W,≻), and(b) assertions {βψ | ψ ∈ Ψ̂A

} (setting β def
=
∨
ψ∈Ψ̂A

βψ),su
h that 
onditions A1-A3 are valid.A1. ΘΠ → K⊤ ∨ βA2. {βψ ∧ δ = w} ΛΠ {K⊤ ∨ (β ∧ δ ≺ w) ∨ (βψ ∧ δ � w)}A3. {βψ ∧ δ = w ∧ ¬Kψ} ΛΠ {K⊤ ∨ (β ∧ δ ≺ w)}

SΠ ⊢ A Ω̂AFigure 3.5: Rule A(S) for proving su

essProposition 3.3.2. A proof stru
ture Π is su

essful i� SΠ |= AΠ Ω̂A.Rule A(F,
∨

F G) 
an thus be instantiated with SΠ for S, K⊤ for q and
{Kψ | ψ ∈ Ψ̂A} for {p1, . . . , pn} yielding Rule A(S) of Figure 3.5.To see the pra
ti
al advantage of de�ning K• as above rather than settingit to false, 
onsider Condition A3 of Rule A(S) for ψ = •. It requires thatthe ranking de
reases along every transition from a β•-state where K• doesnot hold. With K• set to false this would mean every transition from a β•-state, while with K• as de�ned above, a de
rease in rank is only required at
Ksys-states (where 
ontrol K is at a Γsys-sequent). The 
hosen de�nition isthus more permissive. Moreover, the transitions from Ksys-states 
orrespondto underlying system transitions, whi
h we feel to be more intuitive and tomake the rule easier to apply. Note that if V(φ) is non-empty, K• is notneeded and may be �swit
hed o�� by setting β• def

= false.Proofs and Soundness of Rule A(S)Definition 3.3.3. Let Π be proof stru
ture for S and Ξ ⊢ A φ. We say thatRule A(S) is appli
able to Π if SΠ ⊢ A Ω̂A, that is, we 
an �nd a well-foundeddomain (W,≻), a ranking fun
tion δ : ΣΠ → W and assertions {βψ | ψ ∈ Ψ̂A}su
h that 
onditions A1-A3 are valid. ♦



52 A Rule for Proving Su

ess [3.3Definition 3.3.4. (LTL Proofs) Let Π be proof stru
ture for S and Ξ ⊢
Aφ.

• Π is a proof of S,Ξ |= Aφ, written Π : S,Ξ 
 Aφ, if it is su

essful,and
• Π is a S-proof of S,Ξ |= Aφ, written Π : S,Ξ ⊢ Aφ, if Rule A(S) isappli
able to Π.We say that S,Ξ |= Aφ is provable (S-provable), written S,Ξ 
 Aφ (S,Ξ ⊢

Aφ), if there is a proof stru
ture Π for S and Ξ ⊢ Aφ su
h that Π: S,Ξ 
 Aφ(Π: S,Ξ ⊢ Aφ). ♦Notation. If Π proves S,Θ |= Aφ with Θ being the initial 
ondition of S,we write Π : S ⊢ Aφ and S ⊢ Aφ instead of Π : S,Θ ⊢ A φ and S,Θ ⊢ Aφ,respe
tively, and similarly for S-proofs and S-provability.From Propositions 3.3.1 and 3.3.2 we immediately getProposition 3.3.5. (Soundness of Rule A(S) for Proving Su

ess)Let S be a saturated system. If Π: S,Ξ ⊢ Aφ then Π: S,Ξ 
 Aφ.Note that the fa
t that Π is a proof of S,Ξ |= Aφ does of 
ourse not apriori imply that S,Ξ |= Aφ holds. That this is indeed the 
ase follows fromthe soundness of our proof system, whi
h will be proved along with relative
ompleteness in the next 
hapter.Safety FormulasThe 
ase where there is no V-subformula in φ has already been dis
ussedextensively. To 
on
lude this se
tion, we also 
onsider the other extremewhere there are no U-subformulas in φ. In this 
ase φ des
ribes a safetyproperty, sin
e there are no (sub-)formulas that are promised to be
ome truein the future (as is the 
ase with φ2 in φ1 Uφ2). We would then expe
t thatno well-foundedness argument is ne
essary to establish su

ess of a proofstru
ture for a system S and a sequent Ξ ⊢ A(φ), sin
e all in�nite paths aresu

essful. Indeed, the following proposition, the proof of whi
h is deferredto the next 
hapter (see Proposition 4.2.21), exempts us from applying Rule
A(S) altogether, at least in 
ase all terminals are axioms. Note that theproposition holds for any system S, with or without fairness 
onstraints,sin
e only liveness properties but not safety properties depend on fairness.Proposition 3.3.6. Let Π be a proof stru
ture for system S and sequent
Ξ ⊢ Aφ, where φ does not 
ontain any U-subformulas. Suppose that allterminals in Π are axioms. Then Π: S 
 Aφ.



3.4] LTL Proof Stru
tures 53As will also be shown in the next 
hapter, provided that the property tobe shown is true, there is always a proof stru
ture all of whose terminals areaxioms, so this restri
tion in the proposition is only a mild one.3.4 Some ExamplesIn this se
tion, we illustrate the appli
ation of our proof method with threeexamples. In parti
ular, we will prove a guarantee, a safety and a persisten
eproperty.3.4.1 A Guarantee PropertyIn order to 
omplete Example 3.2.4, it remains to show that proof stru
ture
Π1 is su

essful for system S ′

1 (and property φ1). Re
all that system S ′
1simply de
rements a natural number variable x or loops at x = 0. Proofstru
ture Π1 is reprodu
ed in Figure 3.6 in a de
orated form for referen
e.

γ2 : true ⊢ A(x = 0,XF(x = 0))

γ1 : x > 0 ⊢ A(x = 0,XF(x = 0)) γ4 : x = 0 ⊢ A(x = 0,XF(x = 0))

γ3 : true ⊢ A(F(x = 0))

γ0 : x > 0 ⊢ A(X F(x = 0))

✓Figure 3.6: Proof stru
ture Π1 for system S ′
1 and property φ1

def
= A F(x = 0).In the following we suppose that the 
oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for

0 ≤ i ≤ 4, ⌈⊤⌉ = 5. In order to apply Rule A(S) we 
hoose the auxiliaryassertion β• and the ranking δ as follows:
β•

def
= true δ(x,K)

def
= xNote that β ≡ β•, sin
e β• is the only auxiliary assertion, and that ¬K• ≡

K ∈ {0, 4, 5}. Condition A1 is trivially satis�ed. For 
ondition A2, we 
anrestri
t ourselves to the 
ases where K• holds, the others being 
overed byA3. Condition A2 then boils down to showing
{x = n ∧ (1 ≤ K ≤ 3)}ΛΠ {K⊤ ∨ x ≤ n}



54 Some Examples [3.4For 1 ≤ K ≤ 3, the relevant transitions are (γ1,=, γ0), (γ2,=, γ1), (γ2,=
, γ4) and (γ3,=, γ2) and all of them maintain the ranking 
onstant. Finally,for 
ondition A3 we have to 
he
k

{x = n ∧K ∈ {0, 4, 5}}ΛΠ {K⊤ ∨ x < n}It is now easy to see that the only enabled transition for K = 0 is (γ0, dec, γ3)and de
reases the rank, while the relevant transitions from K ∈ {4, 5},namely (γ4, zero,⊤) and (⊤, zero,⊤), lead to K⊤.Hen
e Π1 is a proof of S ′
1 |= A F(x = 0) by soundness of Rule A(S)(Proposition 3.3.5).3.4.2 A Safety PropertyConsider the system S3 with a boolean-valued variable b, a natural numbervariable x, initial 
ondition Θ3

def
= (b = tt) ∧ (x = 0) and transition relations:

ρinc
def
= (x′ = x− 1) ∧ (b′ = b)

ρup
def
= (b = ff) ∧ (b′ = tt) ∧ (x′ = x)The labeled transition system for this spe
i�
ation is depi
ted in Figure 3.7.

(0,ff) (1,ff)

(0, tt) (1, tt)

(2,ff)

(2, tt)

(3,ff)

(3, tt)

· · ·

· · ·

inc

up

inc

up

inc inc

inc

up

inc

up

Figure 3.7: LTS for system S3The property we want to verify for this system is φ3
def
= A((b = ff) W(b =

tt)). Figure 3.8 shows proof stru
ture Π3 for system S3 and property φ3. Re-
all that ψ0 Wψ1 is de�ned as ψ2∨(Xψ2) Vψ1, so there are no U-subformulasin φ3. By Proposition 3.3.6, this proof stru
ture is su

essful, sin
e all itsterminal sequents are axioms. Therefore, proof stru
ture Π3 is a proof of
S3 |= φ3.
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tures 55
Θ ⊢ A(bf W bt)

true ⊢ A(bf W bt)

true ⊢ A(bf , bt) true ⊢ A(bt,X(bf W bt))

bf ⊢ A(bt,X(bf W bt))bf ⊢ A(bf , bt) bt ⊢ A(bf , bt) bt ⊢ A(bt,X(bf W bt))

bf ⊢ A(X(bf W bt))

✓ ✓ ✓Figure 3.8: Proof stru
ture Π3 for system S3 and property φ3
def
= A((b =

ff) W(b = tt)), writing bt for b = tt and bf for b = ff.3.4.3 A Persisten
e PropertySystem S4 has a single natural number variable x with initial 
ondition Θ4
def
=

true and the transition relations ρdec and ρev de�ned by
ρdec

def
= x > 0 ∧ x′ = x− 1

ρev
def
= ev(x) ∧ x′ = xAs a property to be proved for this system 
onsider the persisten
e formula

φ4
def
= A F G ev(x) expressing that x eventually stabilises on an even value. Thelabeled transitions system for S4 appears in Figure 3.9 and a proof stru
turefor S4 and φ4 is displayed in Figure 3.10.

3 2 1 0· · · 4
dec dec decdec

ev ev ev

Figure 3.9: LTS for system S4Su

essful paths in this proof stru
ture are exa
tly those that are either�nite, ending in the axiom γ5, or in�nite, ending in (γ1γ6γ7)
ω.In order to prove that Π4 is su

essful using Rule A(S), we quite naturally
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γ0 : true ⊢ A(F G e)

γ1 : true ⊢ A(G e,XF G e)

γ2 : true ⊢ A(e,XFG e) γ6 : true ⊢ A(XG e,XFG e)

γ7 : true ⊢ A(G e,FG e)γ3 : o ⊢ A(e,XFG e) γ5 : e ⊢ A(e,XF G e)

γ4 : o ⊢ A(XFG e)

X
h=0

h=3

h=2

h=2

h=0

h=2

h=2h=1

Figure 3.10: Proof stru
ture Π4 for S4 and φ4
def
= A F G ev(x) with ev(x)abbreviated to e and od(x) to o
hoose the auxiliary assertions β• and βG e as follows:

β•
def
= od(x)

βG e
def
= ev(x)This yields β ≡ true, so 
ondition A1 of Rule A(S) is trivially satis�ed. Wepropose the following ranking fun
tion:

δ(x,K)
def
= (x, h(K))with the lexi
ographi
 ordering, where the value of h(K) is as indi
ated belowea
h node in Figure 3.10 and is de�ned for K = ⊤ by h(⊤) = 0. We supposethat the 
oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for 0 ≤ i ≤ 7 and ⌈⊤⌉ = 8. Thisyields

K• ≡ K ∈ {0, 1, 2, 3, 7}
KG e ≡ K ∈ {1, 6, 7}It remains to prove that A2 and A3 are satis�ed. For 
ondition A2 we againassume that Kψ holds, the other 
ases being 
overed by A3. The 
ase ψ = •then boils down to

{od(x) ∧ (x, h) = (m,n) ∧K ∈ {0, 1, 2, 3, 7}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n) ∨ (od(x) ∧ (x, h) ≤ (m,n))}



3.4] LTL Proof Stru
tures 57All relevant transitions are of the form (γ,=, γ′), thus preserving the valueof x. Also, the value of h does not in
rease along these transitions, so neitherdoes the overall ranking.For ψ = G e, the veri�
ation 
ondition reads
{ev(x) ∧ (x, h) = (m,n) ∧K ∈ {1, 6, 7}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n) ∨ (ev(x) ∧ (x, h) ≤ (m,n))}For K ∈ {1, 7}, the relevant transitions are (γ1,=, γ2), (γ1,=, γ6) and (γ7,=
, γ1) whi
h 
learly preserve the value of x and h. For K = 6, transition
(γ6, ev, γ7) on one hand preserves the ranking (hen
e ev(x)) and transition
(γ6, dec, γ7) on the other hand de
reases the ranking.Condition A3 for ψ = • is equivalent to

{od(x) ∧ (x, h) = (m,n) ∧K ∈ {4, 5, 6, 8}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n)}For K = 4 or K = 6, the relevant transitions (γ4, dec, γ0) and (γ6, dec, γ7)de
rease x, hen
e the ranking. For K = 5 and K = 8 (≡ K⊤), we 
learlyhave {K = 5}ΛΠ {K⊤} and {K⊤}ΛΠ {K⊤}, respe
tively.The remaining 
ase is A3 for ψ = G e, whi
h boils down to
{ev(x) ∧ (x, h) = (m,n) ∧K ∈ {0, 2, 3, 4, 5, 8}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n)}We distinguish three 
ases. For K ∈ {0, 2} the all non-trivial transitionsare of the form (γ,=, γ′), thus preserving x while de
reasing the value of
h. Hen
e, the rank de
reases along these transitions. For K ∈ {3, 4} the
ondition holds trivially, sin
e any transition departing from these positionsrequires that od(x) holds. Finally, any transition departing from K ∈ {5, 8}rea
hes K⊤. We 
on
lude that Π4 is a proof of S4 |= A F G ev(x).
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Chapter 4Soundness and Completeness viaGamesThis 
hapter is devoted to proving the followingTheorem 4.0.1. (Soundness and Relative Completeness) Let S bea saturated system, Ξ an assertion and φ a LTL formula. We have
S,Ξ |= φ if and only if S,Ξ ⊢ φ.Due to the expressiveness of the assertion language L we 
annot expe
tthat all veri�
ation 
onditions are provable in some formal system. Therefore,
ompleteness is shown relative to the validity of the veri�
ation 
onditions,thereby de
oupling the reasoning in our proof system from the reasoning inthe assertion language L.

S,Ξ |= φ
m 1.Player ∃ wins GS(Ξ, φ)
m 2.

S,Ξ 
 φ
m 3.

S,Ξ ⊢ φFigure 4.1: Road-map to soundness and relative 
ompletenessA major part of this theorem will be proved by a game-theoreti
 argument.The proof pro
eeds in three stages as depi
ted in Figure 4.1. As an outlineof the present 
hapter, we will brie�y dis
uss ea
h of the three equivalen
es.59



60 [4.01. CTL* Games (Se
tion 4.1) As a preparatory step we will de�ne, fora given model M = (T , V ), run σ ∈ RT and CTL* formula ψ, the CTL*game GM(σ, ψ), an in�nite two-player game, where � intuitively speaking� one player (
alled ∃) tries to show that the property holds (M, σ |= ψ)and the other player (
alled ∀) tries to refute it (M, σ 6|= ψ). We thenshow that the truth of M, σ |= ψ 
an be 
hara
terised by the existen
e ofa winning strategy for Player ∃ in the game GM(σ, ψ). Furthermore, thisgame is determined, that is, one of the players has a winning strategy. This
hara
terisation is not dire
tly related to proof stru
tures and has an interestof its own.2. Trails and Strategies (Se
tions 4.2 and 4.3) In this se
ond stepwe investigate the internal stru
ture of paths in proof stru
tures and showthat to any trail ϑ of a LTL proof stru
ture Π for S and sequent Ξ ⊢ Aφ
orresponds a ∀-strategy τϑ for the LTL game GS(σϑ, φ). Clearly, if there isa trail ϑ su
h that the ∀-strategy τϑ is winning then σϑ provides a 
ounter-example to the truth of S,Ξ |= Aφ.We introdu
e an alternative notion of su

ess proposed in the literature
alled admissibility [Dam94℄ and mat
hing more 
losely the winning 
ondi-tions of our games. We show that a trail ϑ indu
ing a 
omputation σϑ isadmissible pre
isely if τϑ is a loosing strategy for GS(σϑ, φ). This 
an beinterpreted as a failed attempt to produ
e a 
ounterexample. On the otherhand, we demonstrate that if Player ∀ has a winning strategy τ for somegame GS(σ, φ) with σ a Ξ-run of S, then τ is represented in Π in the sensethat there exists a trail ϑ su
h that τϑ = τ and σϑ = σ. As a 
onsequen
e,if all trails ϑ proje
ting to σ are admissible, we 
an 
on
lude that Player ∃has a winning strategy for the game GS(σ, φ) and hen
e S, σ |= φ. Summingup, we 
an say that Player ∃ wins GS(Ξ,Aφ) pre
isely if Π is admissible.We then 
ompare admissibility with su

ess. Although the two notionsdo not pre
isely mat
h on the level of individual paths or trails, they do
oin
ide on the level of proof stru
tures, that is, Π is admissible exa
tlyif it is su

essful. As a �nal ingredient for the establishment of the se
ondequivalen
e in the �gure above, we show in Se
tion 4.3 that, provided Player ∃wins the game GS(Ξ, φ), a proof stru
ture does indeed exist for system S andsequent Ξ ⊢ φ.3. Soundness and Completeness of Rule A(S) (Se
tion 4.4) Thethird equivalen
e follows from the fa
t that Rule A(S) is sound and relatively
omplete for proving su

ess of LTL proof stru
tures.



4.1] Soundness and Completeness via Games 61We do not 
laim that our proof is the shortest possible one. However, ourgame-theoreti
 analysis of proof stru
tures provides interesting insights intotheir �ne stru
ture and has as su
h an interest of its own. We therefore thinkthat the little �detour� via games is well worth its pri
e.4.1 CTL* GamesIn this se
tion we will give a 
hara
terisation of the CTL* satisfa
tion relationin terms of winning strategies in an in�nite two-player game. This 
hara
ter-isation is similar in spirit to the one for the modal µ-
al
ulus [Sti95, Sti96a,Sti97℄. An alternative notion of CTL* games is proposed in the very re
ent,as yet unpublished work by Lange and Stirling [LS00℄.4.1.1 Game De�nitionGiven a CTL* model M = (T , V ) and a run σ ∈ RT , the CTL* game
GM(σ, φ) is de�ned as follows. There are two players, 
alled ∃ and ∀. Intu-itively, Player ∃ is trying to establishM, σ |= φ while his opponent, Player ∀,is trying to refute M, σ |= φ (that is, establish M, σ 6|= φ). Game 
on�gu-rations are pairs 
onsisting of a run of T and an CTL* formula. The initial
on�guration is (σ0, φ0) = (σ, φ). The rules of the game are des
ribed inTable 4.1.

ψ a
tion new 
on�guration
p end of play -
ψ1 ∨ ψ2 Player ∃ 
hooses one of the ψi (ς, ψi)
ψ1 ∧ ψ2 Player ∀ 
hooses one of the ψi (ς, ψi)
ψ1 Zψ2 Player ∃ unfolds ψ1 Zψ2 (ς, unf(ψ1 Zψ2))
Xψ Player ∀ advan
es ς by one state (ς1, ψ)
Eψ Player ∃ 
hooses some ς̂ ∈ CM(ς(0)) (ς̂ , ψ)
Aψ Player ∀ 
hooses some ς̂ ∈ CM(ς(0)) (ς̂ , ψ)Table 4.1: Game moves in 
on�guration (ς, ψ)The possible moves in a 
on�guration (ς, ψ) depend on the top-level 
on-ne
tive of the formula ψ. A game play ends if ψ is an atomi
 proposition.For boolean formulas it is Player ∃ that 
hooses one of the disjun
ts if ψ is adisjun
tion and Player ∀ 
hooses one of the 
onjun
t in 
ase ψ is a 
onjun
-tion. For the temporal 
onne
tives, Player ∃ unfolds Z-formulas and Player ∀eliminates Next 
onne
tives and advan
es the run by one state. Note that
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onne
tives, it is quite irrelevant whi
h player a
tually moves, sin
ethere is no 
hoi
e to be made. In 
ase of a top-level path quanti�er in ψthere is a 
hoi
e � namely, of a 
omputation ς̂ starting in the same state as
ς � and it is made (not surprisingly) by Player ∃ in 
ase of an existentialpath quanti�er and by his opponent ∀ in 
ase of a universal path quanti�er.Table 4.1 de�nes a relation ⊲ on 
on�gurations. The game tree TGM(σ,φ)indu
ed by this relation 
ontains the root ǫ together with all positions p =
c0c1 · · · cm with m ≥ 0 su
h that

• c0 = (σ, φ), and
• ci ⊲ ci+1 for all 0 ≤ i < m.A play either ends at an atomi
 proposition or pro
eeds ad in�nitum by re-peated unfolding of some Z-formula. The winning 
onditions are summarisedin Table 4.2.play type Player ∃ wins Player ∀ wins
µ �nite, ending in (ς, p) ς(0) ∈ V (p) ς(0) 6∈ V (p)
µ in�nite ∃ωi. π2(µ(i)) ∈ V(φ) ∃ωi. π2(µ(i)) ∈ U(φ)Table 4.2: Winning 
onditions for game GM(σ, φ)We say that a 
on�guration (ς, ψ) is true if ς |= ψ, and false otherwise.For �nite plays the winner is determined a

ording to the truth or falsity ofthe �nal 
on�guration. For in�nite plays µ, Player ∃ wins if there is some V-subformula of φ appearing in in�nitely many 
on�gurations on µ and Player ∀wins if some U-subformula of φ appears in�nitely often along µ.The game GM(U, φ) for a non-empty set U ⊆ ST is initiated by Player ∀
hoosing a U-
omputation σ of T , yielding the initial 
on�guration (σ, φ).Then the game pro
eeds as GM(σ, φ), with the same winning 
onditions.Thus,

TGM(U,φ) =
⋃

σ∈CT (U)

TGM(σ,φ).Given a system S with system variablesX and a ground-quanti�ed CTL*formula φ overX, the games GS(σ, φ) for σ ∈ RS and GS(Ξ, φ) for a satis�ableassertion Ξ are de�ned in the obvious way. As usual, when there is no
onfusion possible we will drop indi
es M or S. Finally, we speak of an LTL,ELL, CTL game when the formula φ is in the respe
tive sublogi
 of CTL*.



4.1] Soundness and Completeness via Games 634.1.2 Chara
terisation of CTL* satisfa
tionFor this se
tion, 
onsider a �xed, but arbitrary CTL* modelM = (T , V ), run
σ ∈ RT and CTL* formula φ. The following lemma states that the winning
onditions stated for ea
h player in Table 4.2 are indeed 
omplementary, thatis, any play is won by some player (there are no draws).Lemma 4.1.1. (No Draws) Any play of G(σ, φ) won by some player. Inparti
ular, any in�nite play µ ends in the following pattern for some run
ς ∈ RT and Z-formula ψ = φ1 Zφ2:

µ : · · · (ς, ψ)(ς, unf(ψ))(ς, φ1 ♭ Xψ)(ς,Xψ)(ς1, ψ)(ς1, unf(ψ)) · · ·where ♭ ∈ {∧,∨} a

ording to Z.Proof. The statement is trivial for �nite plays. For in�nite plays, let us
all Z-move a move from a 
on�guration with a Z-formula. It is 
lear thatany in�nite play µ must exhibit an in�nite number of Z-moves, sin
e anyother type of move de
reases the size of the formula. As there are onlya �nite number of possible formulas o

urring in 
on�gurations � namely,subformulas of φ and subformulas of unfoldings of Z-subformulas of φ � theremust be some Z-formula, say ψ = φ1 Zφ2, whi
h is unfolded in�nitely oftenin µ. But the only way to do so is to follow the sequen
e in the statementof the Lemma from the �rst point on where ψ o

urs in a 
on�gurationon µ. Any other sequen
e would prevent the regeneration of ψ in a later
on�guration.Note that game moves are designed to preserve the respe
tive goal of ea
hplayer. More pre
isely, if it is Player ∃'s (∀'s) turn to move and the 
urrent
on�guration is true (false), then he has the 
hoi
e of making a move to atrue (false) next 
on�guration. This observation provides the basis forProposition 4.1.2.1. if σ |= φ then Player ∃ has a (deterministi
) history-free winning strat-egy for G(σ, φ), and2. if σ 6|= φ then Player ∀ has a (deterministi
) history-free winning strat-egy for G(σ, φ).Proof. We prove the �rst 
ase, the se
ond one follows by a symmetri
alargument. Suppose σ |= φ. Player ∃ determines his moves a

ording to a�xed 
hoi
e fun
tion ε, a partial fun
tion that is de�ned at least on true
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on�gurations of the forms (ς, φ1 ∨ φ2), (ς, φ1 Z φ2) and (ς,Eψ). On theformer two types of 
on�gurations ε is de�ned by
ε(ς, ψ1 ∨ ψ2)

def
=

{
(ς, ψ1) if ς |= ψ1 and (ς 6|= ψ2 or |ψ1| ≤ |ψ2|)
(ς, ψ2) otherwise

ε(ς, ψ1 Zψ2)
def
= (ς, unf(ψ1 Zψ2))Furthermore, on true 
on�gurations of the form (ς,Eψ) we require that

ε(ς,Eψ) = (η, ψ) su
h that η ∈ CT (ς(0)) and η |= ψ (∗)Clearly, su
h a fun
tion ε exists by the semanti
s of the existential pathquanti�er.We show by indu
tion on the length of a play that ε indu
es a strategy forPlayer ∃ that allows him to preserve the truth of 
on�gurations regardless ofthe moves of his opponent, that is, we have ς |= ψ for any 
on�guration (ς, ψ)o

urring along a play. The initial 
on�guration of the game is (σ0, φ0) =
(σ, φ) and is true by assumption. Suppose the game play has pro
eeded for
k moves to position

(σ0, φ0)(σ1, φ1) · · · (σk, φk)su
h that σk |= φk. Then, a

ording to the stru
ture of φk, we have:
• φk = p for an atomi
 proposition p: Player ∃ wins
• φk = ψ1∨ψ2: By indu
tion hypothesis we have σk |= ψ1∨ψ2. Thus, the
hoi
e fun
tion ε gives us 
on�guration (σk, ψi), where ψi is the smallerof ψ1 and ψ2 su
h that σk |= ψi holds (ψ1 in 
ase of a tie-break).Player ∃ sets (σk+1, φk+1) = (σk, ψi).

• φk = ψ1 ∧ ψ2: Sin
e σk |= ψ1 ∧ ψ2 by indu
tion hypothesis, whi
heverof (σk, ψ1) or (σk, ψ2) Player ∀ 
hooses as (σk+1, φk+1), we always have
σk+1 |= φk+1.

• temporal operators: there is no real 
hoi
e and truth is easily seen tobe preserved a
ross moves.
• φk = Eψ: sin
e (σk,Eψ) is true by indu
tion hypothesis, Player ∃ 
anset (σk+1, φk+1) = ε(σk,Eψ) whi
h is a true 
on�guration and a legalmove by 
onstraint (∗) above.
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• φk = Aψ: By indu
tion hypothesis σk |= Aψ, so whatever 
omputation
ς with ς(0) = σk(0) Player ∀ may 
hoose as σk+1, we always have
σk+1 |= ψ.By the above 
onstru
tion, the 
hoi
e fun
tion ε indu
es a (unique) deter-ministi
, 
omplete and history-free ∃-strategy τ . We have already seen thatPlayer ∃ wins any �nite play. It remains to be shown that, following thestrategy τ , Player ∃ also wins any in�nite play

µ : (σ0, φ0)(σ1, φ1) · · · (σk, φk) · · ·Suppose for a 
ontradi
tion that his opponent, Player ∀, wins su
h an in�niteplay µ, with ψ = θ1 U θ2 appearing in�nitely often on µ. By Lemma 4.1.1 µends in the pattern
· · · (ς, ψ)(ς, θ2 ∨ (θ1 ∧ Xψ))(ς, θ1 ∧ Xψ)(ς,Xψ)(ς1, ψ)(ς1, unf(ψ)) · · ·for some 
omputation ς. Sin
e all 
on�gurations on µ are true by our in-variant, it follows that ς i |= θ1 U θ2 for all i ≥ 0. By the semanti
s of U wealso have ςj |= θ2 for in�nitely many j ≥ 0. Thus for some m ≥ 0 there isa 
on�guration c = (ςm, θ2 ∨ (θ1 ∧ Xψ)) on µ su
h that ςm |= θ2. But thismeans that µ is not played a

ording to τ , sin
e strategy τ moves from cto 
on�guration (ςm, θ2) (be
ause ςm |= θ2 and |θ2| < |θ1 ∧ Xψ|) and not to

(ςm, θ1∧Xψ) as is the 
ase on µ. Contradi
tion. Hen
e, Player ∀ 
annot winthe play µ. A

ording to Lemma 4.1.1, Player ∃ wins µ .Theorem 4.1.3. Let M = (T , V ) be a CTL* model, σ a run of T and φ aCTL* formula. Then(i) The game GM(σ, φ) is determined, and(ii) Player ∃ wins GM(σ, φ) if and only if M, σ |= φ.Proof. Dire
tly from Proposition 4.1.2.Corollary 4.1.4. Let M = (T , V ) be a CTL* model, U ⊆ ST and φ aCTL* formula. Then(i) The game GM(U, φ) is determined, and(ii) Player ∃ wins GM(U, φ) if and only if M, U |= φ.



66 Trails and Strategies [4.24.2 Trails and StrategiesPaths through proof stru
tures exhibit themselves 
onsiderable internal stru
-ture. In the following, we will make this stru
ture expli
it and show that toea
h trail ϑ of a proof stru
ture Π 
orresponds a ∀-strategy of the game
GS(σϑ, φ). We then relate winningness of these strategies with the su

ess
ondition for trails: we will see that the LTL game GS(Ξ,Aφ) is won byPlayer ∃ (and hen
e S,Ξ |= Aφ) pre
isely if Π is su

essful. Unless other-wise stated we 
onsider throughout this se
tion an arbitrary but �xed LTLproof stru
ture Π = (Γ,∆, γr) for some system S and sequent γr = Ξ ⊢ A(φ).4.2.1 Generative Paths and AdmissibilityWe start by de�ning, in a similar way as in [Dam94℄, the generation relationsfor the LTL proof rules in Figure 3.1. These relations des
ribe dependen
iesamong formulas as 
reated by the appli
ation of a proof rule.Definition 4.2.1. The generation relation  γ,γ′⊆ Φγ × Φγ′ is de�ned forea
h edge (γ, γ′) ∈ ∆ of Π by 
ase analysis on the rule applied at γ:
 p⊢A(Φ,q), p⊢A(Φ)

def
= Id(Φ)

 p⊢A(Φ,φ1∨φ2), p⊢A(Φ,φ1,φ2)
def
= {(φ1 ∨ φ2, φ1), (φ1 ∨ φ2, φ2)} ∪ Id(Φ)

 p⊢A(Φ,φ1∧φ2), p⊢A(Φ,φ1)
def
= {(φ1 ∧ φ2, φ1)} ∪ Id(Φ)

 p⊢A(Φ,φ1∧φ2), p⊢A(Φ,φ2)
def
= {(φ1 ∧ φ2, φ2)} ∪ Id(Φ)

 p⊢A(Φ,φ1 Zφ2), p⊢A(Φ,unf(φ1 Zφ2))
def
= {(φ1 Zφ2, unf(φ1 Zφ2))} ∪ Id(Φ)

 p⊢A(X Φ), q ⊢A(Φ)
def
= {(Xφ, φ) | φ ∈ Φ}

 p⊢A(Φ), q ⊢A(Φ)
def
= Id(Φ)where Id(Φ) = {(φ, φ) | φ ∈ Φ} is the identity relation on Φ. ♦Definition 4.2.2. (Generative Paths) Let π : γ0γ1 · · · γj · · · be a pathin Π. We say that a (�nite or in�nite) sequen
e ι : φ0φ1 · · ·φk · · · of LTLformulas with 0 ≤ |ι| ≤ |π| is a generative path running along π if either

• ι = ǫ, or
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• Φγ0 = {φ0} and φi  γi,γi+1

φi+1 for all i with i+ 1 < |ι|.Denote by I(π) the set of all generative paths and by I∗(π) the set of �nitegenerative paths running along π. We 
all the tree I∗(π) the internal pre-strategy of π. ♦In order to link up the game-theoreti
 notions of strategies and winning-ness to su

ess of paths, it is 
onvenient to introdu
e an alternative notionof su

ess 
alled admissibility whi
h rests on generative paths. In a se
ondstep, we will then 
ompare admissibility with su

ess.Definition 4.2.3. (Admissibility)1. a path π in Π is 
alled admissible if it is
• �nite and ends in an axiom, or
• in�nite and there is a generative path ι running along π su
h that

inf(ι) ∩ V(φ) 6= ∅.2. a trail ϑ of Π is admissible if πϑ is admissible.3. a proof stru
ture Π is admissible in 
ase all its Π-fair trails are. ♦4.2.2 Internal Strategies of TrailsWe now de�ne the notion of internal (pseudo-)strategy of a trail ϑ, whi
his obtained by 
ombining the su�xes of the run σϑ indu
ed by ϑ with theinternal pre-strategy of the path πϑ indu
ed by ϑ.Definition 4.2.4. Let ϑ : t0t1 · · · tj · · · be a trail of Π. De�ne1. the sequen
e σ̃ϑ for i ∈ ω bỹ
σϑ(i)

def
= hωΣ(ϑi)2. the trees Tϑ and τϑ by

Tϑ
def
= {σ̃ϑ ∗ ι | ι ∈ I∗(πϑ)} and τϑ

def
= ♮Tϑwhere the operation x ∗ y is de�ned on words x, y ∈ A∞ 
oindu
tivelyby x ∗ ǫ = ǫ ∗ x = ǫ and ay ∗ bz = (a, b) · (y ∗ z). The tree Tϑ is 
alledthe internal pseudo-strategy and τϑ is 
alled the internal strategy of thetrail ϑ. ♦
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e of su�xes of σϑ and that both Tϑ and τϑ areindeed trees. We will see shortly that τϑ is a ∀-strategy for the game G(σ, φ).Before that we re
ord some basi
 properties of the internal (pseudo-)strategyof a trail ϑ in the form of two lemmas.Lemma 4.2.5. Let ϑ be a trail of Π with πϑ : γ0γ1 · · · γj · · ·. Then for 0 ≤
k < |πϑ|

ψ ∈ Φγk
⇐⇒ ∃p ∈ Tϑ. |p| = k + 1 & p(k) = (σ̃ϑ(k), ψ).Proof. By a routine indu
tion on the length of nodes of Tϑ.The previous lemma implies that the height of Tϑ is |πϑ|.Lemma 4.2.6. There is a bije
tion between the paths of Tϑ and those of τϑ.Proof. Note that whenever some node n = n′c of Tϑ has more than one
hild, we have c = (_, φ1 ∨ φ2) and nTϑ

= {nc1, nc2} with ci = (_, φi). Sin
e
c 6= c1 and c 6= c2, the stutter removal operator preserves the bran
hingstru
ture of Tϑ and is therefore a bije
tion between the paths of Tϑ and thoseof τϑ.Definition 4.2.7. We say that a path π in Π is 
losed if it is either in�nite orends in a terminal sequent γt su
h that all ψ ∈ Φγt are assertions. Otherwise,
π is 
alled open. ♦Proposition 4.2.8. (Trails and ∀-strategies I) Let ϑ be a trail of Π.Then we have(i) τϑ is a deterministi
 ∀-strategy for G(σϑ, φ), and(ii) τϑ is 
omplete if and only if πϑ is 
losed.Proof. (i) Let ϑ be a trail with πϑ : γ0γ1 · · · γi · · · and suppose

p : (σ0, ψ0)(σ1, ψk) · · · (σk, ψk) ∈ TϑBy the de�nitions of Tϑ and σ̃ϑ we have σj = σ̃ϑ(j) for all 0 ≤ j ≤ k, and forall 0 ≤ i < k

σi+1 =

{
(σi)

1 if γi ∈ ΓA(X)

σi otherwiseand ψi  γi,γi+1
ψi+1. It follows that either (σi, ψi) ⊲ (σi+1, ψi+1) or (σi, ψi) =

(σi+1, ψi+1). Thus ♮p is a position of the game G(σϑ, φ). Consequently, τϑ is



4.2] Soundness and Completeness via Games 69a tree pre�x of TG(σ,φ). The fa
t that it is a deterministi
 ∀-strategy 
an beseen by inspe
ting the 
ases for the boolean operators in De�nition 4.2.1.(ii) �⇒�: By 
ontraposition. Suppose πϑ is open with |πϑ| = k+ 1. Thenthere is a formula ψ ∈ Φπϑ(k) that is not an assertion. By Lemma 4.2.5 thereis a path µ ∈ Tϑ with µ(k) = (σ̃ϑ(k), ψ). Hen
e, ♮µ is a path of τϑ that isnot a play of G(σϑ, φ), so τϑ is not 
omplete.�⇐�: Suppose πϑ : γ0 · · · γj · · · is 
losed. Let µ be a path of Tϑ. ByLemma 4.2.6 it is su�
ient to show that ♮µ is a play of G(σϑ, φ). Suppose�rst that µ is �nite, i.e., µ = n · (σ, ψ) with |µ| = k + 1, and γk = p ⊢ A(Φ).By Lemma 4.2.5 we have ψ ∈ Φ. We show that ψ is an assertion and thus
♮µ a play of G(σϑ, φ). There are three 
ases:(a) |µ| = |π| and γk is an axiom. Then ψ is an assertion sin
e πϑ is 
losedby assumption.(b) |µ| = |π| and γk is an anti-axiom. Then ψ is 
ertainly an assertion.(
) |µ| < |π|. Then ψ must be an assertion, sin
e otherwise by De�nitions4.2.1 and 4.2.4 µ would be extensible and hen
e not a path of Tϑ.If, on the other hand, µ is in�nite, then ♮µ is an in�nite path of τϑ, hen
e aplay of G(σ, φ).4.2.3 Winning and Losing StrategiesAs a preparation to relating admissibility of trails and winningness of theirinternal strategies, we state some fundamental properties of �nite plays inLemma 4.2.9. (Finite plays) Let ϑ be a trail of Π. Then(i) if πϑ ends in an axiom τϑ is losing,(ii) if πϑ ends in an anti-axiom τϑ is winning, and(iii) if πϑ does not end in an axiom all �nite plays in τϑ are won by ∀.Proof. Suppose π : γ0 · · · γj · · · is the path indu
ed by a trail ϑ of Π. ByLemma 4.2.5, we 
an distinguish three situations from whi
h a �nite path
µ ∈ Tϑ of length |µ| = k + 1 ending in some 
on�guration (σ, q) with q anassertion may arise:1. γk = p ⊢ Φ, q is an axiom: sin
e σ(0) |= p, also σ(0) |= q, so ♮µ is wonby Player ∃.
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e σ(0) |= p, we have σ(0) 6|= q, so ♮µ iswon by Player ∀.3. γk = p ⊢ Φ, q and rule A(bsf) is applied at γk: for similar reasons as inthe previous 
ase ♮µ is won by Player ∀.These are the only 
ases giving rise to �nite plays in τϑ. Thus, point 1 proves(i), points 2 and 3 entail (iii) and (ii) follows from 2 and 3 together withProposition 4.2.8(ii).Proposition 4.2.10. (Trails and ∀-strategies II) Let ϑ be a trail of
Π. Are equivalent:(i) ϑ is admissible,(ii) τϑ is losing, and(iii) τϑ is non-winning.Proof. (i)⇒(ii): Suppose ϑ is admissible. If πϑ is �nite then τϑ is losingby Lemma 4.2.9(i). If πϑ is in�nite then σ̃ϑ ∗ ι is an in�nite play won byPlayer ∃, where ι is the generative path witnessing the admissibility of π.The impli
ation (ii)⇒(iii) is trivial. We show (iii)⇒(i) by 
ontraposition.Suppose πϑ is inadmissible. If πϑ is �nite then it ends in an anti-axiom and so
τϑ is winning by Lemma 4.2.9(ii). If, on the other hand, πϑ is in�nite, then τϑis 
omplete by Proposition 4.2.8. We also know, by virtue of Lemma 4.2.9(iii),that all �nite plays in τϑ are won by Player ∀. Moreover, by assumption noin�nite play 
an be won by Player ∃. Thus τϑ is a winning ∀-strategy.4.2.4 Represented StrategiesAs the internal strategy of an admissible trail is loosing by the previousproposition, it 
an be seen as a failed attempt to produ
e a 
ounter-example.Now the question naturally arises whi
h types of strategies arise as internalstrategies of trails and, more spe
i�
ally, whether some winning ∀-strategyfor a game G(σ, φ) with σ ∈ RS(Ξ) is represented as a trail of Π, wheneverPlayer ∀ wins that game (that is, whenever he has a winning strategy for thegame).Definition 4.2.11. Let σ ∈ RS(Ξ) and let τ be a ∀-strategy for GS(σ, φ).

• two positions p, q ∈ τ are 
alled step-equivalent, written p ≃ q, if
cf(p) = cf(q) and #X(p) = #X(q),
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urrent 
on�guration in position p (that is,
p = p′c for some p′ ∈ τ) and #X(p) denotes the number o

urren
es of
X-formulas on p.

• τ is 
alled step-uniform if it makes the same de
isions for step-uniformpositions, that is, for all p, q ∈ τ :
p ≃ q ⇒ pτ/p = qτ/q

• a trail ϑ of Π represents τ if
σϑ = σ and {

τϑ = τ if πϑ 
losed
τϑ ⊂ τ if πϑ openWe say that τ is represented in Π if there is a trail ϑ of Π representing τ .We 
all τ 
ompletely represented in Π if there is a trail ϑ representing

τ su
h that τϑ = τ . ♦Step-uniformity restri
ts the history-dependen
e of strategies by requiringthem to make uniform de
isions at uniform times (that is, after a givennumber of Next moves). In turns out that all 
omplete, deterministi
 andstep-uniform ∀-strategies are represented in Π.Proposition 4.2.12. (Represented ∀-strategies) Suppose σ ∈ RS(Ξ)and let τ∀ be a 
omplete, deterministi
 and step-uniform ∀-strategy for
G(σ, φ). Then τ∀ is represented in Π.Proof. We 
onstru
t two in�nite sequen
es {σi}i∈ω, {γi}i∈ω of su�xes of
σ and elements of Γ+, respe
tively, su
h that the following invariants aremaintained:I1. σi(0) |= pγi

, andI2. for all ι ∈ I(πi) with |ι| = i+ 1 we have ♮(ζi ∗ ι) ∈ τ∀.where πi = γ0 · · ·γi and ζi = σ0 · · ·σi. We will then de�ne a trail ϑ fromthese two sequen
es and show that the 
laim of the Proposition holds forthat ϑ.We start the 
onstru
tion with σ0 = σ and the root sequent γ0 = Θ ⊢
A(φ). Clearly, both invariants are ful�lled. Suppose that we have 
onstru
tedthe sequen
es up to some k ≥ 0 and that both invariants hold for i = k.Consider two 
ases:
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omplete the 
onstru
tion byde�ning σj and γj for j > k by
σj = (σk)

j−k and γj =

{
⊤ if γk is an axiom
⊥ otherwiseCase (2): γk is not a terminal sequent. We 
onstru
t σk+1 and γk+1 by
ase analysis on the rule R applied at γk. For rules A(bsf), A(∨), A(U) and

A(V), we set σk+1 = σk and we let γk+1 be the unique su

essor sequent of
γk in Π. The invariants are easily shown to be preserved. For rule A(sp)we set σk+1 = σk and 
hoose γk+1 to be some su

essor of γk su
h that (I1)is preserved. The existen
e of su
h a su

essor is guaranteed by the side
ondition of A(sp). (I2) is then trivially preserved. For rule A(X) we set
σk+1 = (σk)

1 and γk+1 the only su

essor of γk. Again, both invariants arepreserved.The remaining and only interesting 
ase is that of rule A(∧), so supposerule A(∧) is applied at γk = p ⊢ A(Φ, φ1 ∧ φ2). Then there exists ι ∈ I(πk)su
h that |ι| = k + 1 and ι = φ · · · (φ1 ∧ φ2), implying by (I2) that p =
p′ · (σk,φ1 ∧ φ2) = ♮(ζk ∗ ι) ∈ τ∀. Sin
e τ∀ is 
omplete and deterministi
 wehave p · (σk, φj) ∈ τ∀ for either j = 1 or j = 2. Set σk+1 = σk and γk+1 = p ⊢
A(Φ, φj). Invariant (I1) is trivially preserved. To see that (I2) is preserved,note that any position q ∈ τ∀ with q = ♮(ζk ∗ ι′) for some ι′ ∈ I(πk) of length
k+1 and ending in φ1 ∧φ2 is in fa
t step-equivalent with p. Sin
e τ∀ is step-uniform by assumption, it follows that q · (σk, φj) = ♮(ζk+1 ∗ (ι′ · φj)) ∈ τ∀.Hen
e, (I2) is preserved.Now, de�ne the trail ϑ for j ∈ ω by

ϑ(j) = σj(0)[K 7→ γj]It is not di�
ult to see that ϑ is indeed a trail with
σϑ = σ and σ̃ϑ(i) = σi for all i ∈ ωSin
e any position p ∈ τϑ 
an be represented as ♮(ζk ∗ ι) for some k ≥ 0 and

ι ∈ I(πk), we 
ertainly have τϑ ⊆ τ∀. Moreover, as τϑ is 
omplete pre
iselyif πϑ is 
losed (Lemma 4.2.8(ii)), we have τϑ = τ∀ if and only if πϑ is 
losed,showing that τ∀ is represented in Π.The observation that any history-free winning strategy is 
omplete andstep-uniform immediately yieldsCorollary 4.2.13. Suppose σ ∈ RS(Ξ) and let τ∀ be a deterministi
,history-free winning ∀-strategy for G(σ, φ). Then τ∀ is 
ompletely repre-sented in Π.



4.2] Soundness and Completeness via Games 73Note that the 
onverse of Proposition 4.2.12 does not hold, even if wedrop the 
ompleteness requirement: as the following example shows not everystrategy represented in Π is ne
essarily step-uniform.Example 4.2.14. Figure 4.2 displays a path segment γ0γ1γ2γ3 of a proofstru
ture.
γ0 : p ⊢ A(φ1 ∧ φ2,G(φ1 ∧ φ2))

γ1 : p ⊢ A(φ1,G(φ1 ∧ φ2))

γ2 : p ⊢ A(φ1, φ1 ∧ φ2)

γ3 : p ⊢ A(φ1, φ2)Figure 4.2: A path segment leading to a non-step-uniform strategyAs a result of applying rule A(∧) to φ1∧φ2 at γ0 the disjun
t φ1 is sele
ted,while at γ2 the appli
ation of the same rule to φ1 ∧ φ2 sele
ts φ2. It is nothard to see that as a 
onsequen
e the internal strategy τϑ of any trail ϑ with
πϑ 
ontaining this segment is not step-uniform. ♣As the example suggests, proof stru
tures 
an be 
onstru
ted in a waysu
h that multiple 
hoi
es as in the example 
an be avoided and all strategiesprodu
ed by its trails are step-uniform. A su�
ient 
ondition is to 
hooseat any sequent γ a 4-maximal formula ψ ∈ Φγ and apply to ψ the rule
orresponding to its top-level operator.But let us after this short digression return to our main tra
k.4.2.5 Winningness and AdmissibilityPutting together the results of the previous two se
tions, we getProposition 4.2.15. (Winningness and admissible trails) Let σ ∈
RS(Ξ). Then Player ∃ wins GS(σ, φ) if and only if all trails indu
ing σ areadmissible.Proof. By 
ontraposition using Proposition 4.2.10 and Corollary 4.2.13.The previous proposition 
an now easily be lifted to the level of proofstru
tures as is re
orded in



74 Trails and Strategies [4.2Theorem 4.2.16. (Winningness and admissible proof stru
tures)Let Π be a LTL proof stru
ture for S and sequent Ξ ⊢ A(φ). Then Player ∃wins GS(Ξ,Aφ) if and only if Π is admissible.Proof. Note that Player ∃ wins GS(Ξ,Aφ) i� he wins GS(σ, φ) for all σ ∈
CS(Ξ). The result then follows dire
tly from Proposition 4.2.15.4.2.6 Admissibility vs. Su

essThe previous se
tion showed that the notion of admissibility of a proof stru
-ture Π for system S and sequent Ξ ⊢ A(φ) 
hara
terises the property thatPlayer ∃ wins the game GS(Ξ,Aφ) (and hen
e S,Ξ |= Aφ). In this se
tionwe study the relation between admissibility and su

ess.By examining the proof rules and the de�nition of the generation relation,it be
omes 
lear that a su

essful path is also admissible. The 
onverseimpli
ation does not hold for in�nite paths in general as is demonstrated bythe following 
ounter-example.Example 4.2.17. Figure 4.3 shows a path π in a proof stru
ture for property
A(G p∨ F G p). As the a
tual system is quite irrelevant for this example onlythe right-hand side of ea
h sequent is shown. The dashed arrows indi
ategenerative paths. Clearly, π is admissible, but not su

essful. ♣

G p, F p

XG p, F p

XG p, XF p, p)

XG p, X F p)

A(

A(

A(

A(

A(G p ∨ F p)

)

)

Figure 4.3: An admissible, but unsu

essful pathHowever, it turns out that if there is an admissible, but unsu

essful trail
ϑ in a proof stru
ture then, although τϑ is a losing ∀-strategy, it 
an betransformed into a winning strategy.



4.2] Soundness and Completeness via Games 75Lemma 4.2.18. Let ϑ be an admissible, but unsu

essful trail of Π. Then(i) Player ∀ wins the game GS(σϑ, φ), and(ii) there is an inadmissible trail ϑ′ in Π su
h that σϑ′ = σϑ.Proof. (i) Suppose ϑ is an admissible, but unsu

essful trail of ϑ. It followsthat σϑ is a Ξ-run of S and that πϑ is in�nite, admissible and unsu

essful.We show that from τϑ we 
an 
onstru
t a winning ∀-strategy for GS(σϑ, φ).Clearly, all �nite plays are won by Player ∀, but we have to eliminate the�o�ending� in�nite plays won by Player ∃. Loosely speaking, any play in τϑlost by Player ∀ is due to some �unlu
ky� 
hoi
es, while the right (winning)
hoi
e is possible ea
h time and even present elsewhere in τϑ.Let us 
all ψ-path a path in a (pre-)strategy on whi
h V-formula ψ appearsin�nitely often (i.e., a play won by ∃) and let V be the set of V-formulaswith a ψ-path appearing in τϑ (and thus in Tϑ). Let ψ1, ψ2, . . . , ψm be somelinearisation of the partial order (V,<), that is, for all ψi, ψj with i ≤ jeither ψi < ψj or they are in
omparable w.r.t. the subformula order. Suppose
ψj = φj1 V φj2 for ea
h 1 ≤ j ≤ m.We 
onstru
t a sequen
e T1, . . . , Tm+1 of trees starting from T1 = Tϑ andrespe
ting the following two invariants:J1. τi = ♮Ti is a 
omplete ∀-strategy with all �nite plays won by Player ∀J2. if there is a ψ-path in Ti then ψ ∈ {ψi, . . . , ψm}.It follows that Tm+1 
ontains no ψ-path and thus τm+1 is winning. Clearly,both invariants hold for T1.In order to 
onstru
t Ti+1 from Ti, 
onsider a ψi-path µ in Ti. Note that

• (σk, unf(ψi)) is present on µ for all but �nitely many k by Lemma 4.1.1
• sin
e πϑ is in�nite and there is a ψi-path in τϑ, the unsu

essfulness of
πϑ is due to an in�nite number of o

urren
es of φi2 on πϑ, implyingthat there are in�nitely many j su
h that cf(n) = (σj, φi2) for somenode n ∈ TϑIt follows from these two observation that there exist a l ≥ 0, a �nite pre�x

pµ ∈ Ti of µ with cf(pµ) = (σl, unf(ψi)) and a node qµ ∈ Tϑ with cf(qµ) =
(σl, φi2). Now we repla
e in Ti the set of nodes pµ · (Ti/pµ) by

pµ · (σ
l, φi2) · (Tϑ/qµ)

Ti+1 is obtained from Ti by performing su
h a repla
ement for ea
h ψi-path
µ in Ti. Clearly, J1 is preserved. Sin
e any of the trees Tϑ/qµ 
an 
ontain
ψj-paths at most for j > i, invariant J2 is also preserved.(ii) Follows from (i) by Proposition 4.2.15.



76 Existen
e of a Proof Stru
ture [4.3Proposition 4.2.19. (Winningness and su

essful trails) Let σ ∈
RS(Ξ). Then Player ∃ wins GS(σ, φ) if and only if all trails of Π indu
ing σare su

essful.Proof. �⇒�: By 
ontraposition. Let σ ∈ RS(Ξ) and suppose there is anunsu

essful trail ϑ of Π indu
ing σ. We have to show that Player ∀ wins
GS(σ, φ). If ϑ is inadmissible this follows from Proposition 4.2.15, otherwisefrom Lemma 4.2.18. �⇐�: By Proposition 4.2.15, sin
e any su

essful trail isadmissible.An important 
onsequen
e of this proposition is that any Ξ-
omputation
σ following an unsu

essful path provides a 
ounter-example to the statement
S,Ξ |= φ, that is, σ 6|= φ.The next theorem shows that, although the notions of admissibility andsu

ess do not 
oin
ide on the level of individual paths or trails, they do onthe level of proof stru
tures.Theorem 4.2.20. (Winningness, admissibility and su

ess) Let Π bea proof stru
ture for system S and sequent Ξ ⊢ A(φ). Are equivalent:(i) Player ∃ wins GS(Ξ,Aφ), and(ii) Π is admissible, and(iii) Π is su

essful, i.e., Π: S,Ξ 
 Aφ.Proof. By Theorem 4.2.16 and Proposition 4.2.19.We are now in a position to make up for the proof of Proposition 3.3.6.The proposition is restated here for 
onvenien
e.Proposition 4.2.21. Let Π be a proof stru
ture for system S and sequent
Ξ ⊢ A(φ). Suppose that there are no U-subformulas in φ and that all termi-nals in Π are axioms. Then Π: S,Ξ 
 Aφ is su

essful.Proof. Sin
e there are no U-subformulas in φ and all terminals in Π are ax-ioms all paths in Π are admissible. Hen
e Π is admissible. By Theorem 4.2.20
Π is su

essful.4.3 Existen
e of a Proof Stru
tureResults obtained so far indi
ate that any given proof stru
ture Π for a system
S and sequent Ξ ⊢ A(φ) is su

essful pre
isely if Player ∃ wins the game
GS(Ξ,Aφ). The next step is to show that su
h a proof stru
ture does indeed



4.3] Soundness and Completeness via Games 77exist, whenever Player ∃ wins GS(Ξ,Aφ), that is, S,Ξ |= Aφ. For thispurpose we need the ability to 
hara
terise the set of states satisfying a LTLformula Aψ by an assertion from Lµ. It is at this point that the need for theexpressiveness of the �xed point operators in Lµ arises.Lemma 4.3.1. There is a fun
tion χ : CTL∗ → Lµ su
h that for any system
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) and any ground-quanti�ed CTL* formula ψwith free variables Y ⊆ X we have that χ(ψ) is a formula of Lµ with thesame free variables Y su
h that

{s ∈ Σ | s |= ψ} = ‖χ(ψ)‖Proof. By Proposition 2.4.4 we 
an transform ψ into an equivalent formulaof the modal µ-
al
ulus using the translation des
ribed by Dam [Dam94℄ (seealso [Ref96℄). The translation from the modal µ-
al
ulus to our extendedassertion language Lµ is then straightforward.Notation. We will write χψ instead of χ(ψ).Lemma 4.3.2. Let S be a system, Ξ a satis�able assertion and Aφ a LTL for-mula. Suppose Player ∃ wins GS(Ξ,Aφ). Then there exists a proof stru
ture
Π for S and Ξ ⊢ A(φ).Proof. We 
onstru
t a sequen
e Π0,Π1, . . . ,Πn of pre-proof stru
tures for
S and φ, while maintaining the following invariant for all nodes p ⊢ A Φ ofea
h Πi:

p |= A(
∨

φ∈Φ

φ) and p is satis�able.From the hypothesis it follows that S,Ξ |= Aφ and Ξ is satis�able, sothe invariant holds for the root sequent Ξ ⊢ A(φ), whi
h makes up the initialpre-proof stru
ture Π0. Let us 
all a node of a pre-proof stru
ture open,in 
ase it has no su

essors, but is not a terminal. In order to 
onstru
t
Πi+1 from Πi we pi
k an open node γ in Πi and apply some rule(s) to itin the way des
ribed below. If some rule appli
ation generates a node thatexists already, we loop ba
k to that node. Finally, we will show that thispro
edure terminates, yielding a �
anoni
al� proof stru
ture Π = Πn for Sand Ξ ⊢ A(φ).Let γ = p ⊢ A(Φ) be an open node of Πi. We �rst 
onsider the 
ase,where rule A(X) is not appli
able to γ. Let Φ = Ψ, ψ where ψ is not a Nextformula. We pro
eed by 
ase analysis on the stru
ture of ψ. In 
ase thetop-level 
onne
tive in ψ is a binary operator (∧,∨,V or U), we simply apply



78 Existen
e of a Proof Stru
ture [4.3the respe
tive rule (A(∧),A(∨), A(V) or A(U)) at γ. Sin
e these rules are allba
kwards sound, the invariant is preserved and Πi+1 is easily seen to be apre-proof stru
ture.Now suppose ψ = q is an assertion. Sin
e γ is an open node, hen
e not aterminal sequent, we have the following two 
ases:(a) |= p → ¬q and Ψ 6= ∅. We simply apply rule A(bsf). The invariant is
learly preserved and Πi+1 is a pre-proof stru
ture.(b) p ∧ q and p ∧ ¬q are both satis�able. Let r be an assertion equivalentto q su
h that sequent p ∧ ¬r ⊢ A(Ψ, q) does not appear in Πi. We
ontinue the 
onstru
tion as follows
A(sp)

γ : p ⊢ A(Ψ, q)

γ′ : p ∧ r ⊢ A(Ψ, q)

X
A(bsf)

γ′′ : p ∧ ¬r ⊢ A(Ψ, q)

γ′′′ : p ∧ ¬r ⊢ A(Ψ)The appli
ation of rule A(sp) yields two new sequents γ′ (an axiom)and γ′′. Our 
hoi
e of r avoids a potential loop ba
k to a node wherethe Split rule is already applied. This ensures that 
ondition (A-SPL)in the de�nition of a (pre-)proof stru
ture is preserved. Clearly, theinvariant holds for both γ′ and γ′′. Hen
e γ′′ 
an not be an anti-axiom,so Ψ 6= ∅ and we 
an apply rule A(bsf) at γ′′ yielding node γ′′′ whi
halso satis�es the invariant. In this way we obtain pre-proof stru
ture
Πi+1.For the 
ase that rule A(X) is appli
able to γ, we apply it in the followingway:

p ⊢ A(X Φ)

χA(Φ) ⊢ A(Φ)Sin
e p |= A(
∨
φ∈Φ Xφ) by the invariant, the side 
ondition p |= [Λ]χA(Φ) ofthe rule holds. As p is satis�able by the invariant and any state of S hasa su

essor by assumption, χA Φ is satis�able as well. Hen
e Πi+1 is a pre-proof stru
ture. Moreover, χA(Φ) |= A(Φ) holds trivially, so the invariant ispreserved.Finally, we show that the above pro
edure terminates. Suppose for a
ontradi
tion that it does not terminate yielding an in�nite pseudo-proofstru
ture Π̂ by trans�nite iteration. Now 
onsider a spanning tree T for Π̂rooted at γr. As any node of Π̂ is rea
hable from γr, all nodes of Π̂ mustappear on T . Sin
e Π̂ (and hen
e T ) is �nitely bran
hing, there is an in�nitebran
h π in T by König's Lemma. By Lemma 3.1.5, there must be an in�nite
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ations of rule A(X) on π. But sin
e there 
an only be a �nitenumber of di�erent right-hand sides of the form A(X Φ) appearing in sequentsof Π̂, there must be two sequents γ and γ′ 
ontaining same set of formulas
X Φ on π. By 
onstru
tion γ and γ′ have the same and only su

essor sequent
χA(Φ) ⊢ A(Φ) whi
h must thus appear twi
e on π, a 
ontradi
tion, be
ause πbeing a bran
h of the tree T is 
y
le-free. Hen
e, our 
onstru
tion terminatesafter a �nite number of steps, yielding a proof stru
ture Π.Theorem 4.3.3. (Winningness and Provability) Let S be a system, Ξa satis�able assertion and Aφ a LTL formula. Then Player ∃ wins GS(Ξ,Aφ)if and only if S,Ξ 
 Aφ (that is, there exists a su

essful proof stru
ture Πfor S and Ξ ⊢ Aφ).Proof. By Theorem 4.2.20 and Lemma 4.3.2.4.4 Soundness and Completeness of Rule A(S)The �nal missing link in our 
orre
tness proof (third equivalen
e in Table 4.1)states that Rule A(S) is sound and 
omplete relative to assertional validityfor proving su

ess of a proof stru
ture.Proposition 4.4.1. (Relative 
ompleteness of Rule A(F,

∨
F G)) Let

S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let q and p1, . . . , pmbe assertions. Then S |= A(F q∨
∨m
i=1 F G pi) implies S ⊢ A(F q∨

∨m
i=1 F G pi).Proof. The proof of relative 
ompleteness of Rule F-RESP in [MP91℄ 
anbe adapted without di�
ulties, so we do not repeat it here.From this proposition and Proposition 3.3.5 we immediately getTheorem 4.4.2. (Soundness and relative 
ompleteness of Rule

A(S)) Let Π be a proof stru
ture for a saturated system S and sequent
Ξ ⊢ Aφ. Then Π: S,Ξ 
 Aφ if and only if Π: S,Ξ ⊢ Aφ.4.5 Main ResultThe results of this 
hapter are summarised inTheorem 4.5.1. (Soundness and Relative Completeness for LTL)Let S be a saturated system, Ξ a satis�able assertion and Aφ a LTL formula.Then

S,Ξ |= Aφ if and only if S,Ξ ⊢ Aφ.



80 Main Result [4.5Proof. The three steps depi
ted in Figure 4.1 are 
overed by Corollary 4.1.4and Theorems 4.3.3 and 4.4.2, respe
tively.



Chapter 5ELL and CTL* Proof Stru
turesIn this 
hapter we extend our proof system to CTL*. To this end, we �rstintrodu
e ELL proof stru
tures, the duals of LTL proof stru
tures. The ELLproof rules 
an essentially be derived from the LTL rules by dualising theright-hand sides of sequents and side 
onditions. The symmetry is howevernot perfe
t. In parti
ular, handling disjun
tion in the ELL system is moredi�
ult than 
onjun
tion in the LTL system. We have two rules for dis-jun
tion whi
h need to be applied in 
ombination with the (ELL) Split rule,requiring a judi
ious 
hoi
e of assertions. The notion of the asso
iated sys-tem and trails of an ELL proof stru
ture are analogous to the LTL 
ase, andthe su

ess 
ondition is dual to the one for LTL. We also present a su

essrule for ELL proof stru
ture.As expe
ted, trails of ELL proof stru
tures 
orrespond to ∃-strategies ina similar way as LTL trails 
orrespond to ∀-strategies. Most of the resultsabout strategies 
an be transferred dire
tly from the LTL 
ase by duality.The existen
e of a �
anoni
al� ELL proof stru
ture and the strategies repre-sented in it needs to be reviewed. The proof system for ELL is shown to besound and relatively 
omplete.We extend our proof systems to apply to arbitrary CTL* formulas by
ombining LTL and ELL proof stru
tures. The LTL and ELL rules dealingwith assertions are extended to path-quanti�ed formulas, whi
h may appeararbitrarily nested inside CTL* formulas. For the 
ase of a path-quanti�edformula, the side 
onditions for the extended rules require the 
onstru
tionof a new proof stru
ture. As we prove statements of the form S,Ξ |= φ and
φ ≈ Aφ for any CTL* formula φ we 
an assume w.l.o.g. that any CTL*formula has a top-level path quanti�er. A CTL* proof stru
ture is thenessentially a 
olle
tion of ELL and LTL proof stru
tures and it is a (S-)proof ifthe 
onstituent proof stru
tures are (S-)proofs. As the dependen
y among thelatter proof stru
tures is a
y
li
, path-quanti�ed formulas 
an essentially be81



82 ELL Proof Stru
tures [5.1treated like assertions and the proof of soundness and relative 
ompletenessfor CTL* dire
tly lifts from the base 
ases for LTL and ELL.5.1 ELL Proof Stru
turesGiven a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), an ELL sequent is of theform p ⊢ E(Φ), where p is an assertion and Φ is a non-empty, �nite set ofground-quanti�ed, path-quanti�er-free CTL* formulas. A sequent p ⊢ E(Φ)is valid if p |= E(
∧
φ∈Φ φ), that is, from any state s satisfying p there is a

s-
omputation of S satisfying the 
onjun
tion of the formulas appearing in
Φ. We use abbreviations analogous to those used for LTL sequents.An ELL proof stru
ture is de�ned in the same way as a LTL proof stru
-ture, ex
ept that the form of the sequents and the set of rules is repla
ed:Definition 5.1.1. A ELL proof stru
ture for a system S = (X,Σ, {ρλ | λ ∈
Λ},Θ,F) and sequent Ξ ⊢ Eφ is a rooted graph

Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ),where Γ is a �nite set of sequents, γr = Ξ ⊢ Eφ is the root sequent and forea
h node γ ∈ Γ we have that(E-SAT) pγ is satis�able,(E-ACC) γ is rea
hable from γr,(E-RUL) if γ has n ≥ 0 su

essors {γ1, . . . , γn} = {γ′ | (γ, γ′) ∈ ∆} then
R

γ

γ1 · · · γn
CRis the 
orre
t appli
ation of some rule R from Table 5.1, that is,the rules' side 
ondition CR is satis�ed, and(E-SPL) if (γ, γ′) ∈ ∆ then rule E(sp) not applied to both γ and γ′. ♦We 
all a sequent γ an axiom (anti-axiom) if rule E(ax) (E(nx)) is appliedto γ. A sequent that is either an axiom or an anti-axiom is 
alled terminal.The set of sequents where rule R is applied is again denoted by ΓR.Note that 
ondition (E-SPL) ensures the temporal 
onsisten
y of proofstru
tures. In fa
t, Lemma 3.1.5 dire
tly transfers to ELL proof stru
tures:on any in�nite path through an ELL proof stru
ture, there is an in�nitenumber of appli
ations of Rule E(X).



5.1] ELL and CTL* Proof Stru
tures 83
E(ax)

p ⊢ E(q)

·
p |= q

E(nx)
p ⊢ E(Φ, q)

·
p |= ¬q

E(bsf)
p ⊢ E(Φ, q)

p ⊢ E(Φ)
p |= q

E(∨l)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1)

E(∨r)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ2)

E(∧)
p ⊢ E(Φ, φ1 ∧ φ2)

p ⊢ E(Φ, φ1, φ2)

E(U)
p ⊢ E(Φ, φ1 Uφ2)

p ⊢ E(Φ, φ2 ∨ (φ1 ∧ X(φ1 Uφ2)))

E(V)
p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2 ∧ (φ1 ∨ X(φ1 V φ2)))

E(X)
p ⊢ E(X Φ)

q ⊢ E Φ
p |= 〈Λ〉 q

E(sp)
p ⊢ E Φ

q1 ⊢ E Φ · · · qn ⊢ E Φ
p |=

∨n
i=1 qiTable 5.1: ELL proof rules



84 ELL Proof Stru
tures [5.15.1.1 Some Remarks on the RulesThe interpretation of right-hand side of sequents is dual to the one for LTLsequents. Note that no dualisation takes pla
e on the left-hand side of se-quents: the intended meaning of p ⊢ E(Φ) is still �for all states s satisfying
p, ...�. Besides the obvious substitution of E for A, the ELL rules 
an besystemati
ally obtained from the LTL rules by

• swapping the format of axioms and anti-axioms w.r.t. their LTL 
oun-terparts, that is, ELL axioms are of the form p ⊢ E(q) and anti-axiomsof the form p ⊢ E(Φ, q),
• repla
ing all operators in the right-hand side of sequents by their du-als; hen
e, rule A(op) be
omes rule E(opd), where op and opd are dualoperators (pairs of dual operators are (∧,∨), (V,U) and the self-dual

(X,X)),
• negating assertions in side 
onditions that also o

ur on the right-handside of the sequent (
on
retely, side 
onditions for axioms, anti-axiomsand the predi
ate rule of the form p |= q are repla
ed by p |= ¬q andvi
e versa), and
• repla
ing the weakest pre
ondition operator [Λ] in the side 
ondition ofRule A(X) by its dual 〈Λ〉 in the side 
ondition of Rule E(X); observethat the assertion q is not negated as it appears on the left-hand sideof the premise sequentThe Split Rule remains the same (up to substituting E for A) as it 
on
ernsonly the left-hand side of sequents. There is one ex
eption to this symmetry:rule A(∧) should be
ome

E(∨)′
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1) p ⊢ E(Φ, φ2)but there are two disjun
tion rules, E(∨l) and E(∨r), in our system. Thereason is that the above rule is not ba
kwards sound: p |= E(Φ, φ1 ∨ φ2)does not ne
essarily imply p |= E(Φ, φ1) and p |= E(Φ, φ2), hen
e threatening
ompleteness of the proof system (see also dis
ussion of A-sequent format inSe
tion 3.1.1). The reader might obje
t that none of our two rules E(∨l) and
E(∨r) is ba
kwards sound either. This is 
orre
t, but they form the buildingblo
ks for the following rule, whi
h is derivable from E(∨l), E(∨r) and E(sp):

E(∨)
p ⊢ E(Φ, φ1 ∨ φ2)

q1 ⊢ E(Φ, φ1) q2 ⊢ E(Φ, φ2)
p |= q1 ∨ q2
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tures 85This rule generalises rule E(∨)′ above. The reason for not in
luding rule E(∨)instead of E(∨l) and E(∨r) right from the beginning is that by 
ondition (E-SAT) we 
annot 
hoose one of the qi's to be equivalent to false, so E(∨l) and
E(∨r) are still needed. The 
ase is reminis
ent of rule A(bsf) that in generalneeds to be applied in 
onjun
tion with the Split rule A(sp).Observe that in general there are more 
hoi
es to be made in the 
on-stru
tion an ELL proof stru
ture than in the 
onstru
tion of a LTL proofstru
ture. In parti
ular, the disjun
tion rule E(∨) above requires a judi
ious
hoi
e of the two assertions q1 and q2.5.1.2 Derived RulesSome useful derived ELL proof rules are summarised in Table 5.2.

E(∨)
p ⊢ E(Φ, φ1 ∨ φ2)

q1 ⊢ E(Φ, φ1) q2 ⊢ E(Φ, φ2)
p |= q1 ∨ q2

E(U)′
p ⊢ E(Φ, φ1 Uφ2)

q1 ⊢ E(Φ, φ2) q2 ⊢ E(Φ, φ1,X(φ1 Uφ2))
p |= q1 ∨ q2

E(V)′
p ⊢ E(Φ, φ1 V φ2)

q1 ⊢ E(Φ, φ2, φ1) q2 ⊢ E(Φ, φ2,X(φ1 V φ2))
p |= q1 ∨ q2

E(F)
p ⊢ E(Φ, Fψ)

q1 ⊢ E(Φ, ψ) q2 ⊢ E(Φ,X Fψ)
p |= q1 ∨ q2

E(G)
p ⊢ E(Φ,Gψ)

p ⊢ E(Φ, ψ,X Gψ)

E(X)′
p ⊢ E(X Φ)

q1 ⊢ E(Φ) · · · qn ⊢ E(Φ)
p |= 〈Λ〉

∨n

j=1 qjTable 5.2: derived ELL rulesDue to the disjun
tions appearing in unfoldings of temporal formulas,there also exists left and right single bran
h versions of rules E(V)′, E(U)′and E(F) for the 
ase where one of q1 and q2 is equivalent to false. Forinstan
e, rule E(V)′ also appears in the following variants:
E(Vl)

p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2, φ1)
E(Vr)

p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2,X(φ1 V φ2))



86 Definition of ELL Su

ess [5.2This said, rule E(G) is nothing else than rule E(Vr) with φ1
def
= false.The following rule for the 'unless' operator (W) is not derivable, butsound and 
an thus be added to our system:

E(W)
p ⊢ E(Φ, φ1 W φ2)

q1 ⊢ E(Φ, φ2) q2 ⊢ E(Φ, φ1,X(φ1 W φ2))
p |= q1 ∨ q2It is based on the equivalen
e

φ1 W φ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 W φ2)).Again, we will use these rules freely in our examples.5.2 De�nition of ELL Su

essBy now it 
omes as no surprise that the notion of ELL su

ess is dual to theone for LTL.Definition 5.2.1. (Su

essful Path)A path π in an ELL proof stru
ture
Π is su

essful if it is

• �nite, ending in an axiom, or
• in�nite and for all ψ ∈ U(φ) we have that

inf(π) ∩Rψ 6= ∅where Rψ = Γ −Qψ with Qψ as in De�nition 3.2.2. ♦Note that for ψ = φ1 Uφ2 we have
Rψ = {γ | Φγ ∩ Uψ = ∅ ∨ φ2 ∈ Φγ}.In other words, an in�nite path is su

essful if it is not the 
ase that thereis an U-formula ψ = φ1 Uφ2 whi
h is unfolded in�nitely often along the pathwith its �promise� φ2 o

urring only �nitely many times on that path. Intu-itively, su
h inde�nite unfolding of ψ without the promised φ2 also o

urringin�nitely often would 
orrespond to postponing the ful�llment of the promiseforever from some point on, whi
h is in 
ontradi
tion to the semanti
s of theuntil operator.The system SΠ asso
iated with an ELL proof stru
ture Π is de�ned in thesimilar way as in De�nition 3.2.7 with the di�eren
e that ΓA(♯) is everywhererepla
ed by ΓE(♯) for ♯ ∈ {ax, nx,X} (the sets Γterm and Γsys are rede�neda

ordingly). Also the notions of an ELL trail and its proje
tions to system
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tures 87runs and paths in the proof stru
ture remain the same up to a repla
ementof ΓA(♯) by ΓE(♯) as above. The de�nition of Π-fairness remains un
hanged forELL trails. The LTL Trail Lemma (Lemma 3.2.11) is then 
omplemented bythe followingLemma 5.2.2. (ELL Trail Lemma) Let Π be an ELL proof stru
ture for
S and Ξ ⊢ E(φ). We have:(i) all trails of Π are in�nite,(ii) for any state s |= Ξ there exists a s-run σ of S following some path πof Π, and(iii) a trail ϑ of Π is Π-fair i� σϑ is a 
omputation of S.Proof. (i) and (ii): By the side 
onditions of rules E(X) and E(sp). (iii) Thesame argument as in the LTL 
ase applies also here.Note in parti
ular that point (ii) of this Lemma is weaker than the 
or-responding statement of the LTL Trail Lemma (Lemma 3.2.11), the lattersaying that any run of S follows some path in a LTL proof stru
ture. Clearly,this is due to the 
hange of the side 
ondition from a Hoare triple (for Rule
A(X)) to a possibility triple (for Rule E(X)).Definition 5.2.3. (Su

essful ELL Trail) An ELL trail ϑ is su

essfulif πϑ is su

essful. ♦Definition 5.2.4. (ELL Su

ess Criterion) An ELL proof stru
ture Πfor system S and sequent Ξ ⊢ E(φ) is su

essful if for any state s |= Ξ thereis a su

essful Π-fair trail ϑ su
h that ϑ(0)|X = s. ♦We pro
eed to a synta
ti
 
hara
terisation of the ELL su

ess 
riterion.Definition 5.2.5. Let ΨE

def
= U(φ)∪{⊥}. The assertions Kψ for ψ ∈ ΨE arede�ned by

Kψ
def
=

{
K ∈ ⌈Qψ⌉ for ψ ∈ U(φ)
K = ⌈⊥⌉ for ψ = ⊥

♦Proposition 5.2.6. (ELL Su

ess, Synta
ti
ally) Let Π be an ELLproof stru
ture. Then
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ess [5.3(i) a trail ϑ of Π is su

essful i� it satis�es the ELL su

ess formula
ΩE

def
=
∧

ψ∈ΨE

G F¬Kψ(ii) Π is su

essful i� SΠ |= EΠ ΩE, where EΠ quanti�es over Π-fair trails.Proof. (i) Observe that for ψ ∈ U(φ) and a state t ∈ ΣΠ with t(K) ∈ {⊤,⊥}we have t |= ¬Kψ, so any trail traversing an axiom and thus ending up with
ontrol K 
aught at ⊤ is su

essful. It is then easy to see that a trail ϑ issu

essful if and only if ϑ |= ΩE. (ii) Immediate from the de�nitions.5.3 A Proof Rule for ELL Su

essFor the time being let us disregard fairness 
onditions and work with satu-rated systems S only (fairness issues will be dealt with in Chapter 6). We arelooking for an appropriate proof rule to establish that an ELL proof stru
-ture Π for a saturated system S is su

essful, i.e., SΠ |= EΠ ΩE. We takea similar approa
h as for LTL su

ess and �rst introdu
e a rule (E(
∧

GF))for proving properties of the general form E(
∧m

i=1 G F ri) over arbitrary satu-rated systems and then instantiate and modify it slightly yielding Rule E(S)for proving ELL su

ess.Remark (history variables) For 
ompleteness, the parti
ular systemunder study possibly needs to be augmented with a history variable1 priorthe appli
ation of Rule E(
∧

G F) or E(S), respe
tively (see Se
tion 5.5.4).5.3.1 Rule E(
∧

G F)We propose Rule E(
∧

G F) (see Figure 5.1) for arbitrary systems and exis-tentially quanti�ed 
onjun
tions of re
urren
e properties (that is formulas ofthe form E(
∧m
i=1 G F ri) with assertions ri ).Let us now explain the �me
hani
s� of Rule E(

∧
GF). In 
ontrast to Rule

A(F,
∨

F G), we have a ranking fun
tion δi mapping program states to a well-founded domain (Wi,≻i) for ea
h 1 ≤ i ≤ m. Just like Rule A(F,
∨

F G) thepresent rule relies on auxiliary assertions αi.Condition R1 states that any initial state satis�es αi for some 1 ≤ i ≤ m.Condition R2 requires that from any αi-state there is some transition leading1A history variable [AL91℄ is a system variable that re
ords information about the pastbehaviour of a system without a�e
ting the original state 
omponents.
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tures 89to an αi⊕1-state also satisfying ri or preserving αi and de
reasing the ranking
δi. Intuitively speaking, the ranking δi measures the distan
e to the next
αi⊕1 ∧ ri-state.Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let

r1, . . . , rm be assertions. To apply this rule, �nd for 1 ≤ i ≤ m:(a) a ranking fun
tion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,and 
he
k the validity of 
onditions R1 and R2 below, where α def
=∨m

i=1 αi and a⊕ b
def
= ((a + b− 1) modm) + 1.R1. Θ → αR2. {αi ∧ δi = w} 〈Λ〉 {(αi⊕1 ∧ ri) ∨ (αi ∧ δi ≺i w)}

S ⊢ E(
∧m
i=1 GF ri)Figure 5.1: Rule E(

∧
G F)Suppose that for a given proof stru
ture Π we have identi�ed rankings

δi and assertions αi satisfying 
onditions R1 and R2. Then starting fromany initial state s |= Θ of S, we 
an 
onstru
t a s-run (= s-
omputation) of
S satisfying ∧m

i=1 G F ri in the following way. By R1 s satis�es αi for some
1 ≤ i ≤ m. Suppose that we have 
onstru
ted the run pre�x σk : s0 · · · sk with
sk satisfying αj . Then by R2 there is a system transition leading to a state
s′ that either satis�es αi⊕1 ∧ ri or still satis�es αi and de
reases the ranking
δi. Set sk+1 = s′. By repeated appli
ation of this 
onstru
tion step wewill eventually obtain a run pre�x σk+l : so · · · sk · · · sk+l with sk+l satisfying
αi⊕1 ∧ ri by well-foundedness of the domain Wi. Then we repeat the samepro
edure for αi⊕1, 
onstru
ting a pre�x σk+l+n : so · · · sk · · · sk+l · · · sk+l+nwith sk+l satisfying αi⊕2 ∧ ri⊕1, et
., ad in�nitum. This yields a s-run σ of Ssatisfying ∧m

i=1 GF ri as required. Thus, we have just provedProposition 5.3.1. (Soundness of Rule E(
∧

GF)) Let S be a saturatedsystem and let r1, . . . , rm be assertions. Then S ⊢ E(
∧m
i=1 G F ri) implies

S |= E(
∧m

i=1 G F ri).
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ess [5.35.3.2 Rule E(S)The ELL su

ess rule for saturated systems, 
alled Rule E(S), is displayedin Figure 5.2. It is essentially obtained from Rule E(
∧

GF) by instantia-tion, taking SΠ for S and {¬Kψ | ψ ∈ ΨE} for {r1, . . . , rm}. However, aslight modi�
ation has been made to 
ondition E2 in Rule E(S) 
omparedto its 
ounterpart R2 in Rule E(
∧

GF): we have added K⊤ as a disjun
t tothe right-hand side of the possibility triple. The justi�
ation for this step issimple. If in the 
onstru
tion of a trail witnessing ΩE (see proof of Proposi-tion 5.3.1) we are able to rea
h K⊤-state at some point, then we 
an safelystop the 
onstru
tion. This is be
ause we know that the trail pre�x 
an be
ompleted into a su

essful trail, so there is no need to prove it ea
h timeRule E(S) is applied.Let Π be an ELL proof stru
ture, let ΩE =
∧
ψ∈ΨE

G F¬Kψ as de�nedin Se
tion 5.2 and suppose K1, . . . , Km enumerates {Kψ | ψ ∈ ΨE}.Find for 1 ≤ i ≤ m:(a) a ranking fun
tion δi : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,su
h that 
onditions E1 and E2 below are valid, where α def
=
∨m

i=1 αiand a⊕ b
def
= ((a + b− 1) modm) + 1.E1. ΘΠ → αE2. {αi ∧ δi = w}

〈
ΛΠ
〉
{K⊤ ∨ (αi⊕1 ∧ ¬Ki) ∨ (αi ∧ δi ≺i w)}

SΠ ⊢ EΩEFigure 5.2: Rule E(S) for proving su

ess of ELL proof stru
turesDefinition 5.3.2. Let Π be an ELL proof stru
ture for S and Ξ ⊢ E(φ).We say that Rule E(S) is appli
able to Π if SΠ ⊢ E ΩE, that is, there existrankings δi and assertions αi su
h that 
onditions E1 and E2 are valid. ♦Definition 5.3.3. (ELL Proofs) Let Π be an ELL proof stru
ture for Sand Ξ ⊢ E(φ).
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• Π is a proof of S,Ξ |= Eφ, written Π : S,Ξ 
 Eφ, if it is su

essful,and
• Π is a S-proof of S,Ξ |= Eφ, written Π : S,Ξ ⊢ Eφ, if Rule E(S) isappli
able to Π.We say that S,Ξ |= Eφ is provable (S-provable), written S,Ξ 
 Eφ (S,Ξ ⊢

Eφ), if there exists a proof stru
ture Π for S and Ξ ⊢ E(φ) su
h that Π :
S,Ξ 
 Eφ (Π: S,Ξ ⊢ Eφ). ♦Soundness of Rule E(S) follows from soundness of Rule E(

∧
G F) (Propo-sition 5.3.1) and from the dis
ussion above:Proposition 5.3.4. (Soundness of Rule E(S) for Proving ELL Su
-
ess) Let Π be an ELL proof stru
ture for a saturated system S and sequent

Ξ ⊢ E(φ). Then Π: S,Ξ ⊢ Eφ implies Π: S,Ξ 
 Eφ is su

essful.Consider now the 
ase where there is no U-subformula in φ. Then φdes
ribes a safety property and we would expe
t that we do not need a well-foundedness argument to establish su

ess. Indeed, the su

ess formula forthis 
ase reads ΩE = G F¬K⊥ and is satis�ed by any trail not traversingan anti-axiom. In parti
ular, any in�nite path is su

essful. Sin
e in theabsen
e of fairness any run is a 
omputation, the following proposition is a
onsequen
e of Lemma 5.2.2(ii):Proposition 5.3.5. Let Π be an ELL proof stru
ture for a saturated system
S and sequent Ξ ⊢ E(φ) su
h that φ does not 
ontain any U-subformula andthere is no anti-axiom in Π. Then Π: S,Ξ 
 Eφ.This should be 
ompared with the 
orresponding result for LTL (Propo-sition 3.3.6), where no restri
tion to saturated systems was ne
essary. Here,we 
an in general only guarantee the existen
e of witnessing Ξ-runs. Forsystems with fairness 
onstraints we still have to apply Rule E(S) in order toshow the existen
e of the required fair Ξ-runs.5.4 ExampleExample 5.4.1. System S5 has a single natural number variable x and thefollowing two transition relations:

ρinc
def
= x′ = x+ 1

ρzero
def
= ∃y. y2 = x ∧ x′ = 0
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Figure 5.3: LTS indu
ed by system S5.
γ7 : true ⊢ E(F(x = 0))

γ4 : ∃y.y2 = x ⊢ E(F(x = 0)) γ6 : ∀y.y2 6= x ⊢ E(F(x = 0))

γ3 : ∃y.y2 = x ⊢ E(XF(x = 0))

✓

γ5 : ∀y.y2 6= x ⊢ E(X F(x = 0))

γ2 : x = 0 ⊢ E(F(x = 0))

γ1 : x = 0 ⊢ E(x = 0)Figure 5.4: Proof stru
ture Π5 for system S5 and sequent true ⊢ E F(x = 0).
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tures 93The LTS indu
ed by this system is shown in Figure 5.3. The statement thatwe want to verify for this system is S5, true |= E F(x = 0), that is, from anystate it is possible to eventually rea
h the state where x = 0.A possible proof stru
ture Π5 for this purpose is shown in Figure 5.3.Note that at the root sequent γ7 we have applied rule E(sp), splitting 
asesa

ording to whether or not x is a square number. At sequent γ2 we use rule
E(Fl) and at γ4 and γ6 we use rule E(Fr) (see Se
tion 5.1.2). Let us now showthat this proof stru
ture is su

essful using Rule E(S).Setting γ0 = ⊤, suppose that the 
oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for
0 ≤ i ≤ 7. Sin
e there is only one U-subformula (F(x = 0)), we write just Finstead of F(x = 0) in αF and KF. In order to apply Rule E(S) we de�ne the
α⊥ and αF by

α⊥
def
= false and αF

def
=
∨

γ∈Γ+

p̂γand 
hoose the single ranking
δ(x,K) = (d(x), K)for ψ ∈ {⊥, F} with the lexi
ographi
 ordering ≺ on N

2, where
d(x)

def
=

{
q(x) − x+ 1 if x > 0
0 otherwise

q(x)
def
= min{m ∈ N | ∃z. z2 = m ∧ m ≥ x}Thus, d(x) measures the distan
e of from x to the smallest square numbergreater or equal to x.Condition E1 holds trivially. Condition E2 for ψ = ⊥ is also trivial. For

ψ = F, E2 boils down to showing
{p̂γ ∧ (δ = (u, v))}

〈
∆Π5

〉
{K⊤ ∨ (αF ∧ (δ ≺ (u, v)))}.for ea
h γ ∈ Γ+. This means that every witnessing trail will have to rea
h

K⊤ at some point. The preservation of αF being immediate this redu
es to
{p̂γ ∧ (δ = (u, v))}

〈
∆Π5

〉
{K⊤ ∨ (δ ≺ (u, v))}.For γ0 and γ1 we 
an obviously rea
h K⊤ in one step. In the other 
ases,we have to show that the ranking de
reases. For γ ∈ {γ2, γ4, γ6, γ7}, itis a transition from ΛΠ5

log whi
h makes the se
ond 
omponent of the rankde
rease while preserving the �rst (for γ7 this may be either (γ7,=, γ4) or
(γ7,=, γ6), depending on whether x is square or not). From γ3 the transition
(γ3, zero, γ4) de
reases both 
omponents of the rank if x > 0 and only these
ond if x = 0. For γ5, the transition (γ5, inc, γ7) de
reases the distan
e
d(x), hen
e the ranking δ. ♣



94 Soundness and Completeness [5.55.5 Soundness and Completeness5.5.1 Admissible Trails and Winning StrategiesDefinition 5.5.1. Let Π = (Γ,∆, γr) be an ELL proof stru
ture. The E-generation relation  γ,γ′⊆ Φγ ×Φγ′ is de�ned for ea
h edge (γ, γ′) ∈ ∆ in aELL proof stru
ture by 
ase analysis on the rule applied at γ:
 p⊢E(Φ,q), p⊢E(Φ) = Id(Φ)

 p⊢E(Φ,φ1∨φ2), p⊢E(Φ,φ1) = {(φ1 ∨ φ2, φ1)} ∪ Id(Φ)

 p⊢E(Φ,φ1∨φ2), p⊢E(Φ,φ2) = {(φ1 ∨ φ2, φ2)} ∪ Id(Φ)

 p⊢E(Φ,φ1∧φ2), p⊢E(Φ,φ1,φ2) = {(φ1 ∧ φ2, φ1), (φ1 ∧ φ2, φ2)} ∪ Id(Φ)

 p⊢E(Φ,φ1 Zφ2), p⊢E(Φ,unf(φ1 Zφ2)) = {(φ1 Zφ2, unf(φ1 Zφ2))} ∪ Id(Φ)

 p⊢E(X Φ), q ⊢E(Φ) = {(Xφ, φ) | φ ∈ Φ}

 p⊢E(Φ), q ⊢E(Φ) = Id(Φ)where Id(Φ) = {(φ, φ) | φ ∈ Φ} is the identity relation on Φ. ♦The following notions are then de�ned in a similar way as their LTL
ounterparts:
• given a path π in an ELL proof stru
ture an E-generative path runningalong π is determined as in De�nition 4.2.2 but using the E-generationrelation; the set of all E-generative paths running along π is denotedby IE(π) and its subset of �nite E-generative paths by I∗E(π); the latterset is 
alled internal pre-strategy of π
• given a trail ϑ of an ELL proof stru
ture Π, the de�nitions of theinternal (pseudo-) strategy Tϑ and τϑ of ϑ are the same as in De�ni-tion 4.2.4 ex
ept that I∗(πϑ) is repla
ed by I∗E(πϑ).Definition 5.5.2. (Admissibility) Let Π be an ELL proof stru
ture forsystem S and sequent Ξ ⊢ Eφ.1. A path π in Π is admissible if

• �nite, ending in an axiom, or
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• in�nite and for all ι ∈ IE(π) we have that

inf(ι) ∩ U(φ) = ∅2. A trail ϑ of Π is admissible if πϑ is an admissible path.3. Π is admissible if for all states s of S with s |= Ξ there is a admissible
Π-fair trail ϑ su
h that ϑ(0)|X = s. ♦By duality an admissible path (trail) is also su

essful, but the 
onverse doesnot hold for in�nite paths in general. It 
omes as no surprise that we haveProposition 5.5.3. (Trails and ∃-strategies) Let Π be a proof stru
-ture for S and Ξ ⊢ Eφ, and let ϑ be a trail of Π. Then(i) τϑ is a deterministi
 ∃-strategy for GS(σϑ, φ),(ii) τϑ is 
omplete if and only if πϑ is 
losed, and(iii) τϑ is winning if and only if ϑ is admissible.Proof. By duality.By this proposition and Lemma 5.2.2 we obtain the soundness result inProposition 5.5.4. Let Π be an ELL proof stru
ture for S and Ξ ⊢ Eφ. If

Π is admissible then Player ∃ wins GS(Ξ,Eφ).In 
ontrast to the LTL 
ase, the 
onverse dire
tion does not hold in gen-eral, even in the absen
e of fairness: although we know by the ELL TrailLemma that for ea
h initial state of the system there is a run following somepath, we 
annot guarantee that this path is admissible. In fa
t, there neednot be an admissible path at all in an ELL proof stru
ture as the followingsimple example shows.Example 5.5.5. System S6 has a single natural number variable x and thetwo transition relations
ρinc

def
= x′ = x+ 1

ρzero
def
= x′ = 0with initial 
ondition Θ6

def
= true. Figure 5.5 shows a possible ELL proofstru
ture for this system and property φ6

def
= E F(x = 0), whi
h is 
learlysatis�ed by S6.The only path in Π6 is inadmissible (and also unsu

essful). Obviously,the mistake was that we have 
hosen to apply Rule E(∨r) at γ2 instead ofusing E(∨) to split o� the 
ase where x = 0. ♦
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γ1 : true ⊢ E(F(x = 0))

γ2 : true ⊢ E(x = 0 ∨ XF(x = 0))

γ3 : true ⊢ E(X F(x = 0))Figure 5.5: Proof stru
ture Π6 for S6 and φ6
def
= EF(x = 0)5.5.2 Existen
e of an Admissible ELL Proof Stru
tureThe 
onstru
tion of an admissible proof stru
ture requires a judi
ious appli-
ation of the Split Rule in 
ombination with the two rules for disjun
tion (orthe derived rule E(∨)). Therefore, we 
onstru
t in (the proof of) the followinglemma a �
anoni
al� proof stru
ture ΠK and show that it is admissible.Lemma 5.5.6. (Existen
e of admissible ELL proof stru
ture) Let

Ξ be a satis�able assertion and suppose Player ∃ wins the game GS(Ξ,Eφ).Then(i) there exists a proof stru
ture ΠK for S and Ξ ⊢ E(φ),(ii) any deterministi
, history-free winning ∃-strategy τ∃ for GS(σ, φ) with
σ ∈ RS(Ξ) is 
ompletely represented in ΠK(iii) ΠK is admissible.Proof. (i) The 
onstru
tion is similar to the one for LTL proof stru
turesin Lemma 4.3.2. We 
onstru
t a �nite sequen
e of pre-proof stru
tures

Π0, . . . ,Πn su
h that Πn is a proof stru
ture for S and Ξ ⊢ E(φ). Theinitial pre-proof stru
ture Π0 
onsists of the root sequent Ξ ⊢ E(φ). Pre-proof stru
ture Πi+1 is 
onstru
ted from Πi by applying some rule(s) to anopen node (a non-terminal sequent with no su

essors) while maintaining theinvariant
p |= E(

∧

φ∈Φ

φ) and p satis�able.The initial pre-proof stru
ture Π0 satis�es the invariant by assumption. Inorder to 
onstru
t Πi+1 from Πi, suppose �rst there is an open node γ : p ⊢
E(X Φ) in Πi where rule E(X) is appli
able. We apply the rule in the followingway:

γ : p ⊢ E(X Φ)

γ′ : χE(Φ) ⊢ E(Φ)
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tures 97where χE(Φ) is an assertion 
hara
terising the set of states where E(Φ) holds(see Lemma 4.3.1). The side 
ondition is satis�ed and our invariant is pre-served.Now suppose there is an open node γ : p ⊢ (Φ, ψ) in Πi where rule E(X)is not appli
able and ψ is a formula other than a X-formula. We pro
eedby 
ase analysis on the top-level operator of ψ. The only interesting 
ase isdisjun
tion, all other 
ases are straightforward.Suppose that ψ = φ1 ∨ φ2. From the invariant it follows that for ea
h
s |= p we have s |= E(Φ, φ1) or s |= E(Φ, φ2). We distinguish three 
ases:(a) p |= ¬E(Φ, φ2): it follows that p |= E(Φ, φ1) and we apply rule E(∨l)

E(∨l)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1)
learly preserving the invariant.(b) p |= ¬E(Φ, φ1): this 
ase is symmetri
al to the previous one.(
) Otherwise, there exist p-states s1 and s2 su
h that s1 |= E(Φ, φ1) and
s2 |= E(Φ, φ2). We pro
eed by applying a 
ombination of the Split anddisjun
tion rules in the following way:

E(sp)
γ : p ⊢ E(Φ, φ1 ∨ φ2)

E(∨l)
γ1 : χ1 ⊢ E(Φ, φ1 ∨ φ2)

γ′1 : χ1 ⊢ E(Φ, φ1)
E(∨r)

γ2 : χ2 ⊢ E(Φ, φ1 ∨ φ2)

γ′2 : χ2 ⊢ E(Φ, φ2)where χ1 and χ2 are formulas equivalent to the 
hara
teristi
 predi
ates
χE(Φ,φ1) and χE(Φ,φ2), respe
tively, 
hosen in a way as to avoid loopingba
k to a sequent where the Split rule E(sp) is already applied. Thisensures that 
ondition (E-SPL) is satis�ed. It is easy to see that theinvariant holds for all four new sequents γ1, γ′1, γ2 and γ′2.Finally, by a similar argument as in (the proof of) Lemma 4.3.2 we 
anshow that this 
onstru
tion terminates, thus yielding an ELL proof stru
turewhi
h we 
all ΠK . Observe that by the invariant ΠK 
an not 
ontain anyanti-axioms. We remark that 
ase (
) above is the only pla
e where rule E(sp)is applied in the 
onstru
tion of ΠK .(ii) Let σ ∈ RS(Ξ) and suppose τ is a deterministi
, history-free winningstrategy for GS(σ, φ). We show that τ is 
ompletely represented in ΠK .In a similar way as in Lemma 4.2.12, we 
onstru
t two in�nite sequen
es

{σi}i∈ω and {γi}i∈ω of su�xes of σ and elements of Γ+, respe
tively, whilemaintaining the following invariants:
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, andJ2. for all ι ∈ IE(πi) su
h that |ι| = i+ 1 we have ♮(ζi ∗ ι) ∈ τ .where πi = γ0 · · · γi and ζi = σ0 · · ·σi. Clearly both invariants hold for theinitial 
hoi
e σ0 = σ and γ0 = Ξ ⊢ E(φ). Continuing the 
onstru
tion wedetermine σk+1 and γk+1 by 
ase analysis on the rule R applied at γk. If

γk is a terminal then it must be an axiom by 
onstru
tion of ΠK and wede�ne σj = (σk)
k−j and γj = ⊤ for j > k. From the remaining 
ases we pi
k

R ∈ {E(∨l),E(∨r),E(sp)}.Suppose that rule E(∨l) is applied at γk = p ⊢ E(Φ, φ1 ∨φ2) and that it isnot pre
eded by an appli
ation of E(sp) at γk−1 (if k > 0). We set σk+1 = σkand γk+1 = p ⊢ E(Φ, φ1). Sin
e for any θ ∈ Φ∪{φ1∨φ2} there is a ιθ ∈ IE(πk)of length k + 1 su
h that ιθ : φ · · · θ (see also Lemma 4.2.5), there is by (J2)a position nθ = mθ · (σk, θ) = ♮(ζk ∗ ιθ) ∈ τ . With τ being a winning strategywe must have σk |= θ. By 
onstru
tion of ΠK we know that p |= ¬E(Φ, φ2).As σk is a p-
omputation by (J1) we dedu
e that σk 6|= φ2. Sin
e τ is winningit must move from any position of the form m · (σk, φ1 ∨ φ2) = ♮(ζk ∗ ι) (with
ι ∈ IE(πk) of length k+ 1) to position m · (σk, φ1 ∨ φ2) · (σk, φ1). Hen
e, (J2)is preserved. (J1) is trivially preserved. The 
ase where E(∨l) is applied to
γk without a pre
eding appli
ation of E(sp) is symmetri
al.Suppose that E(sp) is applied to γk. By 
onstru
tion of ΠK we knowthat γk = p ⊢ E(Φ, φ1 ∨ φ2). Pi
k ι ∈ I(πk) su
h that |ι| = k + 1 and
ι = φ · · · (φ1∨φ2). From (J2) it follows that n = ♮(ζk∗ι) = m·(σk, φ1∨φ2) ∈ τand sin
e τ is deterministi
 and 
omplete we have either n · (σk, φ1) ∈ τ or
n · (σk, φ2) ∈ τ . Suppose w.l.o.g. that n · (σk, φ1) ∈ τ . Sin
e there are alsopositions p · (σk, θ) ∈ τ for all θ ∈ Φ by (J2) and τ is winning we have σk |= θas well as σk |= φ1, hen
e σk(0) |= χ1 (re
all χ1 is equivalent to χE(Φ,φ1)).We set σk+1 = σk and γk+1 = χ1 ⊢ E(Φ, φ1 ∨ φ2) whi
h appears as one ofthe su

essor sequents of γk by 
onstru
tion of ΠK . Hen
e (J1) is preserved.(J2) is trivially preserved. Again by 
onstru
tion of ΠK we know that theonly su

essor sequent of γk+1 is χ1 ⊢ E(Φ, φ1) whi
h we 
hoose as our γk+2.Set σk+2 = σk+1. Invariant (J1) is trivially preserved, while (J2) is preservedbe
ause τ is history-free and the 
hoi
e of the new 
on�guration (σk, φ1) atposition n = ♮(ζk ∗ ι) = m · (σk, φ1 ∨ φ2) of τ is therefore independent of theparti
ular ι pi
ked above.Having 
ompleted the 
onstru
tion of the sequen
es {σi}i∈ω and {γi}i∈ω,we de�ne ϑ for j ∈ ω by ϑ(j) = σj(0)[K 7→ γj]. It is not di�
ult to see that
ϑ is a trail with σϑ = σ and σ̃ϑ(i) = σi. Sin
e any position m ∈ τ 
an berepresented as ♮(ζi ∗ ι) for some i ≥ 0 and ι ∈ IE(πi), we have τϑ ⊆ τ byinvariant (J2). Be
ause all terminals of ΠK are axioms πϑ is 
losed, hen
e τϑ
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omplete and therefore τϑ = τ .(iii) Let s |= Ξ. By assumption Player ∃ wins the game GS(σ, φ) for some
σ ∈ CS(s). Hen
e, he has a deterministi
, history-free winning strategy τ forthis game (Proposition 4.1.2). By point (ii) there is a trail ϑ with σϑ = σand τϑ = τ , whi
h is Π-fair by Lemma 5.2.2(iii). Thus, ϑ(0)|X = s and ϑ isadmissible by Proposition 5.5.3. Hen
e, ΠK is admissible.5.5.3 Winningness and Su

essful Proof Stru
turesBefore we state our main theorem on winningness and the existen
e of su
-
essful or admissible ELL proof stru
tures, we have the following lemma,
omparing admissibility and su

ess.Lemma 5.5.7. (Admissibility and Su

ess) Let Π be an ELL proof stru
-ture for system S and sequent Ξ ⊢ E(φ). Suppose s |= Ξ and there existsa su

essful, but inadmissible trail ϑ of Π with ϑ(0)|X = s. Then Player ∃wins the game GS(σϑ, φ).Proof. Suppose ϑ is a su

essful, but inadmissible trail of Π. It followsthat πϑ must be in�nite. By observing that all �nite plays in τϑ are wonby Player ∃ we 
an apply exa
tly the same pro
edure as in the proof ofLemma 4.2.18 (but using U-formulas instead of V-formulas) to 
onstru
tfrom τϑ a winning ∃-strategy for the game GS(σϑ, φ).Theorem 5.5.8. (Winningness and Existen
e of Admissible or Su
-
essful ELL P.S.) Let S be a system. Are equivalent:(i) Player ∃ wins the game GS(Ξ,Eφ),(ii) there exists an admissible proof stru
ture Π for S and Ξ ⊢ E(φ), and(iii) there exists a su

essful proof stru
ture Π for S and Ξ ⊢ E(φ), that is,

S,Ξ 
 Eφ.Proof. (i)⇒(ii): By Lemma 5.5.6. (ii)⇒(iii): Any admissible proof stru
-ture is also su

essful. (iii)⇒(i): Suppose Π is a su

essful proof stru
turefor S and Ξ ⊢ E(φ) and let s |= Ξ. Then there is a su

essful Π-fair trail ϑin Π with ϑ(0)|X = s. Then Player ∃ wins GS(σϑ, φ) by Proposition 5.5.3 (i)and (iii), if ϑ is admissible, and by Lemma 5.5.7, otherwise. Hen
e, Player ∃wins the game GS(Ξ,Eφ).



100 A Proof System for Full CTL* [5.65.5.4 Soundness and Completeness of Rule E(S)Rule E(S) is sound and relatively 
omplete for showing su

ess of proof stru
-tures for saturated systems as is stated inTheorem 5.5.9. (Soundness and Relative Completeness of Rule
E(S)) Let S be a saturated system and let Π be a proof stru
ture for S andsequent Ξ ⊢ E(φ). Then Π: S,Ξ 
 Eφ if and only if Π: S,Ξ ⊢ E(φ).Proof. Soundness of Rule E(S) was shown in Proposition 5.3.4. The proof ofrelative 
ompleteness is deferred to Chapter 6 (it follows from Lemma 6.3.7(ii)).5.5.5 Main ResultTheorem 5.5.10. (Soundness and Relative Completeness for ELL)Let S be a saturated system, Ξ an assertion and Eφ an ELL formula. Then

S,Ξ |= Eφ if and only if S,Ξ ⊢ EφProof. By Corollary 4.1.4 and Theorems 5.5.8 and 5.5.9.Note that the only reason that this theorem is restri
ted to saturated sys-tems is that the same restri
tion appears in Theorem 5.5.9. This restri
tionwill be lifted in Chapter 6 on proving su

ess under fairness 
onstraints.5.6 A Proof System for Full CTL*Extending our proof systems for LTL and ELL to full CTL* is now straight-forward. Let S be a system, Ξ an assertion and φ a ground-quanti�ed CTL*formula. We would like to verify S,Ξ |= φ. As a 
onsequen
e of Proposi-tion 2.4.3(iii) we know that S,Ξ |= φ if and only if S,Ξ |= Aφ, so we mayassume w.l.o.g. that φ has a top-level path quanti�er. Therefore, there is noneed for an intermediate �gluing� proof system as presented in [Ki
96℄ (forthe �nite-state 
ase) to resolve the top-level boolean 
ombinations of stateformulas.In 
ontrast to LTL and ELL formulas, the CTL* formula φ may havearbitrary path-quanti�ed subformulas (of the form Qψ for Q ∈ {A,E}). Letus 
all ψ a basi
 state formula if it is either a literal or a path-quanti�edformula. As already observed by Emerson and Lei in [EL85℄, with respe
t tothe LTL and ELL rules, path-quanti�ed formulas 
an fortunately be treatedvery mu
h like assertions. More pre
isely, we extend the axiom, anti-axiom



5.6] ELL and CTL* Proof Stru
tures 101and assertion rules (Q(ax), Q(nx) and Q(bsf)) of the LTL and ELL proofsystems to apply to all basi
 state formulas (see Table 5.3). The de�nitionsof LTL and ELL proof stru
tures are adapted to use the modi�ed sets ofLTL and ELL rules, but remain otherwise un
hanged. The notion of a proofremains un
hanged.
A(ax)

p ⊢ A(Φ, ψ)

·
p ⊢ ψ E(ax)

p ⊢ E(ψ)

·
p ⊢ ψ

A(nx)
p ⊢ A(ψ)

·
p ⊢ ¬ψ E(nx)

p ⊢ E(Φ, ψ)

·
p ⊢ ¬ψ

A(bsf)
p ⊢ A(Φ, ψ)

p ⊢ A(Φ)
p ⊢ ¬ψ E(bsf)

p ⊢ E(Φ, ψ)

p ⊢ E(Φ)
p ⊢ ψTable 5.3: modi�ed LTL and ELL rules; ψ is a basi
 state formula; p ⊢ qholds for an assertion q if p |= q.The side 
onditions of rules Q(ax), Q(nx) and Q(bsf), we repla
e p |= qand p |= ¬q by p ⊢ ψ and p ⊢ ¬ψ, respe
tively, where ψ is now a basi
 stateformula. Re
all that negation is a meta-level operator on all formulas butassertions, so the side 
onditions for path-quanti�ed formulas have all theform p ⊢ Q θ and require the 
onstru
tion of a new LTL or ELL proof of

S, p |= Q θ (the 
ase depending on Q). For assertions the statement p ⊢ (¬)qis to be interpreted as p |= (¬)q as hitherto.As the type (LTL or ELL) of proof stru
ture 
an be inferred from thetop-level path quanti�er of its root sequent, we will often just say �proofstru
ture for system S and sequent Ξ ⊢ Qφ�.Definition 5.6.1. (CTL* Proof Stru
tures) Given a system S, an as-sertion Ξ and a CTL* formula Qφ, a CTL* proof stru
ture Π for system
S and sequent Ξ ⊢ Qφ is a tuple Π = (Π1, . . . ,Πn) of LTL or ELL proofstru
tures su
h that

• Πi is a proof stru
ture for S and Ξi ⊢ Qi ψi, with Ξ1 ⊢ Q1 ψ1 = Ξ ⊢ Qφ,and
• for all 1 < j ≤ n there is a 1 ≤ i < j su
h that Ξj ⊢ Qj ψj appears asa side 
ondition of Πi. ♦



102 Using Invariants in Proofs [5.7Definition 5.6.2. (CTL* Proofs) Let Π = (Π1, . . . ,Πn) be a CTL* proofstru
ture for system S and sequent Ξ ⊢ Qφ. Then Π is a proof (S-proof) of
S,Ξ |= Qφ, written Π : S,Ξ 
 Qφ (Π : S,Ξ ⊢ Qφ), if all 
onstituent proofstru
tures Πi are proofs (S-proofs).We also say that the statement S,Ξ |= Qφ is provable (S-provable) andwrite S,Ξ 
 Qφ (S,Ξ ⊢ Qφ) if there is a CTL* proof stru
ture Π su
h that
Π: S,Ξ 
 Qφ (Π: S,Ξ ⊢ Qφ). ♦5.6.1 Soundness and Completeness for CTL*Let Π = (Π1, . . . ,Πn) be a CTL* proof stru
ture. The mat
hing of side
onditions and root sequents appearing in the LTL and ELL proof stru
tures
Πi 
onstituting Π indu
es an a
y
li
 dependen
y graph on the Πi (Π itself isa linearisation of this graph). The quanti�er depth of the temporal formulain the root sequent of the respe
tive proof stru
ture stri
tly de
reases alongea
h path in that graph. This observation forms the basis forTheorem 5.6.3. (Soundness and Relative Completeness for CTL*)Let S be a saturated system, Ξ an assertion and Qφ a CTL* formula. Then

S,Ξ |= Qφ if and only if S,Ξ ⊢ QφProof. By well-founded indu
tion on the quanti�er depth of Qφ. The base
ases are 
overed by Theorem 4.5.1 for LTL and Theorem 5.5.10 for ELL.For the indu
tion step, suppose Qφ has path-quanti�er depth n. It followsthat the side 
onditions in the proof stru
ture for S and Ξ ⊢ Qφ of the form
p ⊢ Qψ have qd(Qψ) < n. Hen
e by indu
tion hypothesis S, p |= Qψ if andonly if S, p ⊢ Qψ, so these side 
onditions 
an essentially be treated as ifthey were assertions. Thus, the results for the base 
ases lift to the indu
tionstep.5.7 Using Invariants in ProofsSuppose we want to verify S |= Qφ for some system S and CTL* property
Qφ. In the pro
ess of 
onstru
ting a proof, we may reuse any previouslyproved invariant I of the system S in several ways. First, in the 
onstru
tionof a proof stru
ture Π for S and Qφ we may safely repla
e any side 
onditionof a LTL or ELL proof rule of the form p |= r by

I ∧ p |= r
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tures 103This pro
eeding is sound, be
ause I is also an invariant of the asso
iatedsystem SΠ, so we know a priori that any state appearing on a trail willsatisfy I.Se
ond, for the same reason it is sound to use invariant I to strengthen theassertion on the left-hand side of any impli
ation or Hoare triple appearingas a veri�
ation 
ondition in the su

ess rules A(S) or E(S). In the same waywe 
an also make use of invariants of the system SΠ itself. As an example,the assertion JK de�ned by
JK

def
=
∨

γ∈Γ+

(K = ⌈γ⌉ → pγ)is an invariant of SΠ. A type of formula o

urring frequently as auxiliaryassertion in appli
ations is ∨γ∈Γ0
p̂γ for some Γ0 ⊆ Γ+. By 
alling on the helpof invariant JK in the proof this assertion 
an be simpli�ed to K ∈ ⌈Γ0⌉.
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Chapter 6Proving Su

ess under FairnessIn order to prove interesting liveness properties of rea
tive systems, it isimportant to be able to rely on the fair s
heduling of system 
omponents(pro
esses, transitions, ...). By de�nition a run is unfair, if some system�
omponent� is inde�nitely delayed though is it su�
iently often ready toprogress. Liveness properties most frequently depend dire
tly on the progressof individual 
omponents. So with pure non-deterministi
 s
heduling (nofairness 
onstraints), a mu
h smaller number of liveness properties will holdof a system.In our development of the lo
al dedu
tive model 
he
king proof system,the LTL and ELL su

ess rules do not a

ount for fairness so far. It isimportant to note that this is the only reason why the soundness and rela-tive 
ompleteness theorems for LTL and ELL (Theorems 4.5.1 and 5.5.10)and thus also the one for CTL* (Theorem 5.6.3) are restri
ted to saturatedsystems.In this 
hapter, we will extend the su

ess rules A(S) and E(S) to a

ountfor fairness 
onstraints. As a 
onsequen
e of Theorems 6.2.3 and 6.3.8, es-tablishing soundness and relative 
ompleteness of the extended rule A(S)fairand E(S)fair for proving LTL and ELL su

ess, respe
tively, the restri
tionto saturated systems in the above-mentioned soundness and 
ompletenesstheorems for LTL, ELL and CTL* 
an be dropped. For CTL* we getTheorem 6.0.1. (Soundness and Relative Completeness of CTL*Proof Stru
tures) Let S be system, Ξ an assertion and φ a CTL* for-mula. Then S,Ξ |= φ if and only if S,Ξ ⊢ φ.Before we ta
kle the development of the extended rules, let us examine thepossibility to express di�erent types of fairness 
onstraints in the temporallogi
 itself. 105



106 Expressing Fairness in CTL* [6.16.1 Expressing Fairness in CTL*Generalised FairnessLet us �rst 
onsider a general form of (state-based) fairness. In LTL this 
anbe expressed by the formula
Ω

def
=

n∧

i=1

(F G pi ∨ G F ri)This formula satis�ed by a run if for ea
h i either the assertion pi holds 
on-tinuously from some point on or the assertion ri holds in�nitely often. Thus,if assertion pi is seen to express non-readiness of some system 
omponent and
ri progress of that 
omponent, then formula Ω indeed expresses a generalisedform of strong fairness. Weak and un
onditional forms 
an be obtained bysetting pi def

= false.A simple way to verify a CTL* property φ of a saturated system S undersu
h a fairness 
onstraint Ω is to in
lude the fairness 
onstraint into theformula. This is a
hieved by repla
ing all path quanti�ers by their relativisedforms:
A(·) is repla
ed by AΩ(·)

def
= A(Ω → ·)

E(·) is repla
ed by EΩ(·)
def
= E(Ω ∧ ·)Let φΩ be the formula obtained from φ by this transformation. If wedenote by S; Ω the system with 
omputations CS = {σ ∈ RS | σ |= Ω}, thenit is easy to see that S; Ω |= φ pre
isely if S |= AΩ φ

Ω.Weak and Strong FairnessLet S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with fairness 
onstraint F =
(P,W, F ). Unfortunately, weak and strong fairness as de�ned by F are notdire
tly expressible in CTL* (in the sense of the existen
e of CTL* formula
ΩF su
h that any run σ of S is fair w.r.t. F pre
isely if σ |= ΩF). Expressingthat some Λ0-transition (with Λ0 ⊆ Λ) is taken requires a relativised 'Next'operator. Su
h an operator is de�ned by

σ |= XΛ0
φ if (σ(0), σ(1)) |= ρΛ0

(x, x′) and σ1 |= φWith this new operator a formula ΩF is de�nable in CTL* by
ΩF

def
= WF (W ) ∧ SF (F )
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ess under Fairness 107where
WF (W )

def
=

∧
Λw∈W (F G en(Λw) → G F XΛw true)

SF (F )
def
=

∧
Λf∈F

(
G F en(Λf) → G F XΛf

true
)Note that WF (W ) and SF (F ) 
an equivalently be expressed in the followingways:

WF (W ) ≡
∧

Λw∈W (GF¬en(Λw) ∨ G F XΛw true)

≡
∧

Λw∈W GF (¬en(Λw) ∨ XΛw true)

SF (F ) ≡
∧

Λf∈F

(
F G¬en(Λf ) ∨ G F XΛf

true
)Using the formula ΩF the veri�
ation that system S satis�es a CTL* formula

φ, that is S |= φ, amounts to showing that S− |= AΩF
φΩF , where S− is thesaturated system underlying S.Dis
ussionIn
luding fairness 
onstraints into the property formulas has the advantageof great �exibility. While this method 
an be used for the veri�
ation ofsystems under generalised fairness, its use with the type of weak/strong fair-ness 
onstraints we have introdu
ed for transition systems would require themodi�
ation of the temporal logi
 and the proof system to in
lude relativisedNext operators XΛ. However, while repla
ing Rule E(X) with a relativisedversion is no problem, the disjun
tive semanti
s of LTL sequents 
reates somedi�
ulties with generalising Rule A(X) to deal with these operators.Another, more pra
ti
al, disadvantage is that spe
i�
ation formulas in-
luding fairness 
onstraints qui
kly grow to an unhandy size. This in turnleads to larger proof stru
tures that are more di�
ult to survey. For thesereasons we add the fairness 
onstraints dire
tly to the system spe
i�
ationand modify the su

ess rules to a

ount for fairness.



108 LTL Su

ess under Fairness [6.26.2 LTL Su

ess under FairnessIn Se
tion 3.3, we have introdu
ed Rule A(F,
∨

F G) for proving properties ofthe form
A

(
F q ∨

m∨

i=1

F G pi

)(where q and the pi are assertions) for saturated systems. Rule A(S) for show-ing su

ess of a LTL proof stru
ture Π was then obtained by an appropriateinstantiation of Rule A(F,
∨

F G). In this se
tion, we follow a similar approa
hand �rst present Rule A(F,
∨

F G)fair, an extension of Rule A(F,
∨

F G) thata

ounts for fairness. Then this rule is slightly modi�ed to deal with Π-fairness and instantiated to yield Rule A(S)fair, the LTL su

ess rule underfairness.6.2.1 Rule A(F,
∨

F G)fairLet S be a system with fairness 
onstraint F = (P,W, F ) and let q and
p1, . . . , pm be assertions. Rule A(F,

∨
F G)fair for proving that the fair system

S satis�es A(F q∨
∨m
i=1 pi) is displayed in Figure 6.1. Just as Rule A(F,

∨
F G)this rule is derived from Rule F-RESP of [MP91℄ for proving future responseformulas of the form G(p→ F q) under weak and strong (transition) fairness
onstraints (see also the dis
ussion in Se
tion 3.3.1).Supposing that Λ1, . . . ,Λn enumerates W ∪ F , this rule requires that we�nd an auxiliary assertion βi for ea
h pi (1 ≤ i ≤ m) just as Rule A(F,

∨
F G)does and additionally an assertion βm+j for ea
h Λj (1 ≤ j ≤ n), so we have

m+ n auxiliary assertions.Let us now take a look at the premises. Premises P1-P3 are the same asfor Rule A(F,
∨

F G), with the index i ranging from 1 to m + n in P2 and
j from 1 to m in P3. The new 
onditions are P4-P6. These deal with thesets of fair transitions Λk ∈ W ∪ F . Premise P4 states that from a βm+k-state any Λk-transition either rea
hes a q-state or de
reases the rank. Thesetransitions are 
alled �helpful� in [MP91℄, sin
e they bring us nearer to a q-state. Conditions P5 and P6 deal with enabledness of fair transition sets. Forthe 
ase where Λk ∈W P5 requires that βm+k implies either q or enablednessof Λk. Finally, premise P6 
overs the 
ase where Λk ∈ F and states thatwe have to prove that a modi�ed system, 
all it S ′, satis�es the modi�edproperty A(F(q ∨ en(Λk)) ∨

∨m

i=1 F G pi). System S ′ is the same as S ex
eptthat the initial 
ondition Θ is repla
ed by βm+k and the fairness 
onstraint
F = (P,W, F ) of S is repla
ed by Fk = (P,W, Fk), where Fk = F − {Λk}
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ess under Fairness 109removes the set Λk from the set F of strongly fair transition sets. Observethat although P6 requires the re
ursive appli
ation of Rule A(F,
∨

F G)fair,this re
ursion is well-founded, be
ause the set F is �nite and Fk is smallerthan F .Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with F = (P,W, F ),where W ∪ F = {Λ1, . . . ,Λn}. Let q and p1, . . . , pm be assertions.In order to apply this rule, �nd:(a) a ranking fun
tion δ : Σ → W mapping states of S into ele-ments of a well-founded domain (W,≻), and(b) assertions {β1, . . . , βm+n} (setting β def
=
∨m+n
i=1 βi),and 
he
k the validity of 
onditions P1-P6 below, where in P6 Fk

def
=

(P,W, F − {Λk}).P1. Θ → q ∨ βP2. {βi ∧ δ=w} Λ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)} i ∈ [1, m+n]P3. {βj ∧ δ=w ∧ ¬pj} Λ {q ∨ (β ∧ δ ≺ w)} j ∈ [1, m]P4. {βm+k ∧ δ=w} Λk {q ∨ (β ∧ δ ≺ w)} k ∈ [1, n]P5. βm+k → q ∨ en(Λk) Λk ∈WP6. S, βm+k;Fk ⊢ A(F(q ∨ en(Λk)) ∨
∨m
i=1 F G pi) Λk ∈ F

S ⊢ A(F q ∨
∨m

i=1 F G pi)Figure 6.1: Rule A(F,
∨

F G)fairSoundness and Relative CompletenessTheorem 6.2.1. (Soundness and Relative Completeness of Rule
A(F,

∨
F G)fair) Let S be a system and let q and p1, . . . , pm be assertions.Then S ⊢ A(F q ∨

∨m

i=1 F G pi) if and only if S |= A(F q ∨
∨m

i=1 F G pi).Proof. �⇒� (soundness) By indu
tion on the size of the set F . Suppose wehave found the required assertions and the ranking and that premises P1-P6hold. Consider a run σ : s0 · · · sj · · · of the system S. We have to show that
σ is unfair or satis�es F q ∨

∨m

i=1 F G pi. If σ satis�es F q then we are done.
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ess under Fairness [6.2Otherwise, q holds nowhere on σ, so β is invariant and the ranking δ doesnever in
rease on σ by P1 and P2. By well-foundedness the ranking δ is
onstant from some position l on in σ. Sin
e β is the disjun
tion of all the βifor 1 ≤ i ≤ m+ n, some βi holds at sl and 
ontinues to hold for all sj with
j ≥ l by P2. If 1 ≤ i ≤ m, then also sj |= pi for all j ≥ l by P3, so σ satis�es
F G pi and we are done. Otherwise, i = m + k for some 1 ≤ k ≤ n and byP4 Λk is never taken from position l on. If Λk ∈ W it follows from P5 that
Λk is enabled from l on, so σ is weakly unfair w.r.t. Λk. On the other hand,if Λk ∈ F then by 
ondition P6 and the indu
tion hypothesis σl satis�es
F(q ∨ en(Λk)) ∨

∨m

i=1 F G pi (sin
e sl |= βm+k). If σl satis�es ∨m

i=1 F G pi thenso does σ and we are done. Otherwise we have σj |= F en(Λk) for all j ≥ l,sin
e q holds nowhere on σ and βm+k 
ontinues to hold from position l on.But this means that Λk is enabled in�nitely often on σl and hen
e on σ, so σ isstrongly unfair w.r.t. the set Λk. This establishes S |= A(F q∨
∨m
i=1 F G pi) asrequired. Note that the base 
ase (F empty) also 
learly holds. We 
on
ludethat Rule A(F,

∨
F G)fair is sound.�⇐� (relative 
ompleteness) The proof of relative 
ompleteness of RuleF-RESP of [MP91℄ goes through with the obvious minor modi�
ations, sowe do not repeat it here.6.2.2 Rule A(S)fair for LTL Su

essRe
all that in Proposition 3.3.2 we have 
hara
terised su

ess of a LTL proofstru
ture Π by

SΠ |= AΠ Ω̂Awhere the quanti�er AΠ ranges over Π-fair trails and
Ω̂A

def
= FK⊤ ∨ Ω0

A where Ω0
A

def
=
∨

ψ∈Ψ̂A

F GKψIn order to adapt Rule A(F,
∨

F G) for proving LTL su

ess, we have to modifyit to deal with Π-fairness instead of the usual fairness 
onstraints.Definition 6.2.2. (Π-Enabledness) Let S be a system with fairness 
on-straint F = (P,W, F ), let Π be a proof stru
ture and SΠ the system asso-
iated with Π with FΠ = (PΠ,WΠ, FΠ). De�ne the assertion enΠ(ΛΠ
0 ) for

ΛΠ
0 ∈WΠ ∪ FΠ by

enΠ(ΛΠ
0 )

def
= en(Λ0)where Λ0 ∈ W ∪ F is the transition set of S indu
ing ΛΠ

0 , that is, ΛΠ
0 =

π−1
2 (Λ0) (see also De�nition 3.2.7). ♦
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Let Π be a LTL proof stru
ture for system S and let {Kψ | ψ ∈ Ψ̂A}and K⊤ as de�ned in Se
tion 3.2.3. Furthermore, let WΠ ∪ FΠ =
{ΛΠ

1 , . . . ,Λ
Π
n} and I = Ψ̂A ∪ {1, . . . , n}. In order to apply this rule,�nd:1. a ranking fun
tion δ : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (W,≻), and2. assertions {βi | i ∈ I} (setting β def

=
∨
i∈I βi),and 
he
k the validity of 
onditions A1-A6 below, where Λj =

π2(Λ
Π
j ) in A5, A6 and FΠ

k = (PΠ,WΠ, FΠ − {ΛΠ
k }) in A6.A1. ΘΠ → q ∨ βA2. {βi ∧ δ=w} ΛΠ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)} i ∈ IA3. {βψ ∧ δ=w ∧ ¬Kψ} ΛΠ {q ∨ (β ∧ δ ≺ w)} ψ ∈ Ψ̂AA4. {βj ∧ δ=w} ΛΠ

j {q ∨ (β ∧ δ ≺ w)} j ∈ [1, n]A5. βk → q ∨ enΠ(ΛΠ
k ) ΛΠ

k ∈WΠA6. SΠ, βk;FΠ
k ⊢ AΠ

(
F
(
q ∨ enΠ(ΛΠ

k )
)
∨ Ω0

A

)
ΛΠ
k ∈ FΠ

SΠ ⊢ AΠ (F q ∨ Ω0
A)Figure 6.2: Rule A(S)fair: LTL su

ess under fairnessThis modi�ed enabledness for ΛΠ

0 ∈ WΠ ∪ FΠ means in fa
t enablednessof the original underlying transition set Λ0 ∈ W ∪F of S. It might be helpfulto see how weak and strong Π-fairness are expressed in LTL:
WF

Π(WΠ)
def
=

∧
ΛΠ

0
∈WΠ

(
F G enΠ(ΛΠ

0 ) → G F XΛΠ
0

true
)

SF
Π(FΠ)

def
=

∧
ΛΠ

0
∈FΠ

(
GF enΠ(ΛΠ

0 ) → G F XΛΠ
0

true
)Rule A(S)fair for showing LTL su

ess under fairness (see Figure 6.2) isthen obtained from Rule A(F,

∨
F G) by

• instantiating S with SΠ and p1, . . . , pn with {Kψ | ψ ∈ Ψ̂A}, and then
• repla
ing en(ΛΠ

k ) by enΠ(ΛΠ
k ) in P5 and P6.



112 ELL Su

ess under Fairness [6.3Note that, sin
e the rule invokes itself re
ursively, q remains uninstantiatedat this point. In order to prove SΠ |= AΠ Ω̂A holds, we use the rule with qset to K⊤.The notions of S-proof and S-provability (De�nition 3.3.4) are modi�edto rely on the appli
ability of Rule A(S)fair instead of Rule A(S). The proofof Theorem 6.2.1 
an easily be adapted to show soundness and relative
ompleteness of Rule A(S)fair (with q unspe
i�ed). Together with Propo-sition 3.3.2 this yieldsTheorem 6.2.3. (Soundness and Relative Completeness of Rule
A(S)fair for LTL Su

ess) Let Π be a LTL proof stru
ture for a system Sand sequent Ξ ⊢ A(φ). Then Π: S,Ξ 
 Aφ if and only if Π: S,Ξ ⊢ Aφ.6.3 ELL Su

ess under FairnessIn Se
tion 5.3 we have introdu
ed Rule E(

∧
G F) to prove properties of theform E (

∧m
i=1 G F pi), where p1, . . . , pm are assertions, for saturated systems.This rule was then instantiated to yield Rule E(S) for proving su

ess of ELLproof stru
tures.Redu
ing Strong to Un
onditional Fairness and Persisten
eIn order to �x some ideas for extending these rules to a

ount for fairness
onstraints re
all from Se
tion 6.1 that proving an ELL property of the form

Eψ for a system S with fairness 
onstraint F = (P,W, F ) amounts to showingthat
S− |= E (ΩF ∧ ψ)where S− is the saturated system underlying S and ΩF = WF (W )∧ SF (F )is the formula expressing the fairness 
onstraint F . Also re
all that SF (F )
an be equivalently written as

ŜF (F )
def
=
∧

Λ∈F

(F G¬en(Λ) ∨ G F XΛ true)Consider a run σ of S− satisfying ΩF ∧ ψ, that is, a 
omputation of Ssatisfying ψ. Then σ determines a (unique) partition (U,D) of F (that is,
U ∪D = F and U ∩D = ∅) su
h that

σ |= UF (U) ∧ F G dis(D)
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ess under Fairness 113where
UF (U)

def
=

∧
Λ∈U GF XΛ true

dis(D)
def
=

∧
Λ∈D ¬en(Λ)The partition (U,D) des
ribes in what parti
ular way σ satis�es the strongfairness formula SF (F ): ea
h transition set Λ ∈ D is disabled almost every-where on σ (
orresponding to the left disjun
t for Λ in ŜF (F )), while any

Λ ∈ U is taken in�nitely often on σ (
orresponding to the right disjun
t for
Λ in ŜF (F )). The formula UF (U) expresses un
onditional fairness of ea
h
Λ ∈ U . Note also that F G dis(D) is equivalent to ∧Λ∈D F G¬en(Λ).If we extend our fairness 
onstraints F to in
lude un
onditional fairnessby de�ning F = (P,W, F, U), where W and F are de�ned as before and
U ⊆ P is a set of un
onditionally fair transition sets, then we 
an formulatethe statement

S− |= E(WF (W ) ∧ UF (U) ∧ F G dis(D) ∧ ψ)equivalently as
S;F [U ] |= E(F G dis(D) ∧ ψ)where S;F [U ] is the same as S ex
ept that the fairness 
onstraint F of Sis repla
ed by F [U ]

def
= (P,W,∅, U). Clearly, S;F [U ] |= E(F G dis(D) ∧ ψ)implies S |= Eψ, but the 
onverse does not hold in general. However, wehave the followingProposition 6.3.1. Let S be a system with initial 
ondition Θ and fairness
onstraint F = (P,W, F ) and let Eψ be an ELL formula. Then S |= Eψ ifand only if there exist assertions Θj and partitions (Uj , Dj) of F for some

l ≥ 1 and 1 ≤ j ≤ l su
h that(i) Θ →
∨l

j=1 Θj is valid, and(ii) S;F [Uj ],Θj |= E(F G dis(Dj) ∧ ψ) for all 1 ≤ j ≤ l.Proof. �⇐� This dire
tion is 
lear. �⇒� Let S be a system with fairness
onstraint F = (P,W, F ). Suppose S |= Eψ. De�ne
Ψ(U,D)

def
= WF (W ) ∧ UF (U) ∧ dis(D) ∧ ψand let P1, . . . , Pl with Pj = (Uj , Dj) enumerate the set

{
(U,D)

∣∣∣∣
(U,D) partitions F and there exists a
Θ−run σ of S su
h that σ |= EΨ(U,D)

}



114 ELL Su

ess under Fairness [6.3Sin
e F is �nite, there are indeed �nitely many Pj. Now we 
an de�ne Θjfor 1 ≤ j ≤ l:
Θj

def
= Θ ∧ χEΨ(Pj)Note �rst that although E Ψ(Pj) is, stri
tly speaking, not a CTL* formula(be
ause of the relativised next operators), it is not di�
ult to see thatthere is 
hara
teristi
 assertion χEΨ(Pj) in L. By the de�nition of the Pjand Θj the statement S−,Θj |= E Ψ(Pj) holds, thus also S;F [Uj ],Θj |=

E(F G dis(Dj) ∧ ψ) for ea
h 1 ≤ j ≤ l. Sin
e S |= Eψ by assumption, anyinitial state satis�es some Θj, hen
e Θ →
∨l

j=1 Θj is valid as required.Let us return to the problem of proving ELL su

ess. The ELL su

essformula ΩE is of the form ψ
def
=
∧m
i=1 GF ri. Let us for the moment disregard

Π-fairness and sti
k with properties of this form over arbitrary systems. Let
S be a system with fairness 
onstraint F = (P,W, F ). The above propositionallows us to redu
e the problem of proving S |= Eψ to showing

S;F [Uj ],Θj |= E

(
F G dis(Dj) ∧

m∧

i=1

GF ri

)

for ea
h 1 ≤ j ≤ l and an appropriate 
hoi
e of assertions Θ1, . . . ,Θl andpartitions P1, . . . , Pl of F with Pj = (Uj , Dj).We now pro
eed as follows. In order to simplify the presentation, we �rstgeneralise our Rule E(
∧

G F) of Figure 5.1 to deal with properties of the form
F G q ∧

∧m

i=1 G F ri over saturated systems (Rule E(F G,
∧

G F)) and show itssoundness and relative 
ompleteness. Then we show how to extend this ruleto work with weak and un
onditional fairness 
onstraints (with F 's of theform (P,W,∅, U)), yielding Rule E(F G,
∧

GF)wuf . Based on the redu
tionin Proposition 6.3.1, an auxiliary Rule E(F G,
∧

GF)fair is then introdu
edfor systems with the usual weak and strong fairness 
onstraints. Finally, wewill present variants of Rules E(F G,
∧

GF)wuf and E(F G,
∧

GF)fair dealingwith Π-fairness as required for ELL su

ess.Remark (history variables) Relative 
ompleteness results indi
ate thatprior to the appli
ation of any rule in this se
tion, it might be ne
essary toextend the system under study with a history variable.
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ess under Fairness 1156.3.1 Rule E(F G,
∧

G F)In order to simplify the presentation, we will �rst introdu
e a rule for satu-rated systems and properties of the form
E

(
F G q ∧

m∧

i=1

G F ri

)This rule, 
alled E(F G,
∧

GF) and displayed in Figure 6.3, 
an then easilybe extended to deal with fairness as sket
hed in the previous paragraph anddetailed in the next se
tion.Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system. Let q and
r1, . . . , rm be assertions. In order to apply this rule, �nd for ea
h
0 ≤ i ≤ m:(a) a ranking fun
tion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αiand 
he
k the validity of 
onditions R1-R5 below (where in R1:
α

def
=
∨m

j=0 αi and in R3,R5: 1 ≤ i ≤ m and i⊕ 1
def
= (imodm) + 1).R1. Θ → αR2. α0 → ¬qR3. αi → qR4. {

α0

∧ δ0 = u

}
〈Λ〉

{
(α1 ∧ δ0 �0 u)

∨ (α0 ∧ δ0 ≺0 u)

}R5. 



αi
∧ δ0 = u
∧ δi = w



 〈Λ〉





(αi⊕1 ∧ ri ∧ δ0 �0 u)
∨ (αi ∧ δi ≺i w ∧ δ0 �0 u)
∨ (α0 ∧ δ0 ≺0 u)





S ⊢ E(F G q ∧
∧m

i=1 GF ri)Figure 6.3: Rule E(F G,
∧

G F)The appli
ation of Rule E(F G,
∧

G F) requires that we �nd for ea
h 0 ≤
i ≤ m an auxiliary assertion αi and a ranking fun
tion δi : Σ → Wi mapping
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ess under Fairness [6.3system states to elements of a well-founded domain (Wi,≻i). For 1 ≤ i ≤ mthese 
an be thought of as 
orresponding to assertion pi, while α0 and δ0 areasso
iated with q.Before we dis
uss the premises in detail observe that setting q and α0to false and taking a trivial (
onstant) ranking for δ0 yields exa
tly Rule
E(
∧

G F), whi
h is thus a spe
ial 
ase of the present rule. Hen
e the assertions
αi and the rankings δi for 1 ≤ i ≤ m play a similar role as they do inRule E(

∧
G F). Intuitively speaking, for 1 ≤ i ≤ m, in an αi-segment theranking δi de
reases unless the target ri is rea
hed. New is that these �αi-modes� are only a
tive while q holds and whenever q does not hold a fall-ba
kto the additional �α0-mode� o

urs and the ranking δ0 de
reases. As δ0 doesnever in
rease, there 
an be only a �nite number of fall-ba
ks to ¬q-states.Now let us examine the premises more 
losely. Premise R1 requires thatany initial state also satis�es αi for some 0 ≤ i ≤ m. A

ording to R2 andR3 the assertions α0 and αi (for 1 ≤ i ≤ m) imply ¬q and q, respe
tively.Premise R4 states that from an α0 state, it is possible to rea
h an α1-statewith δ0 not in
reasing or again an α0-state with the ranking δ0 de
reasing.The �nal premise R5 says that for the other modes αi (for 1 ≤ i ≤ m) thereare three possibilities: from an αi-state we may1. advan
e to an αi⊕1 ∧ ri-state, with δ0 not in
reasing, or2. rea
h an αi-state, with δi de
reasing and δ0 not in
reasing, or3. fall ba
k to a α0-state with δ0 de
reasing.Note that by premises R4 and R5 the ranking δ0 is not allowed to in
rease.Soundness and Relative CompletenessTheorem 6.3.2. (Soundness and Relative Completeness of Rule

E(F G,
∧

G F)) Let S be a saturated system, and let q and r1, . . . , rm beassertions. Then S ⊢ E(F G q ∧
∧m

i=1 GF ri) if and only if S |= E(F G q ∧∧m
i=1 GF ri).Proof. Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let q and

r1, . . . , rm be assertions.Soundness. Suppose we have found intermediate assertions αi and rank-ing fun
tions δi for 0 ≤ i ≤ m su
h that premises R1-R5 are valid. We saythat a transition s λ
→ s′ is a witness for a possibility triple {p} 〈Λ0〉 {q}, if

s |= p, s′ |= q and λ ∈ Λ0. Furthermore, we say a run (pre�x) σ : s0s1 · · · sk · · ·
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ess under Fairness 117is 
onstru
ted a

ording to some set T of possibility triples, if every transitionon σ is a witness for some triple in T .By inspe
ting the premises R1-R5, it is not hard to see that from anystate s |= Θ a s-run σ 
an be 
onstru
ted a

ording to R4 and R5 and that
α invariantly holds along these runs. Suppose σ : s0s1 · · · sk · · · is su
h a run.We have to show that σ |= F G q ∧

∧m
i=1 G F ri.Suppose �rst that σ 6|= F G q. Sin
e σ was 
onstru
ted a

ording to R4and R5, the ranking δ0 never in
reases along σ. By R4 and R5 it de
reaseswhenever a transition is made to a state where q does not hold. Sin
e σ 6|=

F G q, there are in�nitely many positions on σ where q does not hold. Thisimplies that δ0 de
reases in�nitely often, 
ontradi
ting the well-foundednessof ≻0. Hen
e, σ |= F G q.It remains to show that also σ |=
∧m

i=1 G F ri. Sin
e σ |= F G q, there is aposition k0 su
h that sj |= q for all j ≥ k0. Sin
e α0 implies ¬q, we also knowthat sj 6|= α0 for all j ≥ k0. On the other hand, α holds invariantly along σby R1,R4 and R5, so sk0 |= αi for some 1 ≤ i ≤ m. We show that there isa k1 > k0 su
h that sk1 |= αi⊕1 ∧ ri. This follows by well-foundedness of ≻ifrom the fa
t that all transitions sj λj
→ sj+1 for j ≥ k0 are witnesses for R5.Now we 
an repeat this argument to show that there is a k2 > k1 su
h that

sk2 |= αi⊕2 ∧ ri⊕1 and so on, ad in�nitum. Hen
e, also σ |=
∧m

i=1 G F ri. Sin
eour initial state was arbitrary we have S |= E(F G q∧
∧m
i=1 GF ri) as required.Relative 
ompleteness. Suppose S |= E(F G q∧

∧m
i=1 G F ri) holds. We willde�ne auxiliary assertions αi and rankings δi for 0 ≤ i ≤ m and show thatpremises R1-R5 are valid.Before we do so, however, we have to extend our system S with a (naturalnumber) history variable H , yielding system Ŝ whi
h is de�ned as follows:

X̂
def
= X ∪ {H} H 6∈ X

Θ̂
def
= Θ ∧

(
H = 0 ∧ ¬q

∨ H = 1 ∧ q

)

ρ̂λ
def
= ρλ ∧

∨m

i=0


H = i ∧

H ′ = 0 ∧ ¬q′

∨ H ′ = 1 ∧ q′ ∧ i = 0
∨ H ′ = H ∧ q′ ∧ ¬r′ ∧ i > 0
∨ H ′ = H ⊕ 1 ∧ q′ ∧ r′ ∧ i > 0


The idea behind variable H is to re
ord the a
tual �mode�. Note that H isindeed a history variable as it does not a�e
t the original state 
omponents,neither by modifying enabledness nor by making other variables depend on
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H . Therefore, we also have Ŝ |= E(F G q ∧
∧m
i=1 GF ri). Now, let us de�nethe intermediate assertions αi:

α0
def
= χ0 ∧ ¬q ∧ H = 0

αi
def
= χ0 ∧ q ∧ H = i for 1 ≤ i ≤ mwhere

χ0
def
= χE Ψ0

with Ψ0
def
= F G q ∧

∧m

i=1 GF ri

χ1
def
= χE Ψ1

with Ψ1
def
= G q ∧

∧m

i=1 GF riObserve that ea
h αi implies χ0, re�e
ting the fa
t that ea
h state of a run σwitnessing Ψ0 satis�es χ0. However, this is not su�
ient, as a run where χ0holds invariantly does not ne
essarily satisfy Ψ0. It is for this reason that weneed the ranking fun
tions δi. Intuitively speaking, they make sure that ea
h�target� ri 
an be rea
hed repeatedly while at the same time ¬q is met only�nitely often. The ranking fun
tions δi : Σ̂ → (N, >), whi
h all map extendedstates to the standard well-founded domain of natural numbers, are de�nedby
δ0(s)

def
=





min{|σ| | σ : s · · · s′ a χ0−segment, s′ |= χ1} if s |= χ0 ∧ ¬χ1

0 otherwise
δi(s)

def
=





min{|σ| | σ : s · · · s′ a χ1−segment, |σ| > 1, s′ |= ri} if s |= χ1

δ0(s) otherwisewhere 1 ≤ i ≤ m and a q-segment is a segment of a run su
h that all statesappearing on it satisfy the assertion q. Note that the ranking fun
tions arewell-de�ned, sin
e all the sets of whi
h we take the minima are always non-empty. We say a segment σ realises ranking δj(s) for some 0 ≤ j ≤ m, if
δj(s) = |σ|.For a χ0 ∧¬χ1-state s the ranking δ0(s) gives the minimal length of a χ0-segment the last state of whi
h satis�es χ1, whereas it yields zero on any otherstates. In a similar way, for χ1-states the ranking fun
tions δi for 1 ≤ i ≤ mmeasure the least distan
e to a ri-state rea
hable on a χ1-segment. On theother hand, for a state s not satisfying χ1 the ranking δi(s) equals δ0(s). Theidea is that we are not interested in the ful�llment of the ri until we haverea
hed a χ1-state. Thus, from a (χ0∧)¬χ1-state our primary goal is to rea
h
χ1. Note the equivalen
e Ψ0 ≡ F Ψ1, underlining our idea of ignoring ri until
q has be
ome stable.
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ess under Fairness 119We pro
eed to the veri�
ation of premises R1-R5. Premises R2 and R3follow immediately from the de�nition of the αi. The remaining premisesare:R1. Sin
e Θ |= EΨ0 by hypothesis, any state s0 that satis�es Θ also satis�es
χ0. Hen
e, Θ̂ implies α0 ∨ α1.For premises R4 and R5, note that the �rst transition on the segmentrealising the respe
tive ranking provides the witnessing transition requiredby the premise. In other words, we always follow the shortest way to rea
hthe respe
tive goal.R4. Suppose s |= α0 and δ0(s) = u, realised by the χ0-segment σ : ss′ · · · s′′.Note that by the de�nition of δ0 we have always u > 1. It follows that
s |= χ0 ∧ ¬q and s(H) = 0, as well as s′ |= χ0. We distinguish two
ases:(a) s′ 6|= q. This implies that s′(H) = 0 and s′ 6|= χ1. Therefore,

δ0(s
′) < u and s′ |= α0 as required.(b) s′ |= q. In this 
ase s′(H) = 1. For the ranking δ0 we have

δ0(s
′) = u − 1 if s 6|= χ1 and δ0(s′) = 0 otherwise. In both 
ases

δ0(s
′) ≤ u and also s′ |= α1.R5. Suppose s |= αi, δ0(s) = u and δi(s) = w for some 1 ≤ i ≤ m. Thereare two main 
ases:(a) s 6|= χ1. Let σ : ss′ · · · s′′ be a χ0-segment realising δ0(s) = u. Notethat u > 1. We have three sub-
ases:(i) s′ 6|= q. It follows that s′ 6|= χ1, hen
e u > 2 and δ0(s

′) =
u − 1 < u. By the de�nition of ρ̂λ we have s′(H) = 0 (afall-ba
k). Therefore, s′ |= α0 ∧ (δ0 < u).(ii) s′ |= q ∧ ¬ri. Sin
e s′ is on a χ0-segment we have s′ |= χ0 ∧ qand by the de�nition of ρ̂λ we stay in s′(H) = i. Thus, s′ |= αi.We also have s′ 6|= χ1, otherwise we would also have s |= χ1,sin
e s |= q. Hen
e, u > 2 and δ0(s

′) = u − 1 < u. Butas neither s nor s′ satis�es χ1 we have δi(s) = w = δ0(s) =
u > δ0(s

′) = δi(s
′). Hen
e, s′ |= αi ∧ (δi < w) ∧ (δ0 < u) asrequired.(iii) s′ |= q∧ri. By the de�nition of ρ̂λ we have s′(H) = i⊕1, thus

s′ |= αi⊕1 ∧ ri. For the ranking the same argument as in (ii)above shows that δ0(s′) ≤ u. Therefore, s′ |= αi⊕1 ∧ ri ∧ (δ0 ≤
u) in this 
ase.



120 ELL Su

ess under Fairness [6.3(b) s |= χ1. Let σ : ss′ · · · s′′ be a χ1-segment realising δi(s) = u. Thenwe have s′ |= χ1 and therefore also s′ |= χ0∧q, sin
e χ1 implies χ0as well as q. As s and s′ both satisfy χ1 we get δ0(s) = δ0(s
′) = 0.(i) s′ 6|= ri. It follows that s(H) = i and w > 2, implying s′ |= αiand δi(s′) < w. Hen
e, s′ |= αi ∧ δi < w ∧ (δ0 ≤ u).(ii) s′ |= ri. Here the �mode� is swit
hed to s′(H) = i ⊕ 1 andtherefore s′ |= αi⊕1 ∧ ri ∧ (δ0 ≤ u).Proof. This 
ompletes the proof of semanti
 
ompleteness. For synta
-ti
 
ompleteness it remains to show that the auxiliary assertions and therankings are expressible in our assertion language L over the (a

eptable)stru
ture A we are working in (see Se
tion 2.3.1). The assertions αi are al-ready formulated in L. It is not di�
ult to see that the rankings δi 
an alsobe expressed in L using the 
oding s
heme for �nite sequen
es supported bythe stru
ture A. We 
on
lude that Rule E(F G,

∧
G F) is 
omplete relative tovalidity in L.6.3.2 Rules E(F G,

∧
G F)wuf and E(F G,

∧
G F)fairLet us now extend Rule E(F G,

∧
G F) to a

ount for fairness. Re
alling thedis
ussion at the beginning of this se
tion, showing that

S |= E

(
F G q ∧

m∧

i=1

G F ri

)holds for a system S with fairness 
onstraint F = (P,W, F ) 
an be redu
edby Proposition 6.3.1 to proving
S;F [Uj ],Θj |= E

(
F G (q ∧ dis(Dj)) ∧

m∧

i=1

G F ri

)
(∗)for an appropriate 
hoi
e of assertions Θj and partitions (Uj , Dj) of F . Thesystem S;F [Uj ] is obtained from S by substituting the fairness 
onstraint Fwith F [Uj] = (P,W,∅, Uj), thus repla
ing the strong fairness 
onstraint Fof F by the un
onditional fairness 
onstraint Uj .This redu
tion is implemented in Rule E(F G,

∧
GF)fair (see Figure 6.4),whi
h invokes Rule E(F G,

∧
G F)wuf (displayed in Figure 6.5), to prove thestatements of the form (∗) above.Rule E(F G,

∧
G F)wuf is a modi�ed version of Rule E(F G,

∧
GF). In ad-dition to the latter rule this new rule requires that we also �nd pairs ofassertions αj and ranking fun
tions δj for m+1 ≤ j ≤ m+n, ea
h su
h pair



6.3] Proving Su

ess under Fairness 121Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with fairness 
on-straints F = (P,W, F ). Let q and r1, . . . , rm be assertions. Find:(a) assertions Θ1, . . . ,Θl, and(b) partitions (Uj , Dj) of F for 1 ≤ j ≤ l,su
h that 
ondition F1 below is valid and F2 
an be establishedusing Rule E(FG,
∧

GF)wuf .F1. Θ →
∨l

j=1 ΘjF2. S;F [Uj ],Θj ⊢ E (F G (q ∧ dis(Dj)) ∧
∧m
i=1 G F ri) 1 ≤ j ≤ l

S ⊢ E(F G q ∧
∧m
i=1 G F ri)Figure 6.4: Rule E(F G,

∧
G F)fair
orresponding to an element of the set {Λ1, . . . ,Λn} = W ∪U of weakly andun
onditionally fair transition sets.Definition 6.3.3. Let α0, α1, . . . , αl be assertions and δ0, δ1, . . . , δl be rank-ing fun
tions as required for the appli
ation of Rule E(F G,

∧
G F)wuf of Fig-ure 6.5. De�ne assertions αu,wi , α≤u

i , α<wi and α<w,≤ui for 0 ≤ i ≤ l by
αu,wi

def
= αi ∧ δ0 = u ∧ δi = w

α≤u
i

def
= αi ∧ δ0 �0 u

α<wi
def
= αi ∧ δi ≺i w

α<w,≤ui

def
= αi ∧ δi ≺i w ∧ δ0 �0 u

♦Premises R1-R5 are the same as in Rule E(F G,
∧

G F). Using the notationintrodu
ed in the de�nition above, R5 now reads:R5. {αu,wi } 〈Λ〉
{

(α≤u
i⊕1 ∧ ri) ∨ α

<w,≤u
i ∨ α<u0

}where 0 ≤ i ≤ m. Note that supers
ripting an αi with ≤ u expresses(independently of i) that δ0 does not in
rease, while a supers
ript < w statesthe de
rease of δi.
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Given a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) with fairness 
on-straint F = (P,W,∅, U) and assertions q and r1, . . . , rm. Suppose
Λ1, . . . ,Λn enumerates W ∪ U .In order to apply this rule, �nd for ea
h 0 ≤ i ≤ m+ n:(a) a ranking fun
tion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i),(b) an assertion αi,and 
he
k the validity of 
onditions R1-R7 below.R1. Θ → αR2. α0 → ¬qR3. ∨m+n

i=1 αi → qR4. {αu,u0 } 〈Λ〉
{
(α≤u

1 ∨ α<u0

}R5. {αu,wi } 〈Λ〉
{

(α≤u
i⊕1 ∧ ri) ∨ α

<w,≤u
i ∨ α<u0

}R6. {
αu,wj

}
〈Λj−m | Λ〉

{
α≤u
j⊕1 | (α≤u

j⊕1 ∧ dj) ∨ α
<w,≤u
j ∨ α<u0

}R7. {αu,wk } 〈Λk−m | Λ〉
{
α≤u
k⊕1 | α

<w,≤u
k ∨ α<u0

}

S ⊢ E(F G q ∧
∧m

i=1 G F ri)The side 
onditions are: 1 ≤ i ≤ m in R5, m+ 1 ≤ j ≤ m+ n and
Λj−m ∈W in R6, and m+ 1 ≤ k ≤ m+ n and Λk−m ∈ U in R7.The assertion α is de�ned by α

def
=
∨m+n
i=0 αi, assertions αu,wi , α≤u

i ,
α<wi and α<w,≤ui are as in De�nition 6.3.3, and dj def

= ¬en(Λj−m) andthe operation ⊕ is given by a⊕ b
def
= ((a+ b− 1) mod (m+ n)) + 1.Figure 6.5: Rule E(F G,

∧
GF)wuf



6.3] Proving Su

ess under Fairness 123The new premises dealing with weak and un
onditional fairness are R6and R7, respe
tively. Note that, in a very similar way as the assertions riof R5, ea
h element W ∪ U is asso
iated with a new �target� that is visitedin�nitely often on any run σ 
onstru
ted a

ording to R4-R7. Namely, ea
h
Λw ∈W must be taken or disabled in�nitely often, and ea
h Λu ∈ U must betaken in�nitely often on su
h a run σ (thus making sure that σ, in addition towitnessing F G q∧

∧m

i=1 GF ri, is indeed a 
omputation of S). For this reason,premises R6 and R7 are very similar to R5. The di�eren
e is that the �target�now involves taking transition sets in W or U . In order to a

ount for thisnew type of target, we introdu
e a generalised form of possibility triple.Definition 6.3.4. (Generalised Possibility Triple) Let S be a sys-tem with variables X and set of transitions Λ. Let p, q1 and q2 be assertionsover X and let Λ1,Λ2 ⊆ Λ. De�ne
{p} 〈Λ1 | Λ2〉 {q1 | q2}

def
= p→ (〈Λ1〉 q1 ∨ 〈Λ2〉 q2)

♦A generalised possibility triple of the form {p} 〈Λ1 | Λ2〉 {q1 | q2} statesthat from a p-state there is a Λ1-transition leading to a q1-state or a Λ2-transition leading to a q2-state.Consider �rst the new premise R7 
on
erning un
onditional fairness. For
m+ 1 ≤ k ≤ m+ n and Λk−m ∈ U , it readsR7. {αu,wk } 〈Λk−m | Λ〉

{
α≤u
k⊕1 | α

<w,≤u
k ∨ α<u0

}stating that in αk-mode, there is
• a Λk−m-transition leading to the su

essor mode αk⊕1 with the ranking
δ0 not in
reasing, or

• an arbitrary system transition either preserving αk-mode with δk de-
reasing (and δ0 not in
reasing) or 
ausing a fall-ba
k to α0 with δ0de
reasing.In the former 
ase, taking an Λk−m-transition means rea
hing the target for
k. Premise R6 dealing with weak fairness 
ombines the forms of R5 and R7.For m+ 1 ≤ j ≤ m+ n and Λj−m ∈W , it is given byR6.

{
αu,wj

}
〈Λj−m | Λ〉

{
α≤u
j⊕1 | (α≤u

j⊕1 ∧ ¬en(Λj−m)) ∨ α<w,≤uj ∨ α<u0

}



124 ELL Su

ess under Fairness [6.3In addition to R7, there is a se
ond possibility to hit the target for j, namelyby taking any system transition leading to a state in the su

essor mode αj⊕1where Λj−m is disabled.After this dis
ussion it is not di�
ult to see that, provided we 
an �nd therequired assertions αi and ranking fun
tions δi su
h that all premises hold,any Θ-run σ 
onstru
ted a

ording to R4-R7 is weakly fair w.r.t. all Λw ∈Wand un
onditionally fair w.r.t. all Λu ∈ U , that is, σ is a Θ-
omputationof S (w.r.t. F). It is then a tedious, but not a di�
ult a�air to adaptthe proof of soundness and relative 
ompleteness of Rule E(F G,
∧

G F) toRule E(F G,
∧

G F)wuf .Theorem 6.3.5. (Soundness and Relative Completeness of Rule
E(F G,

∧
G F)wuf) Let S be a system with fairness 
onstraintF = (P,W,∅, U)and let q and r1, . . . , rm be assertions. Then S ⊢ E (F G q ∧

∧m
i=1 GF ri) byRule E(F G,

∧
G F)wuf if and only if S |= E (F G q ∧

∧m
i=1 GF ri).The following result then follows dire
tly from the previous one andProposition 6.3.1:Theorem 6.3.6. (Soundness and Relative Completeness of Rule

E(F G,
∧

G F)fair) Let S be a system and let q and r1, . . . , rm be assertions.Then S ⊢ E (F G q ∧
∧m

i=1 GF ri) by Rule E(F G,
∧

GF)fair if and only if S |=
E (F G q ∧

∧m
i=1 GF ri).6.3.3 Rules E(S)fair and E(S)⊤wuf for ELL Su

essIn order to derive rules for proving ELL su

ess from Rules E(F G,

∧
G F)fairand E(F G,

∧
GF)wuf , we will instantiate the system S with the system SΠ as-so
iated with a proof stru
ture Π and the assertions p1, . . . , pm with {¬Kψ |

ψ ∈ ΨE}. Additionally, we will need to make two modi�
ations, one 
on-
erning Π-fairness and the other 
on
erning the spe
ial role of the 
ontrollo
ation ⊤ in the asso
iated system SΠ. The resulting Rules E(S)fair and
E(S)⊤wuf are displayed in Figures 6.6 and 6.7, respe
tively.We now examine the mentioned modi�
ations in more detail. First, wehave to deal with Π-fairness instead of the usual type fairness 
onstraints.This modi�
ation 
on
erns the enabledness assertions only. More pre
isely,in Rule E(S)⊤wuf

• assertion disΠ(DΠ) instantiates q of Rule E(F G,
∧

GF)wuf , where
disΠ(DΠ)

def
=

∧

ΛΠ
0
∈DΠ

¬enΠ(ΛΠ
0 )



6.3] Proving Su

ess under Fairness 125Let Π be an ELL proof stru
ture for system S and let ΩE =∧
ψ∈ΨE

G F¬Kψ as de�ned in Se
tion 5.2. Find:(a) assertions Θ1, . . . ,Θl, and(b) partitions (UΠ
j , D

Π
j ) of FΠ for 1 ≤ j ≤ l,su
h that 
ondition C1 below is valid and C2 
an be established byRule E(S)⊤wuf .C1. ΘΠ →
∨l
j=1 ΘjC2. SΠ,Θj ⊢(UΠ

j ,D
Π
j ) EΠ ΩE 1 ≤ j ≤ l

SΠ ⊢ EΠ ΩEFigure 6.6: Rule E(S)fair

• assertion dj def
= ¬enΠ(ΛΠ

j−m) in E6 of E(S)⊤wuf repla
es ¬en(Λj−m) in R6of E(F G,
∧

G F)wuf .The se
ond modi�
ation is based on the fa
t that any trail pre�x t0 · · · tmwith tm(K) = ⌈⊤⌉ 
an be extended to a (su

essful) Π-fair trail, so it is notne
essary to prove this every time we apply the ELL su

ess rules. For thisreason we have added a disjun
t K⊤ on the right hand side of ea
h possibilitytriple in E4-E7, saving us from proving anything about modes and rankingswhenever K⊤ 
an be rea
hed by a ΛΠ-transition (see also Se
tion 5.3.2).Be
ause of this se
ond modi�
ation the 
on
lusion of Rule E(S)⊤wuf reads
SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩErather than

SΠ;FΠ[UΠ],Ξ ⊢ EΠ(F G disΠ(DΠ) ∧ ΩE)and premise C2 of Rule E(S)fair a

ordingly reads SΠ,Θj ⊢(UΠ
j ,D

Π
j ) EΠ ΩE.Note that, in 
ontrast to the �rst modi�
ation, this one is not ne
essary but
onvenient.



126 ELL Su

ess under Fairness [6.3Let Π be an ELL proof stru
ture for system S and let SΠ withfairness 
onstraint FΠ = (PΠ,WΠ, FΠ) be the system asso
iatedwith Π. Let (UΠ, DΠ) be a partition of FΠ and suppose that
ΛΠ

1 , . . . ,Λ
Π
m enumerates WΠ ∪ UΠ. Let Ξ be an assertion and

ΩE =
∧
ψ∈ΨE

G F¬Kψ as de�ned in Se
tion 5.2. Suppose K1, . . . , Knenumerates {Kψ | ψ ∈ ΨE}. In order to apply this rule, �nd(a) a ranking fun
tion δi : ΣΠ → Wi mapping states of SΠ intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,for ea
h 0 ≤ i ≤ m+ n and 
he
k the validity of 
onditions E1-E7:E1. Ξ → αE2. α0 → ¬disΠ(DΠ)E3. ∨m+n
i=1 αi → disΠ(DΠ)E4. {αu,u0 }

〈
ΛΠ
〉 {

K⊤ ∨ α≤u
1 ∨ α<u0

}E5. {αu,wi }
〈
ΛΠ
〉 {

K⊤ ∨
(
α≤u
i⊕1 ∧ ¬Ki

)
∨ α≤u,<w

i ∨ α<u0

}E6. {
αu,wj

} 〈
ΛΠ
j−m | ΛΠ

〉 {
α≤u
j⊕1 | K⊤ ∨

(
α≤u
j⊕1 ∧ dj

)
∨ α≤u,<w

j ∨ α<u0

}E7. {αu,wk }
〈
ΛΠ
k−m | ΛΠ

〉 {
α≤u
k⊕1 | K⊤ ∨ α≤u,<w

k ∨ α<u0

}

SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩEThe side 
onditions are: 1 ≤ i ≤ m in E5, m+ 1 ≤ j ≤ m + n and
ΛΠ
j−m ∈WΠ in E6, and m+ 1 ≤ k ≤ m+ n and ΛΠ

k−m ∈ UΠ in E7.The assertion α is de�ned by α
def
=
∨m+n
i=0 αi, assertions αu,wi , α≤u

i ,
α<wi and α<w,≤ui are as in De�nition 6.3.3; disΠ(DΠ) and dj arede�ned by disΠ(D)

def
=
∧

ΛΠ
0
∈DΠ ¬enΠ(ΛΠ

0 ) and dj
def
= ¬enΠ(ΛΠ

j−m)with enΠ(·) as in De�nition 6.2.2; the operation⊕ is given by a⊕b def
=

((a+ b− 1) mod (m+ n)) + 1.Figure 6.7: Rule E(S)⊤wuf



6.3] Proving Su

ess under Fairness 127A Spe
ial Case: no Strong Fairness. If the strong fairness 
onstraint Fof the system (and hen
e FΠ) is empty, the only partition of FΠ is (∅,∅), sowe 
an dire
tly apply Rule E(S)⊤wuf by instantiating Ξ with ΘΠ and both UΠand DΠ with ∅. We 
an also repla
e disΠ(∅), being an empty 
onjun
tion,by true and �turn o�� α0 by setting it to false, making E2 and E4 holdtrivially. The help of α0 to ensure the persisten
e of disΠ(∅) is not needed,sin
e F G true is a tautology.Soundness and Relative CompletenessLemma 6.3.7. Let Π be a ELL proof stru
ture for a system S, let Ξ be anassertion and (UΠ, DΠ) a partition of FΠ, the strong fairness 
onstraint ofthe asso
iated system SΠ. Then(i) SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩE by Rule E(S)⊤wuf implies SΠ,Ξ |= EΠ ΩE, and(ii) SΠ;FΠ[UΠ],Ξ |= EΠ

(
F G disΠ(DΠ) ∧ ΩE

) implies SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩEby Rule E(S)⊤wuf .Proof. Let us 
all E(S)wuf the rule obtained from Rule E(S)⊤wuf by sub-stituting false for K⊤ (hen
e ignoring the se
ond modi�
ation above). It isstraightforward to adapt the proof of soundness and relative 
ompletenessof Rule E(F G,
∧

GF)wuf (Theorem 6.3.5) to Rule E(S)wuf , showing that thelatter rule it is sound and relatively 
omplete for proving
SΠ;F [UΠ],Ξ |= EΠ

(
F G disΠ(DΠ) ∧ ΩE

)Then (ii) follows immediately from relative 
ompleteness of Rule E(S)wuf .For (i) suppose that all premises of Rule E(S)⊤wuf are valid and 
onsider astate t0 of SΠ satisfying Ξ. Then in the pro
ess of 
onstru
ting a trail startingin t0 a

ording to E4-E7, we will either rea
h point where we have already
onstru
ted t0 · · · tk and tk |= K⊤, in whi
h 
ase this pre�x 
an 
ertainlyby extended to a su

essful Π-fair trail ϑ, or we will never rea
h a statesatisfying K⊤, in whi
h 
ase it follows from the soundness of Rule E(S)wufthat the 
onstru
ted trail ϑ is Π-fair and su

essful. In any 
ase there is asu

essful Π-fair trail starting in t0, so point (i) holds.We modify the notions of S-proof and S-provability (De�nition 5.3.3) torest on the appli
ability of Rule E(S)fair instead of Rule E(S).Theorem 6.3.8. (Soundness and Relative Completeness of Rule
E(S)fair for ELL Su

ess) Let Π be a ELL proof stru
ture for a system
S and sequent Ξ ⊢ E(φ). Then S,Ξ 
 Eφ if and only S,Ξ ⊢ Eφ.



128 ELL Su

ess under Fairness [6.3Proof. Note that Proposition 6.3.1 is easily adapted to asso
iated systems
SΠ under Π-fairness. The result then follows by this modi�ed propositiontogether with Lemma 6.3.7.



Chapter 7Appli
ation: The Bakery Proto
ol
In this 
hapter we will illustrate the use of our proof system by provingsome properties of Leslie Lamport's Bakery Algorithm for mutual ex
lu-sion [Lam74℄. The algorithm is based on the idea of a ti
ket ma
hine, wherepeople entering a (big) bakery draw a ti
ket with a number on it that indi-
ates their turn to buy their Sunday morning 
roissants.We will state and prove the properties of mutual ex
lusion (mutuallyex
lusive a

ess of the 
lients to the 
roissants), a

essibility (eventual a
-
ess, on
e having a ti
ket) and possible unboundedness (the possibility ofunbounded growth of the ti
ket numbers) of this algorithm.7.1 Program Spe
i�
ationWe will 
onsider here a version of the algorithmwith two pro
esses 
ompetingfor a

ess to their respe
tive 
riti
al se
tions. The programs for the twopro
esses P1 and P2 are given in graphi
al form in Figure 7.1.Ea
h pro
ess i has two variables: a 
ontrol variable πi, ranging over three
ontrol lo
ations, 
alled Ni (non-
riti
al se
tion), Ti (trying se
tion) and
Ci (
riti
al se
tion), and a natural number data variable yi, indi
ating theti
ket number. There are basi
ally three possible a
tions in ea
h pro
ess,one 
orresponding to ea
h 
ontrol lo
ation. Transition ti draws a ti
ket bysetting its own number yi to the number of the other pro
ess in
rementedby one, while moving from the non-
riti
al to the trying se
tion. Transition
ei enters the 
riti
al se
tion of pro
ess i, if allowed to do so by the ti
ketnumber yi, that is, the other pro
ess' number is zero or greater than yi.Finally, transition li leaves the 
riti
al se
tion by resetting the ti
ket number129



130 Program Spe
ifi
ation [7.1to zero. An additional transition i (not shown in the �gure) allows idlingsteps at any point of a 
omputation. These are mainly to model the a
tivityof the pro
esses in their respe
tive 
riti
al and non-
riti
al se
tions.
N1 T1

C1

N2 T2

C2

P1 :

P2 :
y2 := 0

y1 := 0

t1 : y1 := y2 + 1

e1 : y2 = 0 ∨ y1 ≤ y2l1 : y1 := 0

t2 : y2 := y1 + 1

e2 : y1 = 0 ∨ y2 < y1l2 : y2 := 0

Figure 7.1: Graphi
al spe
i�
ation of the bakery proto
ol transitionsThe formal spe
i�
ation of the algorithm, system Sbak, is displayed inFigure 7.2. For the sake of brevity we identify 
ontrol lo
ations Li with theassertion πi = Li in formulas and just write Li for πi = Li and L′
i for π′

i = Li,where Li ∈ {Ni, Ti, Ci}. The program starts in a state, where both pro
essesare in their respe
tive non-
riti
al se
tions Ni and the initial ti
ket numbersare zero. The fairness 
onstraint W de
lares the two sets {e1, l1} and {e2, l2}as weakly fair. This means that ea
h pro
ess 
an neither inde�nitely delayentering its 
riti
al se
tion, if it is 
ontinually possible to do so, nor stay inits 
riti
al se
tion forever (ti is always enabled in pro
ess i's 
riti
al se
tion).
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X
def
= {π1, π2, y1, y2}

Λ
def
= {i, t1, e1, l1, t2, e2, l2}

ρi
def
= pres(π1, π2, y1, y2)

ρt1
def
= N1 ∧ T ′

1 ∧ y
′
1 = y2 + 1 ∧ pres(π2, y2)

ρe1
def
= T1 ∧ C ′

1 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ pres(π2, y1, y2)

ρl1
def
= C1 ∧N ′

1 ∧ y
′
1 = 0 ∧ pres(π2, y2)

ρt2
def
= N2 ∧ T ′

2 ∧ y
′
2 = y1 + 1 ∧ pres(π1, y1)

ρe2
def
= T2 ∧ C ′

2 ∧ (y1 = 0 ∨ y2 < y1) ∧ pres(π1, y1, y2)

ρl2
def
= C2 ∧N ′

2 ∧ y
′
2 = 0 ∧ pres(π1, y1)

Θ
def
= N1 ∧N2 ∧ y1 = 0 ∧ y2 = 0

F
def
= (P,W,∅)

P
def
= {{i, t1, t2}, {e1, l1}, {e2, l2}}

W
def
= {{e1, l1}, {e2, l2}}Figure 7.2: The system spe
i�
ation Sbak = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), wherethe assertion pres(x)

def
= x′ = x des
ribes the variables that are preserved.
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ifi
ation [7.37.2 Property Spe
i�
ationWe show that the bakery algorithm satis�es the following properties:MUX φmux
def
= A G(¬C1 ∨ ¬C2)mutual ex
lusion; the two pro
esses are never in their respe
tive
riti
al se
tions at the same timeACC φiacc

def
= A G(Ti → FCi)a

essibility; whenever a pro
ess tries to a

ess its 
riti
al se
-tion then it will eventually su

eedUNB φiunb
def
= A G EF(yi ≥ B)unboundedness; from any point in a 
omputation there is a 
on-tinuation su
h that variable yi grows beyond bound B; the pa-rameter B is a �xed, but arbitrary natural number, so this meansthat yi may grow without boundWhile the �rst two are essential properties that should be satis�ed by anymutual ex
lusion algorithm, the third property is a parti
ularity of the bakeryalgorithm. It is the possibility of unbounded growth of the ti
ket variablesmakes it an in�nite state system.7.3 Veri�
ation of Mutual Ex
lusionFor the veri�
ation of the mutual ex
lusion property

φmux = A G(¬C1 ∨ ¬C2)we propose two di�erent approa
hes, the �rst based on a generi
 proof stru
-ture for invarian
e and the se
ond on a more re�ned style of proof stru
turetaking the stru
ture of the system into a

ount.7.3.1 A Generi
 Proof of Invarian
eFigure 7.3 shows the generi
 proof stru
ture ΠINV for some given system
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) and invarian
e property A G p (with p an
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ol 133assertion). The veri�
ation 
onditions generated by this proof stru
ture are:I1. Θ → ψ from A(sp)at γ0I2. ψ → p from A(ax) at γ3I3. {ψ}Λ {ψ} from A(X) at γ2The instantiation of this proof stru
ture requires that we �nd an indu
tiveassertion ψ (I3), strengthening p (I2) and implied by the initial 
ondition Θ(I1). As there is no U-subformula in A G p and no anti-axiom in the proofstru
ture, it is su

essful (Proposition 4.2.21).
γ1 : ψ ⊢ A(G p)

γ3 : ψ ⊢ A(p) γ2 : ψ ⊢ A(X G p)

γ0 : Θ ⊢ A(G p)

✓Figure 7.3: Generi
 LTL proof stru
ture ΠINV for invarian
e properties.Note that I1-I3 are exa
tly the premises of the general invarian
e rule INVof [MP91, MP95℄. Rule INV is shown to be sound and relatively 
omplete in[MP91℄. This means that any invarian
e 
an be proved using proof stru
ture
ΠINV . The generi
 proof stru
ture ΠINV is ne
essarily very 
oarse in thesense that it does not re�e
t the stru
ture of the system at hand. For our
on
rete example, we 
hoose a di�erent style of proof stru
ture exhibitingsome of the (abstra
t) stru
ture of a system.7.3.2 A Re�ned Style of Invarian
e ProofsA more detailed proof stru
ture for Sbak ⊢ φmux is shown in Figures 7.4 and7.5, where the intermediate assertions ψ1,ψ2 and ψ3 are de�ned by

ψ1
def
= N1 ∧N2

ψ2
def
= ¬N1 ∧ ¬C2 ∧ (y2 = 0 ∨ y1 ≤ y2)

ψ3
def
= ¬C1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1)The 
onstru
tion starts as with proof stru
ture ΠINV above by an appli
ationof Rule A(wk) at the root sequent γ5, yielding sequent γ4 generalising the
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ation of Mutual Ex
lusion [7.3statement to be proven. This rule appli
ation generates the side 
ondition
Θ → ψ1 ∨ ψ2 ∨ ψ3that is, I1 above where ψ def

= ψ1 ∨ ψ2 ∨ ψ3. As the initial 
ondition Θ implies
N1 and N2 this is 
learly a valid assertion.At γ4 we apply Rule A(sp) in order to split the 
ases, one for ea
h ψi. Ea
hof these 
ases is represented in Figure 7.4 by a �ma
ro node� labeled ψi. Theinternal stru
ture of ma
ro node ψi is displayed in Figure 7.5. All in
omingedges of node ψi in Figure 7.4 in fa
t point to sequent γi0 in Figure 7.5. Atthis sequent Rule A(G) is applied, yielding sequents γi1 and γi2. In order toshow that the latter is an axiom, the validity of the assertion

ψi → ¬C1 ∨ ¬C2has to be shown. Clearly, these assertions are valid for all 1 ≤ i ≤ 3. Edgesleaving the ma
ro node ψi in Figure 7.4 are in fa
t leaving sequent γi1 inFigure 7.5, where the derived Rule A(X)′ (
reating multiple su

essor nodes)is applied, leaving us with the Hoare triple
{ψi} Λ {ψ1 ∨ ψ2 ∨ ψ2}to be dis
harged. This assertion is not valid for all 1 ≤ i ≤ 3 as it stands.We need the help of an additional (indu
tive) invariant J0, de�ned by

J0
def
= (N1 ↔ y1 = 0) ∧ (N2 ↔ y2 = 0)It is easy to see (and prove) that J0 is indeed an invariant of Sbak. We use

J0 to strengthen the left-hand side of our Hoare triples, turning them into
{J0 ∧ ψi} Λ {ψ1 ∨ ψ2 ∨ ψ2}for 1 ≤ i ≤ 3. Re
all from Se
tion 5.7 that it is safe to use previously proveninvariants to strengthen the premise of a Hoare triple in this way. A little
al
ulation shows that all of these triples are indeed valid assertions.Comparing with Invarian
e DiagramsIt is interesting to observe that the 
omplete graph G 
onsisting of the ma
ronodes ψ1,ψ2 and ψ3 (here 
onsidered as �bla
k boxes�) and the edges 
onne
t-ing them is an invarian
e veri�
ation diagram as presented by Manna andPnueli in [MP94℄ (see Se
tion 2.6.4).It is easy to see that any invarian
e diagram D for S and p 
an be 
astinto a (partial) proof stru
ture by interpreting ea
h node ψi of D as the
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∨n
i=1 ψi ⊢ A(G(¬C1 ∨ ¬C2))

Θ ⊢ A(G(¬C1 ∨ ¬C2))

ψ3

ψ1

ψ2

Figure 7.4: Proof stru
ture Πmux for Sbak ⊢ φmux
γi0 : ψi ⊢ A(G(¬C1 ∨ ¬C2))

γi2 : ψi ⊢ A(¬C1 ∨ ¬C2) γi1 : ψi ⊢ A(XG(¬C1 ∨ ¬C2))

ψi ,

✓Figure 7.5: �Ma
ro nodes� ψi for proof stru
ture Πmux
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essibility [7.4�ma
ro node� displayed in Figure 7.5 and 
ompleted to a full proof stru
ture
ΠD for S ⊢ A(G p) by adding two additional sequents in the way indi
atedby our example in Figure 7.4. The veri�
ation 
onditions generated by ΠDare exa
tly the Hoare triples generated by D plus the additional impli
ations(1) Θ →

∨n

i=1 ψi, and (2) ψi → p for 1 ≤ i ≤ n, whi
h are also part of theinvarian
e diagram rule (tough not represented in D).Finally note that the veri�
ation 
onditions to be dis
harged for su
h aproof stru
ture ΠD (or, equivalently the 
onditions asso
iated with diagram
D) are essentially the same as the ones generated by ΠINV with ψ def

=
∨n

i=1 ψi.However, as the graph D need not be 
omplete (as it is a

identally the 
asein our example), it represents generally a more pre
ise abstra
t view of thesystem S under study than it is the 
ase for ΠINV .7.4 Veri�
ation of A

essibilityWe prove the a

essibility property for Pro
ess 1, that is,
φ1
acc = A G(T1 → FC1).For this purpose we propose proof stru
ture Πacc for Sbak ⊢ φ1

acc, displayed inFigure 7.6. Edges leaving A(X)-sequents are drawn with double lines. Someof these are labeled to emphasise a parti
ular underlying system transition.The upper half of the proof stru
ture (sequents γ0, . . . , γ6) is rather unin-teresting: we �rst generalise the root sequent yielding γ1 and then split 
asesat γ4. All veri�
ation 
onditions for this part hold trivially. Its primarypurpose is to transform the root sequent γ0 : Θ ⊢ A(G(¬T1 ∨ FC1)) into thesequent γ7 : T1 ⊢ A(FC1)
1. Here the proof starts to be
ome interesting.The key step in the 
onstru
tion of Πacc is the appli
ation of Rule A(sp)at sequent γ7 with the following 
hoi
e of left-hand side assertions for thethree su

essor sequents (writing pi for pγi

):
p8

def
= T1 ∧ ¬en(e1) ∧ T2

p11
def
= T1 ∧ ¬en(e1) ∧ C2

p14
def
= en(e1)The veri�
ation 
ondition to dis
harge is T1 → p8 ∨ p11 ∨ p14. This does nothold as it stands, but we 
an again safely 
all on the help of invariant J0 and1Of 
ourse, we 
ould have started from the (root) sequent T1 ⊢ A(FC1) right away,sin
e T1 |= A(FC1) implies Θ |= A(G(¬T1 ∨ FC1)), but we have 
hosen to present here a
omplete example without �short
uts�.
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γ7 : T1 ⊢ A(FC1)

γ8 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(FC1)

γ9 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(C1,XFC1)

γ10 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(XFC1)

γ11 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(FC1)

γ12 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(C1,X FC1)

γ13 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(X FC1)

γ14 : en(e1) ⊢ A(FC1)

γ15 : en(e1) ⊢ A(C1,XFC1)

γ16 : en(e1) ⊢ A(XFC1)

γ18 : C1 ⊢ A(C1,XFC1)

γ17 : C1 ⊢ A(FC1)

✓

γ0 : Θ ⊢ A(G(¬T1 ∨ FC1))

γ1 : true ⊢ A(G(¬T1 ∨ FC1))

γ4 : true ⊢ A(¬T1,FC1)

γ2 : true ⊢ A(XG(¬T1 ∨ FC1))

γ6 : T1 ⊢ A(¬T1,FC1) γ5 : ¬T1 ⊢ A(¬T1,FC1)

γ3 : true ⊢ A(¬T1 ∨ FC1)

✓

l2

h=8

h=8

h=8h=8

h=7

h=6 h=0

h=4

h=4

h=4

h=3

h=3

h=3

h=2

h=2

h=2

h=5

h=1

h=0

e2 e1

Figure 7.6: Proof stru
ture Πacc for Sbak ⊢ φ1
acc
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essibility [7.4show that
J0 ∧ T1 → p8 ∨ p11 ∨ p14is valid. This is indeed the 
ase, sin
e T1 implies (T1 ∨¬en(e1))∨ en(e1) and

¬en(T1) implies y2 > 0, hen
e T2 ∨ C2 using J0.Note that at sequents γ10,γ13 and γ16 we have in fa
t applied the de-rived Rule A(X)′ to 
reate two su

essor nodes in ea
h 
ase. At γ10 the side
ondition is
{T1 ∧ ¬en(e1) ∧ T2} Λ {(T1 ∧ ¬en(e1) ∧ T2) ∨ (T1 ∧ ¬en(e1) ∧ C2)}that is {p8} Λ {p8 ∨ p11}, whi
h is easily seen to be valid by observing thatthe idle transition i obviously preserves p8 and that transition e2 is enabledin p8-states and leads to a p11-state. All other transitions are disabled in p8-states. A similar argument shows that the side 
ondition for the appli
ationof Rule A(X)′ at γ13, namely {p11} Λ {p11 ∨ p14} holds, this time with l2leading from p11 to p14. For sequent γ16 the side 
ondition is

{en(e1)} Λ {en(e1) ∨ C1}It is 
lear that transition e1 leads to C1. Transitions i, t2 and l2 preserve theenabledness of e1. All other transitions are disabled if e1 is enabled and thuslead trivially to en(e1) ∨ C1. In parti
ular, 
onsider transition e2. We haveto show that en(e1)∧ρe2 → en(e1)∨C1. But en(e1)∧ρe2 implies that y1 = 0or y2 = 0, but also that neither N1 nor N1 holds, 
ontradi
ting invariant J0.7.4.1 Proving Su

ess for ΠaccPreparing the appli
ation of Rule A(S)fair to prove Πacc su

essful, we namethe weakly fair sets by Λw1

def
= {e1, l1} and Λw2

def
= {e2, l2} and note that theonly V-subformula in φ1

acc is the G-subformla, so we refer to it as G for short.As there is no strong fairness 
onstraint, we 
an take I def
= {•,G, w1, w2} forthe set indexing the required auxiliary assertions. We set γ19

def
= ⊤ and thende�ne the 
oding ⌈·⌉ as usual by ⌈γi⌉ = i for 0 ≤ i ≤ 19.Choosing the auxiliary quantities.We divide the (pseudo-) sequents into three groups

ΓG

def
= {γ0, . . . , γ7} ∪ {γ17, γ18,⊤}

Γw1

def
= {γ14, γ15, γ16}

Γw2

def
= {γ8, . . . , γ13}
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ol 139and then de�ne the auxiliary assertions by β• def
= false and, for ♯ ∈ {G, w1, w2},

β♯
def
=
∨

γ∈Γ♯

p̂γWe also need a ranking, whi
h we de�ne on extended states by
δ(π1, π2, y1, y2, K)

def
= h(K)where h(⌈⊤⌉) = 0 and h(⌈γ⌉) is de�ned for sequents γ ∈ Γ as indi
ated inFigure 7.6.What is the intuition leading to this 
hoi
e? Note that there are fournon-trivial strongly 
onne
ted subgraphs in Πacc, namely S1 = {γ1, γ2}, S2 =

{γ8, γ9, γ10}, S3 = {γ11, γ12, γ13} and S4 = {γ14, γ15, γ16}. Consider the three
ases, where on some trail ϑ 
ontrol K remains from some point on 
aughtin
• ⌈S1⌉: Then ϑ is su

essful (sin
e t(K) ∈ ⌈S1⌉ implies t |= KG for all
t ∈ ΣΠacc),

• ⌈S2 ∪ S3⌉: Then ϑ is Π-unfair w.r.t. ΛΠacc
w2

(sin
e the only transitionsthat 
an be taken along edges (γ10, γ8) and (γ13, γ11) are (γ10, i, γ8) and
(γ13, i, γ11), respe
tively, while for γ ∈ S2 ∪ S3, pγ implies that Λw2

isenabled, hen
e enΠ(ΛΠacc
w2

), and
• ⌈S4⌉: Then ϑ is Π-unfair w.r.t. ΛΠacc

w1
(sin
e neither (γ16, e1, γ14) nor

(γ16, l1, γ14) 
an be taken along the edge (γ16, γ14), but, for γ ∈ S4, pγimplies enabledness of Λw1
, hen
e enΠ(ΛΠacc

w1
).This means that there are no �harmful� 
y
les in the proof stru
ture Πacc (forwhi
h we would have to show that no 
omputation 
an follow them).Re
all from the dis
ussion of �me
hani
s� of Rule A(S)fair that if itspremises hold then some auxiliary assertion β♯ will eventually be
ome stableon a trail unless K⊤ is rea
hed. If this assertion is βG then by premise A3the trail is su

essful and if it is βw1

or βw2
then by A4 and A5 the trail is

Π-unfair w.r.t. ΛΠacc
w1

or ΛΠacc
w2

, respe
tively. These roles of the β♯ perfe
tlymat
hes our observations above and suggests that we 
hoose
• βG su
h that it is implied by p̂γ1 and by p̂γ2 ,
• βw2

su
h that it is implied by ea
h p̂γ for γ ∈ S2 ∪ S3, and
• βw1

su
h that it is implied by ea
h p̂γ for γ ∈ S4.
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essibility [7.4Sin
e β = βG∨βw1
∨βw2

has to be invariant along trails unless K⊤ is rea
hed,we have to make a 
hoi
e as where to put the remaining 
ontrol points of
SΠacc , namely γi for i ∈ {0, 3, . . . , 7, , 17, 18} and ⊤. We add them to ΓGyielding the de�nition of βG given above. For βw1

and βw2
note that Γw1

= S4and Γw2
= S2 ∪ S3. We have set β• to false, sin
e it is not needed.Finding the right ranking is then easy, as with our 
hoi
e of the auxiliaryassertions β♯ it 
an remain 
onstant within ea
h of the strongly 
onne
tedsubgraphs S1, . . . , S4. This is be
ause for a state t ∈ ΣΠacc we have

• t(K) ∈ S1 implies t |= KG,
• ΛΠacc

w2
is not taken along an edge in S2 or S3, and

• ΛΠacc
w2

is not taken along an edge in S4.Transitions along the remaining edges bring us 
loser to an axiom and theranking 
an be easily de�ned in a way as to de
rease along these, if ne
essary.Veri�
ation of premises A1-A6 of Rule A(S)fair.The initial 
ondition ΘΠacc = p̂γ0 
ertainly implies βG, hen
e β, so 
onditionA1 holds. Also, as already indi
ated above, βw1
implies enΠ(ΛΠacc

w1
) and

βw2
implies enΠ(ΛΠacc

w2
), so 
ondition A5 holds as well. Premise A6 holdstrivially as the strong fairness 
onstraint is empty. It remains to show A2-A4.Note that by our parti
ular 
hoi
e of the auxiliary assertions, β is triviallypreserved a
ross ΛΠ-transitions, as ρΠacc

(γ,λ,γ′) → p̂γ
′ for any (γ, λ, γ′) ∈ ΛΠacc.So in 
he
king A2-A4, we are primarily 
on
erned with the ranking.A2 A look at Figure 7.6 
on�rms that the ranking never in
reases alongan edge in the proof stru
ture and hen
e along a ΛΠacc-transition. Theranking de
reases as required along edges where the β♯-mode 
hangesand that are not leading to ⊤. Namely, these are the edges leaving γ7and γ16 as well as edge (γ13, γ14).A3 We have to show that the ranking δ de
reases along all ΛΠacc-transitionsfrom βG-states not satisfying KG and not rea
hing K⊤. The 
on
ernedsequents are γ3, . . . , γ7 in the upper part and γ17 in the lower part ofthe proof stru
ture. Clearly, δ de
reases along all edges leaving thesesequents.A4 From a βw1

-state (γ16, e1, γ17) is the only ΛΠacc
w1

-transition that 
an betaken and it de
reases δ from 2 to 1. There are two ΛΠacc
w1

-transitionsthat 
an be taken from βw2
-states, namely (γ10, e2, γ11) and (γ13, l2, γ14).These both de
rease δ as a glan
e at Figure 7.6 shows.
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ol 141This 
ompletes the veri�
ation of a

essibility for Pro
ess 1.7.5 Veri�
ation of UnboundednessIn this se
tion, we show the property of unboundedness for Pro
ess 1:
φ1
unb

def
= A GE F(y1 ≥ B)A CTL* proof stru
ture for Sbak and this property is 
omposed of the LTLproof stru
ture Πunb1 shown in Figures 7.7 and the ELL proof stru
ture Πunb2of 7.8.

γ0 : Θ ⊢ A(GE F(y1 ≥ B))

γ1 : true ⊢ A(GE F(y1 ≥ B))

γ3 : true ⊢ A(E F(y1 ≥ B)) γ2 : true ⊢ A(XGE F(y1 ≥ B))

✓Figure 7.7: Proof stru
ture Πunb1 for Sbak ⊢ φ1
unbThe LTL proof stru
ture Πunb1 redu
es the root sequent Θ ⊢ A(G EF(y1 ≥

B)) to the axiom true ⊢ A(E F(y1 ≥ B)). The justi�
ation of the latterrequires the 
onstru
tion of a proof for Sbak, true |= E(F(y1 ≥ B))). Theother side 
onditions of Πunb1 are trivially satis�ed.Proof stru
ture Πunb2 for Sbak and true ⊢ E(F(y1 ≥ B)) is to show thatfrom any state there is a 
omputation where y1 grows beyond bound B.7.5.1 Che
king the Side Conditions for Πunb2We use the three disjun
ts of invariant ψ = ψ1 ∨ ψ2 ∨ ψ3 from Se
tion 7.3 tosplit 
ases at the root sequent γ0 of Πunb2. The 
orresponding side 
ondition,the left-hand side of whi
h is strengthened with ψ, reads
ψ → (ψ1 ∧ y1 < B) ∨ (ψ2 ∧ y1 < B) ∨ (ψ2 ∧ y1 < B) ∨ y1 ≥ Bwhi
h is 
learly valid. Note that at sequents γ1,γ3 and γ5 the derived Rule E(Fr)is applied and at γ7 its 
ompanion, Rule E(Fl), is applied. Sequent γ8 is anELL axiom.
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γ2 : ψ1 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ0 : true ⊢ E(F(y1 ≥ B))

γ3 : ψ2 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ1 : ψ1 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ4 : ψ2 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ5 : ψ3 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ6 : ψ3 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ7 : y1 ≥ B ⊢ E(F(y1 ≥ B))

γ8 : y1 ≥ B ⊢ E(y1 ≥ B)

✓

l2

t2,

t1

t1,

e1

e2

t1

l1

t1

Figure 7.8: Proof stru
ture Πunb2 for Sbak, true ⊢ E(F(y1 ≥ B))



7.5] Appli
ation: The Bakery Proto
ol 143At the remaining sequents γ2, γ4 and γ6 derived Rule E(X)′ is applied to
reate two or three su

essor sequents in ea
h 
ase. We pi
k γ6 and take a
loser look at its side 
ondition
ψ3 ∧ y1 < B → 〈Λ〉 ((ψ2 ∧ (y1 < B)) ∨ (ψ3 ∧ (y1 < B)) ∨ (y1 ≥ B))Re
all that ψ3 was de�ned by ¬C1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1). Its �rst part,the assertion ¬C1 ∧ ¬N2, is equivalent to

(N1 ∧ ¬N2) ∨ (T1 ∧ T2) ∨ (T1 ∧ C2).We pro
eed by 
ase analysis a

ording to the latter assertion to show that1. N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈t1〉ψ32. T1 ∧ T2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈e2〉 (ψ3 ∧ (y1 < B))3. T1 ∧ C2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈l2〉 (ψ2 ∧ (y1 < B))All of these 
an easily shown to be valid with a little 
al
ulation. As aninformal justi�
ation note that the transition to be taken is enabled in ea
h
ase. The fa
t that t1 and e2 preserve ψ3 in (1,2) and that l1 leads from ψ3to ψ2 has already been established in Se
tion 7.3. Furthermore, observe that
e2 and l2 do not modify y1, so its value 
ertainly stays below B if this wasthe 
ase before the respe
tive transition. For (1) note that 〈t1〉ψ3 implies
〈t1〉 ((ψ3 ∧ y1 < B) ∨ (y1 ≥ B)).7.5.2 Proving Su

ess for Πunb1 and Πunb2To show that proof stru
ture Πunb1 is su

essful, all we need to do is to provethat its sequent γ3 is indeed an axiom, in other words, that proof stru
ture
Πunb2 is su

essful. To this end, we 
an dire
tly apply Rule E(S)wuf with Ξinstantiated to ΘΠunb2 and partition (∅,∅), as there are no strong fairness
onstraints. The assertion disΠ(∅), being an empty 
onjun
tion, then boilsdown to true.We set γ9

def
= ⊤ and de�ne as usual ⌈γi⌉ = i. The formula F(y1 ≥ B) isthe only U-subformula appearing in this proof stru
ture, so we refer to it as

F for short. We then have ΨE = {⊥, F} and WΠunb2 = {ΛΠunb2
w1

,ΛΠunb2
w2

}. Weasso
iate index 1 with ⊥, 2 with F, 3 with ΛΠunb2
w1

and 4 with ΛΠunb2
w2

. Then
K1

def
= K⊥ ≡ false and K2

def
= KF ≡ K ∈ {0, . . . , 7}, so

¬K1 ≡ ¬K⊥ ≡ true

¬K2 ≡ ¬KF ≡ K ∈ {8, 9}



144 Verifi
ation of Unboundedness [7.5Auxiliary assertions and rankingsWe 
hoose the auxiliary assertions α0, . . . , α4 as follows:
α0

def
= false α1

def
=

∨
i∈[0,6] p̂γi

α2
def
= p̂γ7 α3

def
= p̂γ8

α4
def
= falseThe only non-trivial ranking fun
tion is δ1, whi
h we de�ne by

δ1(π1, π2, y1, y2, K)
def
= (B−̇max(y1, y2), (π1, π2), h(K))ordered lexi
ographi
ally, where −̇ is natural number subtra
tion (with b−̇a def

=
0 for b < a) and

h(K)
def
=





2 if K = 0
1 if K is odd
0 otherwiseThe ordering relation on lo
ations is de�ned for i = 1, 2 by Ni < Ci < Ti,and the pairs (π1, π2) ordered point-wise. Denote the lexi
ographi
 orderingon the range of δ1 by ≺. Clearly, its inverse ≻ is well-founded. The otherranking fun
tions δ0,δ2,δ3 and δ4 are trivial, de�ned, e.g., by δi def

= 0.The idea is that any witnessing trail that 
an be 
onstru
ted a

ordingto E4-E7 rea
hes ⊤ at some point. This is the reason why we 
an �a�ord� toset α4 to false.Veri�
ation of premises E1-E7 of Rule E(S)wuf .Premise E1 is equivalent to p̂γ0 →
∨
i∈[0,8] p̂γi

and is 
ertainly satis�ed.Premises E2, E3 and E4 of Rule E(S)wuf are trivially valid. This is alsothe 
ase for E7, sin
e there is no strong fairness 
onstraint. It remains toshow premises E5 and E6. The latter is trivial for j = 4. For j = 3, it is
{α3}

〈
ΛΠunb2

〉
{K⊤ ∨ . . . }

≡ {K = 8 ∧ y1 ≥ B}
〈
ΛΠunb2

〉
{K = 9 ∨ . . . }whi
h is valid. It is for instan
e implied by {K = 8} 〈(γ8, i, γ9)〉 {K = 9}.Premise E5 for i = 2 follows from the validity of the following assertion:

{α2}
〈
ΛΠunb2

〉
{α3 ∧ ¬K2}

≡ {K = 7 ∧ y1 ≥ B} 〈(γ7,=, γ8)〉 {K = 8 ∧ y1 ≥ B}



7.5] Appli
ation: The Bakery Proto
ol 145Most of the work is in establishing premise E5 for i = 1. After somesimpli�
ation, it boils down to
{α1 ∧ δ1 = (u, v, w)}

〈
ΛΠunb2

〉
{K⊤ ∨ (α1 ∧ δ1 ≺ (u, v, w)) ∨ α2}or, equivalently, for all 0 ≤ k ≤ 6:

{p̂γk
∧ δ1 = (u, v, w)}

〈
ΛΠunb2

〉
{(
∨

i∈[0,6]

p̂γi
∧ δ1 ≺ (u, v, w)) ∨ p̂γ7}sin
e K⊤ 
an not be rea
hed from K ∈ [0, 6]. The results of the veri�
ationof these 
onditions are summarised in Table 7.1.

ΛΠunb2- departing B−̇transition from p̂γk
∧ . . . max(y1, y2) (π1, π2) h(K) δ1

(γ0,=, γ1) ψ1 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ3) ψ2 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ5) ψ3 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ7) y1 ≥ B n
 n
 n
 n

(γ1,=, γ2) true = = ↓ ↓

(γ2, t1, γ7) y2 + 1 ≥ B n
 n
 n
 n

(γ2, t1, γ3) y2 + 1 < B ↓ n
 n
 ↓

(γ3,=, γ4) true = = ↓ ↓

(γ4, t2, γ3) N2 ↓ n
 n
 ↓
(γ4, e1, γ3) T1 ∧ T2 = ↓ n
 ↓
(γ4, l1, γ5) C1 ∧ T2 = ↓ n
 ↓

(γ5,=, γ6) true = = ↓ ↓

(γ6, t1, γ7) N1 ∧ (y2 + 1 ≥ B) n
 n
 n
 n

(γ6, t1, γ5) N1 ∧ (y2 + 1 < B) ↓ n
 n
 ↓
(γ6, e2, γ5) T1 ∧ T2 = ↓ n
 ↓
(γ6, l2, γ3) T1 ∧ C2 = ↓ n
 ↓Table 7.1: Behaviour of ranking δ1 along ΛΠunb2-transitions from α1-states �

↓ means stri
t de
rease, = remaining 
onstant, and 'n
' �don't 
are�In this table an entry for ΛΠunb2-transition (γk, λ, γj) (where λ ∈ Λ∪{=})with formula θ in the se
ond 
olumn should be read for j 6= 7 as
{p̂γk

∧ θ ∧ δ1 = (u, v, w)} 〈(γk, λ, γj)〉 {δ1 ≺ (u, v, w)}



146 Verifi
ation of Unboundedness [7.5and for j = 7 as
{p̂γk

∧ θ} 〈(γk, λ, γ7)〉 {true}Note that adding p̂γj
on the right-hand side of these possibility triples isredundant, as these assertions are already part of ρΠunb2

(γk ,λ,γj)
.Additionally, the table indi
ates how the individual 
omponents of theranking δ1 behave along this transition. Observe that

• we need not 
are about the ranking for transitions leading to p̂γ7 ,
• for transitions of the form (γ,=, γ′) the �rst two 
omponents of theranking obviously do not 
hange, while the third, h(K), de
reases,
• for transitions of the form (γ, ei, γ

′) and (γ, li, γ
′) the �rst 
omponentremains 
onstant, while the se
ond de
reases (moving πi from Ti to Ciand from Ci to Ni, respe
tively), and

• for transitions of the form (γ, ti, γ
′) with γ′ 6= γ7 the �rst 
omponentof the ranking de
reases.We pi
k two 
ases and take a 
loser look at them.1. (γ4, l1, γ5): The possibility triple for this 
ase is equivalent to

{K = 4 ∧ C1 ∧ T2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ y1 < B ∧ δ1 ≺ (u, v, w)}
〈(γ4, l1, γ5)〉
{δ1 ≺ (u, v, w)}This follows from the valid assertion
J0 ∧K = 4 ∧ C1 ∧ T2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ y1 < B
→ ∃π′

1, π
′
2, y

′
1, y

′
2, K

′.
K = 4 ∧ ψ2 ∧ y1 < B

∧ C1 ∧N ′
1 ∧ y

′
1 = 0 ∧ pres(π2, y2)

∧ K ′ = 5 ∧ ¬C ′
1 ∧ ¬N ′

2 ∧ (y′1 = 0 ∧ y′2 < y′1) ∧ y
′
1 < B

∧ max(y′1, y
′
2) = max(y1, y2) ∧ (π′

1, π
′
2) < (C1, T2)The obvious witnessing instantiation for the primed variables is π′

1 =
N1, π′

2 = T2, y′1 = 0, y′2 = y2 and K ′ = 5. Note in parti
ular thatby the use of invariant J0 we 
an dedu
e that y1 ≤ y2 (sin
e T2), so
max(y′1, y

′
2) = y′2 = y2 = max(y1, y2). For the se
ond 
omponent ofthe ranking we have (π′

1, π
′
2) = (N1, T1) < (C1, T2). Thus, the overallranking does indeed de
rease along (γ4, l1, γ5).



7.5] Appli
ation: The Bakery Proto
ol 1472. (γ6, t1, γ5): Here, the assertion to show valid is
{

K = 6 ∧N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1)
∧ (y1 < B) ∧ (y2 + 1 < B) ∧ δ1 = (u, v, w)

}

〈(γ6, t1, γ5)〉
{δ1 ≺ (u, v, w)}This one follows from

J0 ∧K = 6 ∧N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) ∧ (y2 + 1 < B)
→ ∃π′

1, π
′
2, y

′
1, y

′
2, K

′.
K = 5 ∧ ψ3 ∧ y1 < B

∧ N1 ∧ T ′
1 ∧ y

′
1 = y2 + 1 ∧ pres(π2, y2)

∧ K ′ = 5 ∧ ¬C ′
1 ∧ ¬N ′

2 ∧ (y′1 = 0 ∧ y′2 < y′1) ∧ y
′
1 < B

∧ max(y1, y2) < max(y′1, y
′
2) < Bwhi
h is easily seen to be valid by instantiating the primed variablesin the only possible way by π′

1 = T1, π′
2 = π2, y′1 = y2 + 1, y′2 = y2and K ′ = 5. Using invariant J0 we dedu
e y1 = 0 from N1, so we have

max(y1, y2) = y2 while max(y′1, y
′
2) = y2 +1 < B. Thus, there is a stri
tde
rease in the �rst 
omponent of the ranking.This 
on
ludes our (sket
h of) the proof that Πunb2 and hen
e Πunb1 aresu

essful. We 
on
lude that Sbak |= φ1
unb.
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Chapter 8Con
lusions and Related Work
8.1 Summary and Dis
ussionThe aim of this thesis was to design a tableau-based proof system for themodel 
he
king of CTL* properties of in�nite state fair rea
tive systems andto explain its soundness and 
ompleteness in terms of model 
he
king games.In this se
tion, we will �rst re
apitulate how this goal was a
hieved and thendis
uss some sele
ted issues.Proof Stru
turesThe present work generalises the �nite state lo
al model 
he
king te
h-nique for CTL* proposed by Bhat, Cleaveland and Grumberg in [BCG95℄to in�nite-state systems equipped with a quite general type of fairness 
on-straints. The sequent format is extended to deal with in�nite sets of statesdes
ribed by assertions and the LTL proof rules of [BCG95℄ are generaliseda

ordingly. In their work, proving s |= Eψ is redu
ed to showing s 6|= A¬ψby 
onstru
ting an unsu

essful LTL proof stru
ture. While this redu
tionis appropriate from an algorithmi
 point of view, dedu
tive proofs 
all for amore dire
t approa
h and we therefore introdu
e a separate set of rules forELL. Ea
h rule system in
ludes a Split rule implementing 
ase analysis. Asimple lo
al 
ondition imposes a mild restri
tion on its appli
ation that en-sures the temporal 
onsisten
y of proof stru
tures. A proof system for CTL*is obtained from the 
ombined rule systems by extending the terminal andpredi
ate rules to a

ount for path-quanti�ed subformulas. The side 
ondi-tions for path-quanti�ed formulas involve the 
onstru
tion of a new LTL orELL proof stru
ture. 149



150 Summary and Dis
ussion [8.1Su

ess CriteriaAs in the �nite state 
ase, the lo
al rules serving the 
onstru
tion of proofstru
tures are 
omplemented with a global su

ess 
riterion, identifying theproof stru
tures that are a

eptable as proper proofs. The su

ess 
riteriafor our two types of proof stru
tures are 
ompli
ated by the fa
t that apath in a proof stru
ture is no longer followed by exa
tly one run as inthe �nite state 
ase. In parti
ular, there may be paths that are followedby no run at all. In order to a

ount for this situation, we have de�nedthe su

ess 
riteria for LTL and ELL proof stru
tures on a derived system,
alled the asso
iated system, obtained as a 
ombination of the original systemand the proof stru
ture at hand. A run of the asso
iated system, 
alled atrail of the proof stru
ture, 
ombines a system run with a path throughthe proof stru
ture. The notions of su

ess and fairness are then lifted totrails and su

ess of LTL and ELL proof stru
tures is then de�ned w.r.t.su

essful Π-fair trails. A synta
ti
 
hara
terisation of the two su

ess 
riteriaas temporal properties of the asso
iated system exhibits the duality of LTLand ELL su

ess and provides the starting point for the design of proof rulesfor su

ess.Su

ess RulesA su

ess rule for LTL 
ould be derived from a proof rule for future responseproperties as des
ribed in [MP91℄. On the other hand, the ELL su

ess ruleis new. Both of these rules rely on a well-foundedness argument, although ina di�erent way. First introdu
ed in a basi
 version for saturated systems, thesu

ess rules are extended in Chapter 6 to a

ount for fairness 
onstraints.While weak fairness is relatively easy to deal with in ea
h 
ase, it is strongfairness that makes up most of the 
omplexity of these rules. The LTLsu

ess rule A(S)fair invokes itself re
ursively to prove a similar propertyof a modi�ed (asso
iated) system with a smaller strong fairness 
onstraint,while Rule E(S)fair requires a 
hoi
e to be made, splitting the proof intoseveral 
ases a

ording to the way witnesses are supposed to satisfy the strongfairness 
onstraint. The individual 
ases are proved using Rule E(S)⊤wuf .Soundness and Completeness via GamesA novel approa
h is followed in the proof of soundness and 
ompleteness ofour proof system. Due to the expressiveness of our assertion language the bestwe 
an expe
t is to show 
ompleteness relative to the validity of assertions.The novelty is that we use a game-theoreti
 argument for the main parts ofthe proof, whi
h pro
eeds in three stages. First, we have 
hara
terised the



8.1] Con
lusions and Related Work 151CTL* satisfa
tion relation in terms of the existen
e of winning strategies inCTL* model 
he
king games. This 
hara
terisation is not a priori relatedto proof stru
tures and has an interest of its own. In a se
ond step, wehave identi�ed a 
lose 
onne
tion between LTL (ELL) trails and ∀-strategies(∃-strategies) and subsequently between non-winningness (winningness) andLTL (ELL) admissibility. Admissibility is then 
ompared to su

ess and asu

essful proof stru
ture for a system S and sequent Ξ ⊢ Qφ is shown toexist pre
isely if Player ∃ wins the game GS(Ξ,Qφ). The �nal step 
onsists inshowing that the su

ess rules are sound and relatively 
omplete. We thinkthat a game-theoreti
 analysis 
an provide interesting insights into the innerworkings of tableau proof systems su
h as the one presented here.Dis
ussionDedu
tive lo
al model 
he
king applies to any ground-quanti�ed CTL* for-mula and any rea
tive system that 
an be des
ribed as a fair transitionsystem. As with algorithmi
 lo
al methods only the part of the state spa
ethat is relevant to the property to be proved needs to be represented in aproof stru
ture. In�nite-state systems are not the only domain of appli
ationof our proof system. It is equally useful for �nite state systems that are toolarge to be model 
he
ked automati
ally.As the modal µ-
al
ulus subsumes CTL* in expressive power and severalproof systems have been proposed for it (e.g., [BS92, And93, RH96, GBK97℄),the question may arise why we need a spe
ialised proof system for CTL*.One problem with translating CTL* into the modal µ-
al
ulus is that thetranslation is double exponential [Dam94℄, indi
ating that CTL* 
an be alot more 
on
ise than the µ-
al
ulus (this is espe
ially true for 
ertain pathformulas). Another di�
ulty is that µ-
al
ulus formulas are generally harderto understand than CTL* formulas. The 
ombined e�e
t of these two prob-lems is that the translation might 
ompletely obs
ure the meaning of theoriginal formula, thus making it hard to prove using a proof system that wasdesigned for the modal µ-
al
ulus. CTL* is undoubtedly the temporal logi
with the best trade-o� between expressiveness and readability, and this fa
talone justi�es the design of a proof system for this logi
.Unlike with the dedu
tive approa
h of [MP91℄, there is no need to trans-form the property formula into some 
anoni
al form prior to starting a proof.Similar to the translation into another logi
, the problem with 
anonisationis that the original property may be obs
ured and a proof more di�
ult to�nd as a 
onsequen
e. One 
ould argue that 
anonisation has merely beenrepla
ed by a redu
tion of the original formula to the (uniform) su

ess for-mula that has to be shown to hold for ea
h proof stru
ture. However, the



152 Summary and Dis
ussion [8.1proof stru
ture itself is 
onstru
ted from the original property formula andthe presen
e of its subformulas and their unfolding forms in the sequents 
anprovide a 
ertain guidan
e for its 
onstru
tion. Moreover, the graphi
al rep-resentation of a proof stru
ture often provides 
onsiderable help in guessingthe auxiliary quantities required for the appli
ation of the su

ess rule, giventhat the su

ess 
riterion is formulated in terms of fairness 
onstraints on(essentially) the original system and su

essful paths in the proof stru
ture.Nonetheless, the appli
ation of the su

ess rules is probably the most di�
ultpart of a proof. But it should also be kept in mind that for a quite large 
lassof LTL formulas, namely for all those with no o

urren
es of Until operators,any proof stru
ture without anti-axioms is su

essful by 
onstru
tion, thusmaking the appli
ation of Rule A(S)fair needless.The pri
e to be paid for the generality of our approa
h is that it is nolonger possible to 
onstru
t proofs in a fully automati
 way. Human insightinto the system and property to be proved is required to su

essfully 
ompletea proof. This insight is brought into a proof in the form of 
hoi
es that haveto be made at spe
i�
 points. For instan
e, the appli
ation of the Next rulesrequires 
hoosing a new assertion for the su

essor sequent. Choosing theseassertions as general as possible in
reases the 
han
e of being able to loopba
k to that sequent later in the proof. Using the su

ess rules also involves
hoosing the intermediate assertions and ranking fun
tions. Making the right
hoi
es 
an lead to very 
ompa
t proofs. It is not a question of whether itis good or bad that su
h 
hoi
es need to be made, but whether the insightof the designer (and insight 
an be expe
ted!) 
an be transformed naturallyinto a su

essful1 proof. More substantial 
ase studies are needed to obtain
on
lusive answers to this question.Strong fairness is a di�
ult issue, whi
h is often ignored altogether.Nonetheless, in many situations weak fairness alone is not su�
ient to guar-antee the required progress of individual system 
omponents for essentialliveness properties to hold. Although we have proposed su

ess rules dealingwith weak as well as strong fairness, we feel that the treatment of strongfairness in the ELL su

ess rule E(S)fair is not 
ompletely satisfa
tory. It re-quires a 
hoi
e to be made prior to the appli
ation of Rule E(S)⊤wuf as to howtrails witnessing the ELL su

ess formula ΩE should satisfy the strong fair-ness 
onstraint FΠ of SΠ. We would prefer if this 
hoi
e 
ould be eliminatedor made in a more �dynami
� way as part of the appli
ation of Rule E(S)⊤wuf .An important issue that is only marginally 
overed in this thesis is thepossibility that a property fails to hold and the extra
tion of 
ounterexam-ples. An inherent problem of all dedu
tive systems is the distin
tion between1here in a non-te
hni
al sense



8.2] Con
lusions and Related Work 153our inability to �nd a proof and the 
ase where the statement we try to proveis wrong. One possibility to follow in 
ase we are unable to prove S,Θ ⊢ φis to try proving S,Ξ ⊢ ¬φ for some Ξ su
h that Ξ → Θ, that is, proving the
ontrary of the original property for a subset of the initial states. A betterapproa
h would try to use the already (possibly only partially) 
onstru
tedproof stru
ture for S and Θ ⊢ φ for su
h an e�ort and show that it is un-su

essful. A possible solution starts from the observation that a LTL orELL proof stru
ture Π for S and Ξ ⊢ Qφ is unsu

essful i� SΠ 6|= QΠ ΩQ(where Q stands for A or E) i� there is an assertion ζ implying ΘΠ su
h that
SΠ, ζ |= QΠ¬ΩQ (where Q is the dual of Q). As the negation of ΩQ has thesame form as ΩQ, it is then not di�
ult to adapt Rule A(S)fair for provingthat a ELL proof stru
ture is unsu

essful and likewise Rules E(S)fair and
E(S)⊤wuf for proving that a LTL proof stru
ture is unsu

essful. The 
ase ismore involved for CTL*, sin
e a linear 
ounterexample does not always exist.This topi
 
ertainly deserves further attention.8.2 Related Work8.2.1 Finite-State Model Che
kingWe have already dis
ussed the paper [BCG95℄ whi
h provided the startingpoint for the development of our dedu
tive lo
al model 
he
king te
hnique.In re
ent work by Biere, Clarke and Zhu [BCZ99℄, developed in paral-lel with ours but independently, they propose an interesting tableau-basedmethod for ELL that 
ombines lo
al and global model 
he
king te
hniquesfor �nite-state systems. Their sequents have the form S ⊢ E(Φ), where S isa �nite set of states and their rules are similar to our ELL rules. They alsohave a Split rule, although not needed for 
ompleteness in their 
ase:

S ⊢ E(Φ)

S1 ⊢ E(Φ) S2 ⊢ E(Φ)
S1 ∪ S2 = SThe side 
ondition requires that the two 
ases S1 and S2 exa
tly 
over theoriginal set S. This rule 
an therefore not be used for weakening. Their Nextrule is also a restri
ted version of ours:

S ⊢ E(X Φ)

img(S) ⊢ E(Φ)where img(S)
def
= {s′ | ∃s ∈ S. s→ s′} with transition relation →. This is theset-theoreti
 equivalent of the strongest post-
ondition. For total transitionrelations, this is a parti
ular way to satisfy (the set-theoreti
al equivalent of)



154 Related Work [8.2the possibility triple appearing as the side 
ondition of our rule E(X). Using
img(S) in the su

essor sequent is 
ertainly more suitable for algorithmi
purposes than using a subset of img(S) (
orresponding to a 
hoi
e of su

essorstates). As a 
onsequen
e of these restri
tions (w.r.t. to our system) and the�niteness of the sets S, any state appearing in a sequent of a proof stru
ture isrea
hable from an initial state and any path in the proof stru
ture is followedby at least one run of the system. Therefore, a witnessing run 
an always beextra
ted from a su

essful path (they do not 
onsider fairness). The interestof this method lies in the ability to represent the �nite sets appearing in thesequents by BDDs and to have e�
ient algorithms manipulating them. BDDte
hniques have hitherto been used only for global model 
he
king. Thiste
hnique thus 
ombines advantages of lo
al and global model 
he
king.8.2.2 Dedu
tive and Semi-Algorithmi
 MethodsManna and Pnueli's Proof SystemThe proof system des
ribed in [MP91, MP95℄ has already been sket
hed inSe
tion 2.6.3. The advantage of this system is the small number (three)of basi
 rules, whi
h are shown to be relatively 
omplete. The pri
e to bepaid is that formulas have to be brought into 
anoni
al form by a 
omplextranslation [LPZ85, MP90℄ prior to the proof. The drawba
ks of 
anonisationhave already been dis
ussed above.Diagram-Based MethodsSome of the diagram-based methods have been sket
hed in Se
tion 2.6.4. Theveri�
ation diagrams of [MP94℄ are a diagrammati
 form of some of the proofrules in [MP91℄. We have already 
ompared them with our approa
h in theprevious 
hapter (Se
tion 7.3.2), where we showed that invarian
e diagrams
an be 
onsidered as a 
ondensed form of proof stru
tures. Other types ofveri�
ation diagrams 
an be translated to proof stru
tures in a similar way.Generalised veri�
ation diagrams (GVDs) [BMS95, MBSU98℄ (and thetheses [Uri98, Sip99℄) are a dire
t proof method as is ours (in 
ontrast tomethods that are driven by the sear
h for a 
ounterexample su
h as DMC).It 
onsists of �rst 
onstru
ting an abstra
tion of the system (the GVD) whi
his then model 
he
ked algorithmi
ally. An advantage of separating thesetwo steps is that an abstra
tion 
an possibly be used for the veri�
ation ofseveral properties. As with all abstra
tion methods, if the model 
he
kingphase fails to establish the property then this result is not 
on
lusive and theabstra
tion needs to be re�ned until the model 
he
ker su

eeds (provided the



8.2] Con
lusions and Related Work 155property holds). On the other hand, in the 
onstru
tion of a proof stru
turethe system and its property are explored hand-in-hand and the presen
e ofthe temporal formulas in the sequents may provide some guidan
e for its
onstru
tion. Moreover, at least for LTL properties, any proof stru
ture issu

essful, provided the property holds. If we are unable to 
omplete the
onstru
tion of an LTL proof stru
ture then we 
an still try to extra
t a
ounterexample (a run following an unsu

essful path) from the pre-proofstru
ture 
onstru
ted so far. The 
onstru
tion of an ELL proof stru
turemight however fail due to badly 
hosen assertions, even if the property holds.Dedu
tive model 
he
king (DMC) [SUM99℄ (and the theses [Uri98, Sip99℄)di�ers from our method in that it is indire
t, that is, driven by the sear
h fora 
ounterexample. Whereas the GVD method starts on the system side (bybuilding an abstra
tion), the DMC method starts on the side of the formula,that is, from the tableau of the negation of the LTL formula ϕ to be veri�ed(
alled the initial falsi�
ation diagram). It then pro
eeds by re�nement offalsi�
ation diagrams, while maintaining the invariant that all 
ounterexam-ples to ϕ present in the system (if any) are represented in ea
h falsi�
ationdiagram. The pro
ess is stopped if the language a

epted by a falsi�
ationdiagram 
an be seen to be empty.As an early diagram-based method ∀-automata were proposed in [MP89℄as an alternative to temporal logi
 veri�
ation. These are �nite-state ω-automata that a

ept an in�nite sequen
e σ if all runs of the automaton on
σ are a

epting. This is reminis
ent of the su

ess 
riterion of LTL proofstru
tures, where all Π-fair trails are required to be su

essful, that is, forany 
omputation σ all trails proje
ting to σ have to be su

essful.It should be noted that ∀-automata, GVDs and DMC (the latter two be-ing based on a form of Müller automaton) have all the expressive powerof ω-regular languages [Tho90℄ or, equivalently, extended temporal logi
(ETL) [Wol83℄.Fix and Grumberg's Proof System for CTLThe �rst proof system for CTL is proposed by Fix and Grumberg in [FG96℄.They use transitions systems with weak fairness 
onstraints as their 
ompu-tational model. Sequents are of the form P Sat p→ φ, where P is a program,
p is an assertional pre-
ondition and φ is a CTL formula (where path quan-ti�
ation is over weakly fair runs). A sequent is valid if the initial state ofevery 
omputation tree of P satis�es the impli
ation p → φ. They presenta set of rules for proving the validity of sequents. The rule to be appliedto a sequent is determined by the top-level 
onne
tive of the CTL formula(negated forms are also in
luded). Ea
h rule redu
es its 
on
lusion to a set



156 Related Work [8.2of assertions and/or simpler temporal properties. The proof system is shownto be relatively 
omplete.Their rule for P Sat p → ¬A(φ1 Uφ2) redu
es this sequent to proving
P Sat p → EG(¬φ2) or P Sat p → ¬E(¬φ2 U(¬φ1 ∧ ¬φ2)). It is interestingto see how their rule for P Sat p → E Gφ ensures that a (weakly) fair runsatisfying Gφ exists. Their rule me
hanism to a
hieve this is based in theobservation that a fair run is 
omposed of fair segments. On a fair segmentea
h fair transition is either disabled in some state or taken somewhere (seealso the proof of 
ompleteness of Rule F-RESP in [MP91℄). They introdu
e afun
tion g : Σ → {0, 1}n mapping states to a bit ve
tor with one bit for ea
hfair transition of the system. The premises are designed in su
h a way that gre
ords the transitions that have been granted (that is, disabled or taken) ona segment. The end points of segments are indi
ated by an auxiliary assertion
I that is required to hold in�nitely often on a run witnessing Gφ. Assertion
I is required to imply g = 0 (n zeros), indi
ating that all fair transitionshave been granted. In this way, g implements a parti
ular form of rankingfun
tion.It is interesting to 
ompare this me
hanism with the modes and rank-ings of our Rule E(F G,

∧
G F)wuf for proving properties of the form E(F G q∧∧m

i=1 GF ri) (Se
tion 6.3.2). Suppose that we have no assertions ri and anempty un
onditional fairness 
onstraint. By setting α0
def
= false we 
an a
tu-ally �turn o�� the fall-ba
ks and thus obtain a rule for properties of the form

EG q, albeit only for assertions q. Only premises R1, R3 and R6 remain non-trivial for this variant of Rule E(F G,
∧

GF)wuf . The existen
e of a (weakly)fair run witnessing G q is ensured by the modes αi and rankings δi, one su
hpair for ea
h Λi ∈W . Whereas their ranking g measures the distan
e to theend of a fair interval, our mode αi �remembers� the Λi to be granted nextand δi measures the distan
e to the point where Λi is granted. Premise R6requires that the mode is swit
hed from αi to αi⊕1 upon granting Λi, therebyensuring that all elements of W are granted in a 
y
li
 manner.Considering the 
apability required of their fun
tion g to re
ord the grant-ing of transitions, it is not surprising that they also need a history variablein the proof of relative 
ompleteness of their rule.Other Proof SystemsIn [HGD95, BDG+98℄ a proof system for �rst-order ACTL is proposed.ACTL is the sublogi
 of CTL, where only universal path quanti�ers areallowed. They generate a �rst-order su

ess formula, the validity of whi
his su�
ient to 
on
lude that the property holds. Their system is not rel-atively 
omplete, sin
e it does not in
lude a well-foundedness argument to



8.2] Con
lusions and Related Work 157show that U-formulas ful�ll their promises. However, their primary goal isnot 
ompleteness, but to obtain a high degree of automation by separating
ontrol from data aspe
ts.Several proof systems the modal µ-
al
ulus have been proposed. Brad-�eld and Stirling [BS92, Bra91℄ des
ribe a tableau system for the proposi-tional µ-
al
ulus that was obtained by generalisation from the �nite-statesystem in [SW91℄. Andersen has extended the Winskel's rewriting versionof the latter system [Win91℄ to the in�nite-state 
ase [And93℄. Rathke andHennessy des
ribe a proof system for a �rst-order version of the modal µ-
al
ulus [RH96, Rat97℄.A 
ompositional proof systems for sequential value-passing CCS pro
essesand the �rst-order µ-
al
ulus is presented by Gurov, Berezin and Kapron[GBK97℄ and a separate system handling parallel 
omposition is introdu
edin [BG97℄ (see also Gurov's thesis [Gur98℄, where both systems are des
ribed).Mads Dam [Dam98℄ also des
ribed a 
ompositional proof system for the �rst-order µ-
al
ulus.8.2.3 Model Che
king GamesModel 
he
king games were introdu
ed by Stirling in a series of papers [Sti95,Sti96a, Sti97℄. It turns out that a su

essful tableau 
onstru
ted a

ordingto the rules in [SW91, Sti96b℄ 
an be seen as a winning strategy for su
ha game2. This is in 
ontrast to our system, where a trail (path) of a proofstru
ture 
orresponds to a strategy (pre-strategy) for CTL* games.A e�
ient lo
al model 
he
king algorithm for the µ-
al
ulus based ongames is presented in [SS98℄. It 
onstru
ts a winning strategy for the model
he
king game 
orresponding to the property to be veri�ed. By playingagainst the ma
hine (and loosing ea
h play) these games 
an help the userunderstand why a property hold or fails. This algorithm has been in
orpo-rated in to the Edinburgh Con
urren
y Workben
h [MS℄.Model 
he
king games for CTL* have been proposed only very re
ently in(as yet) unpublished work by Lange and Stirling [LS00℄. The di�eren
e withour CTL* games is that while our games are played along runs of the system,their games are state-based with 
on�gurations of the form p, s ⊢ [ϕ],Φ,where p is the 
urrent pathplayer (either ∃ or ∀), s is a state, ϕ is theformula in fo
us and Φ is a set of formulas. They give a set of rules thatde�ne the legal moves and the player who possibly needs to make a 
hoi
e (ofa subformula or su

essor state) in that move. Disregarding the fo
us, these2This view of tableau as strategies leads to a spe
ta
ular simpli�
ation of the originalproof of soundness and 
ompleteness in [SW91℄.



158 Related Work [8.2rules are very similar to our rules for LTL and ELL, but they are 
ombinedinto one system with the pathplayer in the 
on�guration indi
ating whi
hpart of the system is 
urrently being used. The pathplayer is reset whena path-quanti�ed formula appears in the fo
us. The formulas in fo
us in a
on�guration and its su

essor are usually related by a generation relation(in our terminology), but there is a spe
ial rule allowing the pathplayer'sopponent to 
hange the fo
us. This is ne
essary, be
ause plays move fromstate to state and not along a run as in our 
ase, and gives the opponenta 
han
e to redo previous moves. Their work is too re
ent to give a morein-depth 
omparison, but the pre
ise relationship of their games with oursand espe
ially with proof stru
tures will provide a ni
e topi
 for furtherinvestigation.It is interesting to 
onsider our CTL* games and strategies in the light ofthe work on abstra
t games presented by Perdita Stevens [Ste98a, Ste98b℄.An abstra
t version of our CTL* games 
ould have 
on�gurations (R, φ),where R is a set of runs and φ a CTL* formula. The rules remain essentiallythe same ex
ept that the games are now played along all the runs in R simul-taneously. A Next move would thus pro
eed from a 
on�guration (R,Xψ)to (R′, ψ), where R′ = {σ1 | σ ∈ R}. Unlike 
on
rete plays, �nite abstra
tplays may end in a draw.Consider the abstra
t game GS(R0,Aφ) where Aφ is a LTL formula and
R0 is the set of Ξ-
omputations following a path π in a LTL proof stru
turefor S and Ξ ⊢ Aφ. Then the path π 
an be transformed into an abstra
t
∀-strategy τπ for that game by de�ning

Tπ
def
= {Rπ ∗ ι | ι ∈ I∗(π)} τπ

def
= ♮Tπwhere

Rπ(i)
def
= {σ̃ϑ(i) | ∃ Π−fair trail ϑ. πϑ = π}Note that Rπ(0) = R0. This strategy treats all 
omputation following π ina uniform way, su
h that no (abstra
t) plays end in a draw. In summary,paths in proof stru
tures seem to 
orrespond to strategies in abstra
t games,while trails 
orrespond to strategies of 
on
rete games. The details remainto be 
he
ked.



8.3] Con
lusions and Related Work 1598.3 Dire
tions for Future WorkSome possible tra
ks for future work that 
ome to mind are listed below.Tool supportFor the pra
ti
al appli
ation of our method tool support is essential. Thenumber of veri�
ation 
onditions alone makes proofs by hand error-prone. Asuitable tool would 
onsist of a graphi
al front-end based on a graph editorfor the 
onstru
tion of proof stru
tures and a theorem prover to dis
hargethe veri�
ation 
onditions at the ba
k-end. The front-end 
an be based on agraph editor with appli
ation of proof rules driven by the syntax of formulas.Cli
king on a formula on the right-hand side of a sequent 
ould apply therule 
orresponding to its top-level 
onne
tive. Cli
king on the left-hand sidewould invoke the Split rule. The front-end would also manage the veri�
ation
onditions generated by the rules and provide an interfa
e to the theoremprover. High-level ta
ti
s and te
hniques for the automati
 generation ofinvariants (see e.g., [BBM97℄) 
ould assist the user in the 
onstru
tion ofproof stru
tures. For proving su

ess, auxiliary assertions 
ould be assignedto ea
h sequent in the proof stru
ture and the Hoare or possibility triplesto be dis
harged 
ould be asso
iated to edges with the proof tool trying toidentify and eliminate the trivial 
onditions. We plan to implement su
ha tool with system spe
i�
ations based on the high-level 
on
urrent obje
tlanguage SOL and its twisted system semanti
s as des
ribed in the thesis ofKrzysztof Worytkiewi
z [Wor00℄.Re�nement of Proof Stru
tures and SCS-Based Su

ess RulesAfter the partial 
onstru
tion of a proof stru
ture it may happen that wewould like to make it more ��ne-grained�, in order to simplify the subsequentappli
ation of a su

ess rule, for example. Therefore, it 
ould be helpful tobe able to re�ne an already or partially 
onstru
ted proof stru
ture, insteadof starting the 
onstru
tion from s
rat
h. The design of re�nement rulessimilar to the ones used in DMC [SUM99℄ 
ould be 
onsidered.Another point of investigation is in alternative su

ess rules based onan examination of ea
h unsu

essful strongly 
onne
ted subgraph (SCS),similar to the ones used in DMC [SUM99℄ and GVDs [BMS95, MBSU98℄.These 
ould in some situations provide a more �user-friendly� way of provingsu

ess. A possible problem is that the number of SCS grows exponentiallywith the size of a proof stru
ture. However, for many pra
ti
al appli
ationsthe number of SCS might be small enough to make su
h an approa
h a



160 Dire
tions for Future Work [8.3suitable alternative.Real-time systemsReal-time systems (see [AH92℄ for a survey) are intrinsi
ly in�nite statedue to the unbounded progress of time. In the 
lo
ked transition system(CTS) model of [KMP98℄, there are several 
lo
k variables one of whi
h isthe (global) master 
lo
k T . Time is advan
ed by a spe
ial tick transition,while system transitions do not modify the 
lo
k variables. Progress (oftime) is guaranteed by the so-
alled non-zenoness 
ondition, whi
h repla
esthe fairness 
onstraints found in dis
rete systems. A CTS run is zeno if timestops at some point or 
onverges to an upper bound. Only non-zeno runs(with time diverging) are 
onsidered as 
omputations. A CTS is non-zeno ifevery 
omputation pre�x 
an be extended to a 
omputation. This 
ondition
an be expressed as the CTL formula
∀ǫ > 0. ∀t. A G(T = t→ E F(T ≥ t+ ǫ))where path quanti�
ation is to be understood over all runs [Sip99℄. Thisformula 
an be veri�ed using our proof system.However, for the proper veri�
ation of properties of real-time systemspath-quanti�
ation ranges over 
omputations only (that is, the non-zenoruns). The lo
al rules for the 
onstru
tion of proof stru
tures 
an be usedfor this purpose as they stand, but the su

ess rules need to be reviewed andadapted for non-zenoness.Model Che
king Games and CounterexamplesThe pre
ise 
onne
tion between our CTL* games and the version presentedin [LS00℄ should be investigated. Our own CTL* games are played along runsand, while appropriate for proving soundness and 
ompleteness of our proofsystem, seem not very suitable for the extra
tion of winning strategies that
an help the users understand why a property holds or not. The 
onne
tion ofthe CTL* games of [LS00℄ to proof stru
tures should be 
arefully examined.In parti
ular, it should be 
he
ked whether winning strategies for their CTL*games are represented in some form in our proof stru
tures.
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