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Version AbregéeCette thèse traite de la véri�ation formelle de propriétés temporelles dessystèmes réatifs à états in�nis. Nous proposons un système de preuve basésur des tableaux et permettant la véri�ation, par model heking, de pro-priétés exprimées dans la logique arboresente CTL* onstruite sur un lan-gage d'assertions L. Le système de preuve est apable de traiter des formulesCTL* arbitraires sans avoir besoin de les transformer dans une forme ano-nique.Notre méthode repose sur la onstrution de strutures de preuve aussionnues sous le nom de tableaux. Il existe deux types de strutures de preuve(LTL et ELL), haun orrespondant à une sous-logique de CTL*, et deuxensembles de règles loales pour les onstruire. L'appliation de quelquesunes de es règles exige la démonstration de la validité de ertains assertionsde L. Chaque type de struture de preuve est lié à son propre ritère desuès. Ce dernier assure que les sous-formules exprimant des promessessont satisfaites d'une manière appropriée: seuls les tableaux satisfaisant eritère sont des démonstrations légales d'une propriété.Chaque ritère de suès est exprimé sous la forme d'une propriété tem-porelle partiulière. Cette dernière doit être satisfaite par le système de tran-sition assoié à un tableau donné et au système que l'on véri�e. Un paroursdans e système assoié, appelé un trail du tableau, ombine un parours dusystème ave un hemin du tableau. Une règle de preuve supplémentaire estintroduite pour haque ritère de suès. Ces règles utilisent un argumentde bonne-fondation pour établir le suès d'une struture de preuve. Unepreuve d'une propriété CTL* est alors une olletion �nie de strutures depreuve LTL et ELL, dont le suès a été démontré par l'appliation de la règleappropriée. Du fait que les règles de suès sont aussi exlusivement baséessur le raisonnement dans le langage d'assertions L, notre méthode réduittout raisonnement temporel à la démonstration de la validité d'assertionstirées de L. En onséquene, il n'y a pas besoin de prouver de theorèmesde la logique temporelle elle-même. Nous appelons notre méthode de preuvemodel heking loal dedutive, ar elle généralise en même temps des teh-vii



viii Version Abregéeniques de model heking pour des systèmes à états �nis et des systèmes depreuve pour LTL et CTL qui ont été proposés dans la litérature.Nous démontrons que notre systéme de preuve est orret et ompletrelatif à la validité d'assertions tirée de L. Une partie majeure de ette preuveest basée sur la théorie des jeux. Dans une première étape la notion d'unjeux CTL* in�ni pour deux joueurs est introduite. Selon e jeu l'objetifdu premier joueur (appelé ∃) est de montrer qu'une propriété CTL* estsatisfaite, alors que l'autre (appelé ∀) essaie de montrer le ontraire. Nousdonnons une haratérisation de la satisfation d'une propriété CTL* enfontion de l'existene d'une stratégie gagnante pour le joueur ∃. Dans undeuxième temps, nous analysons la struture interne des hemins et trailsd'une struture de preuve et nous mettons ette struture en relation avel'idée des jeux dévelopée auparavant. En partiulier, à haque trail d'unestruture de preuve LTL (ELL) orrespond une stratégie du joueur ∀ (∃) pourun jeu LTL (ELL). Nous montrons qu'une preuve d'une propriété LTL ouELL par notre système existe préisement si le joueur ∃ possède une stratégiegagnante pour le jeu orrespondant. Pour e faire, on doit omparer la notionde suès à elle d'admissibilité, qui est une notion alternative de suèsproposée dans la literature. Les résultats pour LTL et ELL sont ensuitegénéralisés à CTL* entier. La dernière étape onsiste en la démonstration dela orretion et de la omplétude des règles de suès.Di�érents types d'équité sont ensuite étudiés et nos règles de suès sontétendues pour les prendre en ompte. Finalement, l'appliation du systèmede preuve est illustrée sur un exemple non banal.



AbstratThe present thesis is about the formal veri�ation of temporal properties ofin�nite-state reative systems. We propose a tableau proof system for themodel-heking of properties expressed in the full branhing time temporallogi CTL* over an assertion language L. The proof system applies to anarbitrary CTL* formula. There is no need to transform formulas into someanonial form.The basi proof objet in our method is a proof struture (a.k.a. tableau).There are two types of proof strutures (LTL and ELL), eah orrespondingto a sublogi of CTL*. Aordingly, there are two dual sets of proof rules.Some of these rules require the validity of an assertion from L to be provenas part of their appliation. Eah type of proof struture has its own suessriterion, whih ensures that eventuality subformulas of the original formulaare satis�ed as appropriate. Only suessful tableaux qualify as legal proofsof a property.Eah suess riterion is formulated as a temporal property of some spe-i� form. The latter has to be satis�ed by a ertain transition systemassoiated with a given tableau and the reative system to be veri�ed. Arun of this assoiated transition system, alled a trail of the proof struture,ombines a run of the system with a path in the proof struture. We intro-due one additional proof rule for eah suess riterion. These rules employa well-foundedness argument to establish that a proof struture of the re-spetive type is suessful. A proof of a CTL* property of a given systemis then a �nite olletion of LTL and ELL proof strutures the suess ofwhih has been established using the respetive rules. As the suess rulesalso exlusively rely on reasoning in L our method redues all temporal rea-soning to proving the validity of formulas from L. Therefore, no theoremproving in the temporal logi itself is required. We all our method dedutiveloal model heking, as it generalises both loal model heking tehniquesfor �nite-state systems as well as proof systems for LTL and CTL that havebeen desribed in the literature.We show that our proof system for model heking is sound and ompleteix



x Abstratrelative to validity of formulas from the assertion language L. The majorpart of the proof relies on a game-theoreti argument. As a �rst and quiteindependent step we introdue the notion of a CTL* game, an in�nite two-player game, where one player (∃) tries to show that a property holds of thesystem, while the other player (∀) tries to refute it. We give a haraterisationof the satisfation of a CTL* property in terms of the existene of a winningstrategy for Player ∃. In a seond step, we analyse the internal struture ofpaths and trails in proof strutures and link it up with the game-theoretiideas developed in the previous step. In partiular, to eah trail of a LTL(ELL) proof struture orresponds a ∀-strategy (∃-strategy) of a LTL (ELL)game. We show that a suessful proof struture for a given LTL or ELLformula and system exists preisely if Player ∃ has a winning strategy forthe orresponding game. In doing so, we ompare our notion of suess withadmissibility, an alternative notion of suess proposed in the literature. Theresults for LTL and ELL are then lifted to full CTL*. As a �nal step we showthat the suess rules are sound and relatively omplete.We then study di�erent types of fairness and extend our suess rules toaount for them. Finally, the appliation of the proof system is illustratedon a non-trivial example.
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Chapter 1IntrodutionModern soiety depends more and more on its own tehnologial ahieve-ments. Powerful omputer systems onstitute the bakbone of almost anyoneivable tehnology today, be it in its development or in its implementa-tion. The omplexity of these systems is growing easelessly. Most of today'somputing systems are haraterised by an ongoing interation with their en-vironment. This interation ours in various forms suh as the transmissionof data over a ommuniation network to another mahine, interation witha human user, or the exhange of information with the sensors and atuatorsof an embedded ontrol system. Suh systems are alled reative, in ontrastto transformational systems whih ompute an output from a given input.Considering our dependeny on these systems, it is lear that they shouldbe orret. The development of orret reative systems represents a serioushallenge for hardware and software engineering. Reative systems are mostoften omposed of several ommuniating onurrent proesses. The inherentomplexity of onurreny and ommuniation makes the disovery of designerrors a di�ult task. Not only may there be mistakes in the alulationssuh systems perform (as in transformational systems), but there is alsothe possibility of synhronisation failures (suh as as deadloks, starvation,unexpeted message reeption et.). The behaviour of reative systems isbest desribed in terms of their ongoing interation with the environmentrather than a relation between input and output data as for transformationalsystems. In fat, while termination is most often a required property oftransformational programs, it is often undesirable for reative systems.Traditional software engineering methods for error detetion suh as sim-ulation and testing an quikly beome insu�ient in this ontext. This doesnot mean that they should be abandoned. Simulation, for example, is a veryvaluable and e�ient method for error detetion in the initial phase of de-sign validation. However, due to the sheer number of possible evolutions of1



2 [1.0onurrent systems, simulation and testing are unable to reah a satisfyingoverage, leaving the more subtle errors buried in the depths of the statespae. As the ost for the elimination of errors inrease the later they aredeteted, there is also an immediate eonomial interest to eliminate errorsas early as possible in the development yle.Formal Spei�ation and Veri�ationResearhers in the �eld of formal methods takle this problem with math-ematial methods that allow the rigorous veri�ation of designs. A formalframework for the spei�ation and veri�ation of reative systems shouldinlude at least the following parts:
• a mathematial model of reative systems
• a requirement spei�ation language, and
• a veri�ation methodModels The large majority of frameworks (and this thesis is no exeption)that inlude a veri�ation method use transition systems as their omputa-tional model of reative systems. This is ertainly due to the simpliity of thismodel. A transition system is essentially a graph, where the nodes representsystem states and the edges atomi transitions between these states. Conur-reny is modeled by non-deterministi interleaving of atomi ations. Manyother models of reative omputation have been proposed in the literature(see [SNW96℄ for an overview), some of whih like Petri Nets [Rei85℄ expli-itly represent the onept of onurreny as distint from non-determinism,but many of them lak veri�ation frameworks.Spei�ation Two di�erent lasses of requirement spei�ation an bedistinguished. The �rst lass ould be alled relational. In this approah thedesired behaviour of a system design is formulated as another, more abstratsystem. Here the system desription language and requirement spei�ationlanguage oinide. Systems are ompared w.r.t. some behavioural preorder orequivalene relation. As there is no general agreement on what aspets of thebehaviour of a proess should be visible to an outside observer, a plethoraof di�erent behavioural relations has been proposed in the literature (see[dN87, vG90, vG93℄ for overviews). This type of requirement spei�ation isomplete in the sense that all onstraints on the behaviour of an implemen-tation are represented in the abstrat system.



1.0] Introdution 3The method of spei�ation re�nement is an example of this approah tospei�ation. Starting from an initial abstrat system a series of more andmore onrete spei�ations is produed by the proess of re�nement until thedesired level of detail of the implementation is obtained. Eah spei�ationis related to the previous one by a behavioural preorder relation suh assimulation. Frameworks based on set theory (see e.g., [Sta88, AL91℄) as wellas on temporal logi (see e.g., [Pnu92, KMP93, Lam94℄) have been proposed.Proess algebras are another instane of this lass (see e.g., [Mil89, Hoa85,BW90, Mil99℄), where algebrai theories of proess terms and behaviouralrelations between them are developed.The seond type of requirement spei�ation follows a logial approah:the spei�ation language is a modal or temporal logi that is interpreted overthe states or omputations of a transition system. The behaviour of a designis spei�ed in terms of a olletion of desired properties expressed as formulasof the logi. Depending on the partiular logi a system satis�es a propertyif all its initial states or all its omputations do. Many useful properties ofreative systems an be expressed in these logis, inluding safety properties(�nothing bad happens�) and liveness properties (�something good happens�).The approah followed in this thesis falls into this ategory. The logi weuse as our spei�ation language is CTL* [EH86℄, a full branhing-time logithat allows quanti�ation over omputations to be freely mixed with linear-time operators. As suh it is more expressive than linear-time temporal logi(LTL) or omputation tree logi (CTL), but less expressive than the modal
µ-alulus. For a survey of temporal and modal logis see [Eme90, Sti92℄.Veri�ation In this thesis we onentrate on the veri�ation of logialspei�ations, also alled model heking. For �nite-state systems modelheking is deidable and e�ient algorithms exist for various logis (see[CGL93, CGP99℄ for a survey). An obvious advantage of algorithmi modelheking is that it is fully automati. In ase a property fails to hold, thealgorithm an also produe a ounterexample, whih is of invaluable helpin understanding the reason for the failure. The main drawbak of algo-rithmi model heking is the so-alled state spae explosion problem: theexponential growth of the state spae in the number of omponent proesses.Although many sophistiated heuristis have been developed to alleviate thisfundamental problem, memory shortage is still the main limiting fator forthe appliation of algorithmi model heking.Model heking methods based on dedutive reasoning on the other handare appliable to arbitrary in�nite-state systems. Their strength lies in theirgenerality. As in general the model heking problem is undeidable, it an-



4 Sope of the Thesis [1.1not be fully automati and therefore requires a ertain expertise from theuser, whih is the main drawbak of this method.More reently, there has been a trend in ombining the good sides ofboth approahes, for example, by onstruting a �nite-state abstration ofthe system by dedutive means whih is then model-heked algorithmially[DF95, DGG97, GS97, RSS95, MBSU98℄.1.1 Sope of the ThesisIn this thesis we address the problem of model heking CTL* properties ofsystems with possibly in�nite state spaes.Systems are spei�ed by a syntatial representation of transition systemsformulated in an assertion language L. In order to ompensate for the mod-eling of onurreny by non-determinism in the transition system model, oursystem spei�ations inlude fairness onstraints to model the fair shedulingof system omponents. Only runs of the system where all these omponentsreeive fair treatment are onsidered as omputations.We present a tableau-based proof system for ground-quanti�ed CTL*,whih is obtained from pure propositional CTL* by replaing atomi propo-sitions by assertions of L over the system variables. These assertions mayontain �rst-order quanti�ers, but no �rst-order quanti�ation is allowed inthe sope of temporal operators. The proof system is omposed of two dualsets of loal rules, one dealing with the universal path quanti�ers and theother with the existential path quanti�ers of CTL*. These rules are used toonstrut the basi proof objets of our method, alled LTL and ELL proofstrutures. A CTL* proof struture is in turn essentially a olletion of LTLand ELL proof strutures.In order to be aepted as a proof of a property, a proof struture has tosatisfy a suess riterion formulated in terms of the runs of an assoiatedsystem (alled trails) derived from the original system and the proof stru-ture. An additional (global) rule for proving suess is introdued for eahtype of proof struture. Our proof system redues all temporal reasoning toshowing the validity of veri�ation onditions formulated in L and arisingeither as side onditions of the loal rules used in the onstrution of proofstrutures or as premises of the suess rules.We show that our proof system is sound and omplete. Soundness meansthat every provable statement is true and ompleteness means that every truestatement is provable in our system. By the expressiveness of our assertionlanguage we annot expet that every veri�ation ondition is provable insome formal system, so ompleteness is proved relative to the validity of



1.3] Introdution 5assertions (veri�ation onditions). Soundness and ompleteness is shownto hold for LTL and ELL proof strutures and is then lifted to CTL* proofstrutures. A large part of the soundness and ompleteness proof is based ona game-theoreti argument. We haraterise satisfation of CTL* formulasin terms of the existene of a winning strategy for one player in an in�nitetwo-player game and then proeed by a �ne-grained game-theoreti analysisof paths and trails in proof strutures, disovering that trails orrespond tostrategies in CTL* games.1.2 ContributionsThe main ontribution of this thesis is the presentation of a sound and rel-atively omplete proof system for the model heking of CTL* propertiesof in�nite-state reative systems. The system spei�ations inlude a quitegeneral type of fairness onstraints. To the best of our knowledge no suhproof system for CTL* has been proposed before in the literature. Our proofsystem generalises existing methods for �nite-state model heking as well asseveral existing dedutive proof systems.Another ontribution is our novel approah of using a game-theoretiargument to establish soundness and ompleteness of the proof system. Infat, our game-theoreti analysis of the �ne struture of paths and trails inproof strutures has an interest of its own as it o�ers interesting insights intothe inner working of proof strutures. Games and strategies are partiularlyattrative in this ontext as they provide a very intuitive point of view ofotherwise rather abstrat strutures.1.3 Chapter OutlineIn Chapter 2 we introdue the transition system model, the temporal logiCTL* and some bakground on model heking. An abstrat notion of gamesand strategies is also de�ned.LTL proof strutures are the topi of Chapter 3. We introdue a suitablesequent format and a set of loal rules for the onstrution LTL proof stru-tures. A suess riterion is then presented that quali�es a proof strutureas a legal proof. This riterion is de�ned in terms of trails whih are runs ofa system derived from a proof struture and the original system. Intuitively,a trail ombines a run of the system with a path in the proof struture. Wethen introdue a global proof rule that allows us to establish suess. Theappliation of the proof system for LTL is illustrated by a series of examples.



6 Chapter Outline [1.3In the following Chapter 4 we establish the soundness and relative om-pleteness of the proof system for LTL. The proof is largely based on a game-theoreti argument. The �rst step onsists in a haraterisation of the sat-isfation of a CTL* formula in terms of the existene of a winning strategyfor one player in an in�nite two-player game, where Player ∃ tries to estab-lish the truth of the formula, while his opponent, Player ∀, tries to refute it.By observing that to eah trail orresponds a strategy of Player ∀ we anshow that a suessful proof struture for a system S with initial ondition
Θ and property φ exists preisely if Player ∃ has a winning strategy for thegame GS(Θ, φ) (and hene S,Θ |= φ). The �nal step of the proof onsists inshowing that the LTL suess rule is sound and relatively omplete.In Chapter 5 we extend our proof system to full CTL*. To this end, we�rst introdue the duals of LTL proof strutures alled ELL proof struturesto handle existentially path-quanti�ed formulas. The ELL suess riterion isdual to the one for LTL. A rule is introdued to prove ELL suess. Soundnessand relative ompleteness are then shown along the lines of Chapter 4. Someresults transfer diretly by duality, while others need to be reviewed.Chapter 6 addresses the problem of proving suess for proof struturesfor systems with fairness onstraints. The LTL as well as the ELL suessrules are extended to ope with both weak and strong fairness onstraints.The new rules are shown to be sound and omplete. By this result we anlift the restrition to saturated systems (without fairness onstraints) in thesoundness and ompleteness theorem for CTL* proof strutures, whih wasneessary for the only reason that the previous suess rules did not aountfor fairnessThe appliation of our proof system is illustrated on a non-trivial examplein Chapter 7, where we verify some properties of the bakery protool formutual exlusion. In partiular, we prove that the properties of mutualexlusion, aessibility and unboundedness hold for the bakery protool. Thelatter shows that there is possibility of unbounded growth of some systemvariables, whih makes the system in�nite-state.The �nal hapter onludes the thesis by a review of its goals and theirahievement, a omparison with related work as well as an outlook on futureresearh.



Chapter 2BakgroundIn this hapter we introdue transition systems, our omputational model ofreative systems, and the temporal logi CTL*, our requirement spei�ationlanguage. We then survey some existing tehniques for model heking, thatis, for the veri�ation of temporal properties of reative systems. Algorithmias well as dedutive approahes are onsidered. Finally, we de�ne the notionsof games and strategies. We start with some basis on words and languages.2.1 Words and LanguagesLet A be an alphabet. We denote by A∗ the set of �nite words (sequenes)and by Aω the set of in�nite words over A. Let A∞ = A∗ ∪ Aω. A subsetof A∗ (Aω,A∞) is alled a language (ω-,∞-language). We denote the emptyword by ǫ and the onatenation of a �nite word u ∈ A∗ with a word v ∈ A∞by u · v (or just uv). De�ne the (�nite) pre�x ordering on A∞ by u ≤ w if
u ∈ A∗ and there is a v ∈ A∞ suh that uv = w. In this ase v is alled theresiduum and is denoted by w/u.For a �nite word u, let |u| denote its length, that is, the number ofletters appearing on u. For an in�nite word v, we de�ne |v| = ω. Let
w = a0a1 · · ·aj · · · be a �nite or in�nite word. De�ne for 0 ≤ i < |w|:

• w(i) = ai, the ith letter,
• w[i] = aoa1 · · ·ai−1, its pre�x of length i
• wi = aiai+1 · · · be its ith su�x.We use the quanti�er ∃ω and its dual ∀ω as shorthands for �there are in�nitelymany� and �for all but �nitely many�, respetively. De�ne the set of letters7



8 Transition Systems [2.2appearing in�nitely many times in w by
inf(w) = {a | ∃ωi. w(i) = a}.The stuttering removal operator ♮ : Aω → Aω is indutively de�ned by

♮ǫ = ǫ

♮(abw) =





w if a = b and w = aω

♮(bw) if a = b and w 6= aω

a♮(bw) otherwiseIt replaes any �nite repetition of a letter in an in�nite word by a singleourrene of that letter.Given two alphabets A and B, a map f : A → B ∪ {ǫ} is extended towords in the following way: for w ∈ A∞ we de�ne f∞ : A∞ → B∞ by
f∞(w) = f(w(0)) · f(w(1)) · · · · · f(w(j)) · · · ·Note that f∞ may map some in�nite words to �nite ones. We write fω and

f ∗ for the restrition of f∞ to the domains Aω and A∗, respetively.2.2 Transition SystemsWe use transition systems as our omputational model of reative systems.2.2.1 Basi Transition SystemsDefinition 2.2.1. A labeled transition system (LTS) is a struture
T = (S, {

λ
→| λ ∈ Λ}),where S is a non-empty set of states, Λ is a non-empty set of transition labels(or transitions, for short) and λ

→⊆ S × S is a transition relation for eahlabel λ ∈ Λ. ♦We write s λ
→ s′ for (s, s′) ∈

λ
→ and say that there is an λ-transitionleading from state s to state s′. An λ-transition is said to be enabled in astate s if there exists a state s′ suh that s λ

→ s′. For a set of transitions
Λ′ ⊆ Λ, we say that Λ′ is enabled in state s if some transition λ ∈ Λ′ isenabled in s. A transition or set of transitions that is not enabled is alleddisabled. Let → denote the unlabeled global transition relation ⋃λ∈Λ

λ
→.



2.2] Bakground 9Assumption 2.2.2. For onveniene, we will only onsider LTS with a totalglobal transition relations, where some λ-transition is always enabled in eahstate. We all suh LTS total.In ase some transition system T is not total, there is a simple �trik� totransform it into a total one: add an idle transition λi to Λ with s λi→ s forany state s with Λ disabled.RunsA run of an LTS T = (S, {
λ
→| λ ∈ Λ}) is an in�nite sequene of states

σ : s0s1 · · · sj · · · suh that for all i ∈ ω there is an λ ∈ Λ suh that si λ
→ si+1.We say that a λ-transition is taken at sk on σ if sk λ

→ sk+1. For a set Λ′ ⊆ Λof transitions, we say that Λ′ is taken at sk on σ if some λ ∈ Λ′ is taken at
sk. For U ⊆ S we de�ne a U-run to be a run starting in some state s ∈ U .States appearing on a U-run are alled U-reahable. For singleton sets wewill write s-run instead of {s}-run. We write RT (U) for the set of U-runsand RT for the set of all runs of T .2.2.2 Fair Transition SystemsIntuitively, fairness [Fra86, Kwi89, AFK88℄ is a property of runs expressingthat if some omponent of the system is su�iently often ready to proeed,then its progress will not be delayed inde�nitely. An unfair run is then a runalong whih the exeution of some omponent is unduly delayed, though isis su�iently often ready for exeution. Of ourse, one has to speify morepreisely what is meant by �su�iently often� and �omponent�.Fairness is a way to ompensate for the modeling of onurreny by non-determinism (interleaving of onurrent transitions) in the transition systemmodel. When it omes to speifying and proving properties of a transitionsystem, one typially only requires that the fair runs of a system satisfy itand generally ignore the unfair ones. Fair runs will be alled omputations.In pratie, fairness is realised by a sheduler.The most ommon notions of fairness are unonditional, weak and strongfairness (also alled impartiality, justie and ompassion [LPS81, MP92℄)orresponding to di�erent interpretations of �su�iently often�. Consider atransition system T = (S, {

λ
→| λ ∈ Λ}), subset Λ′ ⊆ Λ of its transitions. Weall a run σ of T

• unonditionally fair w.r.t. Λ′ ⊆ Λ if Λ′ is taken in�nitely many timeson σ,
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• strongly fair w.r.t. Λ′ ⊆ Λ if whenever Λ′ is enabled in�nitely often,then Λ′ is taken in�nitely many times on σ, and
• weakly fair w.r.t. Λ′ ⊆ Λ if whenever Λ′ is enabled ontinuously fromsome point on, then Λ′ is taken in�nitely many times on σ.Note the dereasing strength: an unonditionally fair run is also strongly fairand a strongly fair is also weakly fair (w.r.t. some Λ′ ⊆ Λ).For our purpose, we de�ne a fairness onstraint w.r.t. a set of transitions

Λ to be a triple F = (P,W, F ), where P ⊆ P(Λ) is a �nite partition of Λ,
W ⊆ P is a set of weakly fair sets of transitions and F ⊆ P is a set of stronglyfair sets of transitions. The elements of P an be seen as an abstrat form ofproesses. They are the �omponents� referred to in the informal de�nitionof fairness above. A run σ is alled fair if it is weakly fair w.r.t. all Λw ∈Wand strongly fair w.r.t. all Λf ∈ F . We informally write σ |= F to mean that
σ is fair.By varying the type of partition P of a fairness requirement F = (P,W, F )we an hange the granularity of the �omponents� that the fairness require-ments apply to. For example:weak proess fairness [LT87℄:

F = (P,W,∅) with W = P for any partition P ,strong proess fairness [CS87℄:
F = (P,∅, F ) with F = P for any partition P , andtransition fairness [MP92℄:
F = (Pid,W, F ) with the partition Pid indued by the identity relationon Λ and W and F arbitrary subsets of P .There are other notions of fairness, whih do not �t this sheme. We referthe reader to [Kwi89℄ for a survey and to Franez' book [Fra86℄ for moredetailed information.Definition 2.2.3. A fair transition system (FTS) is a struture

T = (S, {
λ
→| λ ∈ Λ},F)with (S, {

λ
→| λ ∈ Λ}) a LTS and F a fairness onstraint for Λ. A fair run of

T is alled a omputation. ♦For a set U ⊆ S, a U-omputations is a omputation starting in a state
s ∈ U . We write CT (U) for the set of U-omputations and CT for the set ofall omputations of T .



2.3] Bakground 11Initial statesIt is sometimes useful to add a non-empty set of initial states IT ⊆ ST to a(fair) transition system T . Suh a transition system is alled initialised. Oneis then generally interested in the IT -omputations only.What Type of Transition System now?Any type of transition system introdued above an be seen as an instaneof an initialised fair transition system
T = (S, {

λ
→| λ ∈ Λ}, I,F),heneforth just alled transition system for brevity. Putting I = S is equiv-alent to dropping I. Setting F = (P,∅,∅) for any partition P of Λ has thesame e�et as dropping F . We will all a transition system with trivial orno fairness onstraints saturated, as all of its runs are omputations.2.3 Syntati RepresentationFor the purpose of spei�ation and dedutive veri�ation, a more syntatirepresentation of transition systems is desirable.2.3.1 Assertion languageLet L be an assertion language inluding at least the prediate alulus overthe ountable set of variables V and some �xed �rst-order struture A on-taining symbols for all the usual operations over integers and booleans thatmay our in a system spei�ation. Formulas of L are alled assertions. For

X ⊂ V we write L[X] for the set of assertions with all free variables in X.Further Assumptions on LFor the purpose of showing relative ompleteness of our proof system a pure�rst-order language is not su�iently expressive (see, e.g., [SdRG89℄) andwe have to extend L to inlude least and greatest �xed point operators (µand ν, respetively). We denote this extension of L by Lµ (see also Park's
µ-alulus [Par76℄ and [Mos74, SdRG89℄).Furthermore, we will assume that the �rst-order struture A we are work-ing with supports an elementary (�rst-order de�nable in the struture) odingsheme, allowing us to ode �nite sequenes of elements of the domain D of



12 Syntati Representation [2.3the struture A as single elements of D. Strutures with this property arealled aeptable in [Mos74, SdRG89℄.2.3.2 System Spei�ationsDefinition 2.3.1. A (transition) system spei�ation (or system for short)is a struture
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F)where

• X = {x1, . . . , xn} ⊆ V is a �nite set of typed program variables. Oftenthese are subdivided into ontrol variables indiating the loations inthe program where ontrol urrently resides and data variables. Weoften use vetor notation x for the ordered set x1, . . . , xn of programvariables.
• Σ is the state spae, the set of type-onsistent interpretations of theprogram variables. An element s ∈ Σ is alled a state.
• ρλ(x, x

′) is the transition relation for transition label λ ∈ Λ, an as-sertion whih may refer to two opies of the program variables, anunprimed opy x representing the urrent state and a primed opy
x′ = x′1, . . . , x

′
n representing a suessor state,

• Θ(x) is the initial ondition, a satis�able assertion desribing the setof starting states, and
• F is a fairness onstraint over ΛA state assertion (over X) is an assertion all of whose free variables areprogram variables. Let p be a state assertion. We write s |= p and say that ssatis�es p if p is true when interpreting the free variables of p by s. If s |= pwe also say that s is a p-state. We say that p is satis�able if there is a state

s suh that s |= p. An assertion is alled state valid (w.r.t. struture A),written |= p, if s |= p for all states s ∈ Σ1. A state assertion p desribes theset of states ‖p‖ satisfying it, that is, ‖p‖ = {s ∈ Σ | s |= p}. For the sake ofbrevity, we will heneforth just say assertion for state assertion and validity1Note that state validity is not to be onfused with general validity of a �rst-orderformula, whih states that a formula is true in all �rst-order strutures over the givensignature and all interpretations of its free variables.



2.4] Bakground 13for state validity. To avoid onfusion, we will expliitly indiate the set offree variables of an assertion in ase not all of them are program variables.A pair of states (s, s′) satis�es a transition relation ρλ(x, x′), denoted by
(s, s′) |= ρλ(x, x

′), if the assertion ρλ(x, x
′) is true when interpreting eahunprimed variable x ∈ X by s(x) and eah primed variable x′ ∈ X ′ by s′(x).For Λ′ ⊆ Λ we write ρΛ′(x, x′) to abbreviate ∨λ∈Λ′ ρλ(x, x

′). Hene, ρΛ(x, x′)denotes the global transition relation.Using the transition relation ρλ, we are now able to express enablednessof a set of transitions Λ′ ⊆ Λ by the assertion
enΛ′(x)

def
= ∃x′.ρΛ′(x, x′)and write enλ(x) instead of en{λ}(x).A system spei�ation S as above indues the obvious transition system

TS = (Σ, {
λ
→| λ ∈ Λ}, I,F), with transitions λ

→= {(s, s′) | (s, s′) |= ρλ} foreah λ ∈ Λ, initial states I = {s ∈ Σ | s |= Θ}. Given a system S, we willwrite RS for RTS and CS for CTS . For a state assertion Ξ let RS(Ξ) and
CS(Ξ) denote RS(‖Ξ‖) and CS(‖Ξ‖), respetively.2.4 Temporal LogiIn this setion, we present the syntax and semantis of our requirement spe-i�ation language, the temporal logi CTL* [EH86℄ and its sublogis.2.4.1 SyntaxLet Prop be a set of atomi propositions and de�ne the set of literals by
Lit = Prop∪{¬p | p ∈ Prop}.Definition 2.4.1. The syntax of the logi CTL* is de�ned by

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕVϕ | ϕUϕ | Aϕ | Eϕwhere p ∈ Lit is a literal. The onnetives Next (X), Release (V) and Until (U)are alled temporal operators. The operators A and E are alled universaland existential path quanti�ers, respetively. We will often all a formulawith top-level onnetive ∇ ∈ {∧,∨,X,V,U,A,E} a ∇-formula and use Z asa plaeholder for either U or V. So a Z-formula is either a U- or a V-formula.We write φ 4 φ′ to mean that φ is a subformula of φ′. The relation 4 induesa partial order on CTL* formulas. Let V(φ) denote the set of V-subformulas



14 Temporal Logi [2.4of φ and similarly for U(φ). The (path-)quanti�er depth of a CTL* formulais indutively de�ned by:
qd(p) = 0
qd(Xφ) = qd(φ)
qd(φ1 ⋄ φ2) = max(qd(φ1), qd(φ2)) for ⋄ ∈ {∧,∨,V,U}
qd(Aφ) = qd(Eφ) = 1 + qd(φ)We say that a formula φ is of level k ≥ 0 if qd(φ) = k. We now de�ne threesublogis of CTL*:

• the logi LTL onsists of the path-quanti�er free (depth 0) formulas ofCTL*.
• the logi ALL (ELL) onsists of the CTL* formulas of the form Aϕ(Eϕ), where ϕ is a LTL formula.
• the logi CTL onsists of those CTL* formulas, where every temporaloperator is immediately preeded by a path quanti�er. In other words,the syntax of CTL is de�ned by

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | Q Xϕ | Q(ϕVϕ) | Q(ϕUϕ),where p ∈ Lit and Q ∈ {A,E} is a path quanti�er. ♦In our presentation of these logis, negation on formulas other than as-sertions is a meta-level notion indutively de�ned by
¬(φ1 ∧ φ2) = ¬φ1 ∧ ¬φ2 ¬(φ1 ∨ φ2) = ¬φ1 ∨ ¬φ2

¬(ψ1 Vψ2) = ¬ψ1 U¬ψ2 ¬(ψ1 Uψ2) = ¬ψ1 V¬ψ2

¬Xψ = X¬ψ
¬Aψ = E¬ψ ¬Eψ = A¬ψIn this de�nition the duality of operators is exploited thereby avoiding anexponential blow-up in the size of the formula.The propositions true and false as well as the onnetives for impliation(→) and equivalene (↔) are de�ned in the usual way using the booleanonnetives. Some other frequently used temporal operators are 'always'(G), 'eventually' (F) and 'unless' (W) whih an be de�ned from the basiones by

Gψ
def
= false Vψ

Fψ
def
= true Uψ

ψ1 Wψ2
def
= ψ2 ∨ (Xψ2 Vψ1)In order to save us some parenthesis, we adopt the onvention that unaryoperators have higher preedene than binary operators and binary temporalonnetives have preedene over binary boolean onnetives.



2.4] Bakground 152.4.2 SemantisA model M for a CTL* formula is a pair (T , V ), where T is a transitionsystem and V : Lit → 2ST is a valuation map assigning to eah atomiproposition p the states V (p) ⊆ ST where p holds. We require that V (¬p) =
ST − V (p).Definition 2.4.2. For a CTL* modelM = (T , V ), a run σ ∈ RT and CTL*formulas ϕ, ϕ1, ϕ2, the satisfation relation |= is indutively de�ned by
M, σ |= p i� p ∈ Lit and σ(0) ∈ V (p)
M, σ |= ϕ1 ∧ ϕ2 i� M, σ |= ϕ1 and M, σ |= ϕ2

M, σ |= ϕ1 ∨ ϕ2 i� M, σ |= ϕ1 or M, σ |= ϕ2

M, σ |= Xϕ i� M, σ1 |= ϕ
M, σ |= ϕ1 Vϕ2 i� ∀k ∈ ω : M, σk |= ϕ2 if M, σi 6|= ϕ1 for all i < k
M, σ |= ϕ1 Uϕ2 i� ∃k ∈ ω : M, σk |= ϕ2 and M, σi |= ϕ1 for all i < k
M, σ |= Aϕ i� M, σ′ |= ϕ for all σ′ ∈ CT (σ(0))
M, σ |= Eϕ i� M, σ′ |= ϕ for some σ′ ∈ CT (σ(0))

♦Our presentation of CTL* follows the non-standard approah of Stir-ling [Sti89℄, in whih all formulas are interpreted over paths (i.e., omputa-tions of a transition system), thus eliminating the distintion between stateand path formulas (interpreted over states and omputations, respetively)made in the standard presentation [EH86℄.We de�ne a posteriori a state formula to be a boolean ombination ofliterals and path-quanti�ed formulas. A formula that is not state formula isalled a path formula2. For any state formula ψ and two runs σ, σ′ ∈ RT (s)we have
M, σ |= ψ i� M, σ′ |= ψThus, satisfation of a state formula depends only on the �rst state of a runand we an writeM, s |= ψ in this ase3. We extend the notion of satisfationto arbitrary CTL* formulas and sets of states. Let U ⊆ ST and de�ne

M, U |= ϕ i� M, σ |= ϕ for all σ ∈ CT (U).2Note that this de�nition of path formulas does not oinide with the one in [EH86℄,where all state formulas are also path formulas.3The onverse does not hold; onsider for example the path formula X p ∨ X¬p.



16 Temporal Logi [2.4For s ∈ ST we write M, s |= ϕ instead of M, {s} |= ϕ. When there is norisk of onfusion we will drop the indiation of the model M and write, forinstane, just σ |= ϕ instead of M, σ |= ϕ and U |= ϕ for M, U |= ϕ.We say that a model M = (T , V ) satis�es a CTL* formula ϕ, written
M |= ϕ, if M, IT |= ϕ. A CTL* formula is valid, written |= ϕ, if M |= ϕ forall models M.Classi�ation of PropertiesThere are two main lassi�ations of (linear-time) temporal logi properties.The most ommon lassi�ation distinguishes safety properties (�nothing badhappens�) from liveness properties (�something good happens�, possibly re-peatedly) [AS85℄. Examples of safety properties are deadlok freedom, par-tial orretness and any form of invariant. Examples of liveness propertiesare freedom from starvation, total orretness and fairness. Topologially, asafety property is a losed set, while a liveness property is a dense set in theCantor topology on Σω for a set of states Σ [AS85, CMP93℄.The alternative safety-progress lassi�ation [CMP93℄ is tailored to prop-erties desribable in LTL. This lassi�ation of properties is hierarhial,aording to the alternation of G and F operators. The lasses are: safety(G p), guarantee (F p), obligation (∧n

i=1 G pi ∨ F qi), response (GF p), persis-tene (F G p) and reativity (∧n
i=1 GF pi ∨ F G qi). A property of a lass otherthan safety is alled a progress property. It is shown in [LPZ85℄ that everyLTL formula with past operators is equivalent to a reativity formula. Topo-logially, this lassi�ation orresponds to the lower two and a half levels ofthe Borel hierarhy (see also [TL94℄).EquivalenesWe introdue two equivalenes on CTL* formulas, one based on states andthe other based on omputations. Let M = (T , V ) be a model. Then wede�ne:

ϕ1 ≡M,U ϕ2 if M, σ |= ϕ1 if and only if M, σ |= ϕ2 for all σ ∈ CT (U)
ϕ1 ≡M ϕ2 if ϕ1 ≡M,I ϕ2 for I the set of initial states of T
ϕ1 ≡ ϕ2 if ϕ1 ≡M ϕ2 for all models M

ϕ1 ≈M,U ϕ2 if M, s |= ϕ1 if and only if M, s |= ϕ2 for all s ∈ U
ϕ1 ≈M ϕ2 if ϕ1 ≈M,I ϕ2 for I the set of initial states of T
ϕ1 ≈ ϕ2 if ϕ1 ≈M ϕ2 for all models MSome properties of these equivalenes are summarised in



2.4] Bakground 17Proposition 2.4.3. (CTL* Equivalenes) We have:(i) ≡⊂≈,(ii) ϕ1 ≈ ϕ2 i� Aϕ1 ≡ Aϕ2,(iii) ϕ ≈ Aϕ for all CTL* formulas ϕ;(iv) ψ ≡ Aψ for CTL* state formulas ψ, and(v) ≡ is a ongruene on CTL*, while ≈ is not.Proof. (i) The inlusion follows from the de�nition. It is also easy to seethat G p ≈ A G p, while G p 6≡ A G p. (ii),(iii),(iv) Easy. (v) A routine indu-tion on ontexts shows that ≡ is a ongruene. On the other hand, ≈ is nota ongruene as G p ≈ A G p, but A F G p 6≈ A F A G p.It follows from (ii) and (iii) that the two equivalenes oinide on stateformulas. As another onsequene of (iii) the distintion of the logis LTLand ALL appears rather arti�ial when talking about satisfation of formulasw.r.t. a set of states or a model. Therefore, we will take the freedom ofidentifying the two logis in that ontext.The reason for introduing the two equivalenes is that ≡ is a ongruene,whereas the weaker ≈ is useful in omparing the expressive power of CTL*with logis interpreted over states.ExpressivenessLet L1 and L2 be two temporal (or modal) logi languages interpreted overstates of a transition system. We say that L1 is no more expressive than
L2 and write L1 ≤ L2, if for all ϕ1 ∈ L1 there is some ϕ2 ∈ L2 suh that
ϕ1 ≈ ϕ2. We say that L1 is stritly less expressive than L2, written L1 < L2,if L1 ≤ L2, but not L2 6≤ L1.Denote by µK the modal µ-alulus [Koz83℄. Then the following relationshold:Proposition 2.4.4. (Relative Expressiveness) We have:(i) L < CTL∗ for L ∈ {ELL,LTL,CTL},(ii) CTL∗ < µK, and(iii) ELL, LTL and CTL are mutually inomparable w.r.t. ≤.In lieu of proving this proposition we just remark that an e�etive (butdouble exponential) translation from CTL* to µK was given by Dam in[Dam94℄ (see also [Ref96℄).



18 Algorithmi Model Cheking [2.52.4.3 Ground-quanti�ed CTL*Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system. If we take as the set ofpropositions of CTL* the set of state assertions over X, we move from apure propositional setting to what we all ground-quanti�ed CTL* (over X),written CTL*[X]. This is a restrited form of �rst-order CTL*, where nopath-quanti�er or temporal operator may our in the sope of a �rst-orderquanti�er.The system S indues a model MS = (TS , VS), where TS is the transitionsystem indued by S as above and VS : L[X] → 2Σ is de�ned by VS(p) = ‖p‖ .We then write S,Ξ |= ϕ for MS , ‖Ξ‖ |= ϕ and S |= ϕ for S,Θ |= ϕ.For surveys on temporal and modal logis we refer the reader to [Eme90,Sti92, Sti96b, MP92℄.2.4.4 The Model Cheking ProblemGiven formula ϕ of a modal or temporal logi L and model M for L, themodel heking problem onsists in verifying whether or not
M |= ϕholds. There are algorithmi as well as dedutive approahes to model hek-ing4. In the last deade, model heking has developed into a vast �eld ofresearh, so the following short overview of the existing work on algorithmiand dedutive approahes must neessarily remain inomplete.2.5 Algorithmi Model ChekingThe method of algorithmi model heking of �nite state systems was pio-neered in the early eighties independently by Clarke and Emerson [CE81℄ andby Queille and Sifakis [QS82℄ for the logi CTL. A tableau-based algorithmfor LTL model heking was developed a few years later by Lihtenstein andPnueli in [LP85℄. Emerson and Lei [EL85℄ published at the same time the�rst model heker for CTL*. CTL model heking is more e�ient thanLTL and CTL* model heking. Its time omplexity is linear both in thesize of the model and the formula, while for LTL as well as CTL* it is alsolinear in the size of the model but exponential in the size of the formula. This4The term 'model heking' has traditionally been used for algorithmi methods only.In this thesis, we understand model heking in this broader sense, independently of themethod used.



2.5] Bakground 19advantage of CTL over LTL and CTL* is ontrasted by the fat that fairnessis not expressible in CTL. This situation is partially remedied in [CES86℄,where their CTL model heker is extended to handle fairness onstraints.On the other hand, the size of formulas in typial requirement spei�ationsis usually small enough to make LTL or CTL* model heking appliable inpratie.2.5.1 The Automata-theoreti ApproahA uniform theoretial framework for the design of model heking algorithmsis provided by the theory of automata on in�nite objets [Tho90℄. Vardiand Wolper [VW86℄ were the �rst to reformulate LTL model heking interms of automata on in�nite words (ω-automata). In this approah, theveri�ation of M |= ϕ is redued to heking whether the produt of the two
ω-automata AM and A¬ϕ aepts the empty language. The ω-automaton
AM aepts exatly the omputations of M, while the A¬ϕ aepts exatlythe sequenes of states that satisfy ¬ϕ. Any omputation aepted by theprodut automaton is thus a omputation that does not satisfy ϕ, that is,a ounterexample for M |= ϕ (see also [Kur94℄). More reently, branhingtime model heking has also been formulated in the automata-theoretiframework using alternating tree automata [BVW℄.2.5.2 Loal Model ChekingThe prinipal drawbak of algorithmi model heking is that it su�ers fromthe so-alled state spae explosion problem, whih is due to the state spaegrowing exponentially in the number of onurrent proesses.Loal (a.k.a. on-the-�y) algorithms have been developed to potentiallyredue the number of states that have to be explored in order to establishor refute a property. Whereas global algorithms ompute all states satisfyinga given formula and hene need to explore the whole reahable state spae,loal algorithms answer the question whether a given set of states (typiallythe initial states) satisfy the formula. In this way, ounterexamples an befound faster and even in ase the property holds it is not always neessaryto visit the whole state spae. A loal algorithm for LTL was presentedby Gerth et al. in [GPVW95℄ and an e�ient loal CTL* model heker isdesribed by Bhat, Cleaveland and Grumberg in [BCG95℄.



20 Algorithmi Model Cheking [2.52.5.3 Symboli Model ChekingIn the early nineties, the advent of symboli model heking [BCM92℄ hasdramatially pushed the limits of automati veri�ation. This tehnique,originally developed for Park's µ-alulus [Par76℄, is based on omputing�xed points of funtions τ : P(S) → P(S) on sets of states and the sym-boli representation of these sets ordered binary deision diagrams (OBBDs)[Bry86℄. OBDDs provide a anonial representation of boolean funtionsand relations, therefore enabling model heking algorithms to operate onentire sets of states without enumerating the individual states or transitions.Symboli model heking algorithms for CTL and the modal µ-alulus areimmediately obtained by the straightforward embedding of these logis intoPark's µ-alulus, but symboli model hekers have also been developed forLTL [KRP95, CGH97℄.Symboli model heking has been partiularly suessful in iruit ver-i�ation, where state spaes often exhibit onsiderable regularity and thusallow for ompat BDD representations.2.5.4 Redution TehniquesState spaes of software systems are usually not as regular as those foundin iruit designs. Therefore, alternative methods have been developed toombat the state spae explosion problem. These redution tehniques maybe grouped into three lasses:Quotienting Tehniques onstrut the quotient of the state spae w.r.t.some equivalene relation; examples are partial order redution, sym-metry redution and partition re�nement; these methods are hara-terised by a strong preservation of properties, that is, a property holdsof the redued model preisely if it holds on the omplete modelAbstration Tehniques onstrut an abstrat model by olleting manyonrete states into a single abstrat state; the relation between on-rete and abstrat system an be desribed by a simulation or a Galoisonnetion between their state spaes; the tehnique of network invari-ants for veri�ation of in�nite families of systems falls is also a formof abstration (of a whole family of systems); abstration tehniquesusually only guarantee weak preservation of properties, that is, onlythe truth but not the falsity of properties arries over to the onretesystemCompositional Tehniques try to infer a property of a system from prop-erties of its omponents; properties of omponents are often established



2.6] Bakground 21by making assumptions about its environment (assumption-guaranteestyle of spei�ations)For bibliographi referenes and examples of most of these redution teh-niques we refer the interested reader to [CGP99℄.General surveys of algorithmi model heking an be found in [CGL93,Sti96b, MP95℄ and in the reently published book [CGP99℄.2.6 Dedutive Approahes to Model ChekingThe model heking problem is deidable only for �nite-state systems andspeial ases of in�nite-state systems, so the appliability of algorithmimethods is restrited to these lasses of systems. Limited omputing re-soures even make the automati veri�ation of many �nite-state state sys-tems impossible despite the sophistiated redution tehniques available to-day. These ases as well as general in�nite-state systems an only be takledby dedutive methods.Dedutive approahes to model heking use a set of proof rules to reduethe global temporal properties to loal �rst-order veri�ation onditions. Theproof rules may redue temporal properties to simpler temporal properties,but ultimately all reasoning is redued to showing the validity of assertions,thus avoiding reasoning in the temporal logi itself. In the rest of this setion,we �rst introdue some of the ingredients of proof rules and then give a briefoverview of some existing dedutive approahes to model heking.2.6.1 Veri�ation ConditionsHoare triples and possibility triples are (besides impliations) the most ur-rent veri�ation onditions appearing in proof rules. They abstratly desribeproperties of (sets of) transitions in terms of two assertions, alled pre- andpost-onditions. These triples are presented below, along with their relationto some standard prediate transformers.Let Λ ⊆ ΛS be a subset of the transitions of some system S. We use thestandard Hoare triple notation
{p}Λ {q}for the assertion p(x)∧ρΛ(x, x′) → q(x′), meaning that a Λ-transition startingin a p-state always leads to a q-state. The assertion p is alled the pre-ondition and q is alled the post-ondition of the Hoare triple.



22 Dedutive Approahes to Model Cheking [2.6Two well-known prediate transformers are the weakest pre-ondition andthe strongest post-ondition of an assertion p relative to Λ, whih are de�nedas follows:
wpcΛ(p)(x)

def
= ∀x′. ρΛ(x, x′) → p(x′)

spcΛ(p)(x)
def
= ∃x0. p(x0) ∧ ρΛ(x0, x)The weakest pre-ondition wpcΛ(p) desribes the set of states from whih all

Λ-transitions lead to a state satisfying p. On the other hand, the strongestpost-ondition spcΛ(p) denotes the set of states whih are reahable fromstates satisfying p. Their relation to Hoare triples is haraterised by thefollowing hain of equivalenes
{p}Λ {q} ≡ spcΛ(p) → q ≡ p→ wpcΛ(q).The dual notion of Hoare triples, alled possibility triples in [Sip99℄, andwritten

{p} 〈Λ〉 {q}stands for the prediate p(x) → ∃x′.ρΛ(x, x′) ∧ q(x′), meaning that from any
p-state there is some Λ-transition leading to a q-state. The dual w̃pcΛ of theprediate transformer wpcΛ is de�ned by

w̃pcΛ(p)
def
= ¬wpcΛ(¬p),yielding

w̃pcΛ(p)(x) ≡ ∃x′. ρΛ(x, x′) ∧ p(x′).Hene we an haraterise {p} 〈Λ〉 {q} as follows:
{p} 〈Λ〉 {q} ≡ p→ w̃pcΛ(q).Notation. Borrowing some notation from modal logi, we sometimes write

[Λ] q and 〈Λ〉 q for the assertions wpcΛ(q) and w̃pcΛ(q), respetively. For asingleton set Λ = {λ}, we write {p} λ {q}, wpcλ(p), . . . instead of {p} {λ} {q},
wpc{λ}(p), . . ..2.6.2 Well-founded Relations and RankingsRoughly speaking, satisfation of liveness properties involves reahing somegoal (one or repeatedly). Rules for proving this type of property rely onan important auxiliary devie for measuring progress towards a goal: well-founded relations and ranking funtions.



2.6] Bakground 23Definition 2.6.1. (Well-founded Relation) Let W be some set. Abinary relation ≺⊆W ×W is well-founded if there is no in�nite desendingsequene
w0 ≻ w1 ≻ w2 ≻ · · ·of elements w0, w1, w2, . . . of W . In this ase the struture (W,≻) is alled awell-founded domain. We write u � w if u ≺ w or u = w. ♦Definition 2.6.2. (Ranking Funtion) Let Σ be the state spae of asystem S and let (W,≻) be a well-founded domain. A funtion δ : Σ → Wmapping states to elements of the well-founded domainW is alled a rankingfuntion. ♦2.6.3 Manna and Pnueli's SystemManna and Pnueli present in [MP91℄ a dedutive system for proving that areative system S satis�es a LTL property ϕ. It is omposed of a set of rulesfor three lasses of properties. These are safety properties (as expressed byformulas of the form G p), response properties (as expressed by formulas ofthe form G(p→ F q)) and reativity properties (as expressed by a onjuntionof formulas of the form G F p ∨ F G q), where p and q are formulas that mayinlude past, but no future temporal operators. As is shown in [LPZ85℄any property spei�able in LTL an be rewritten to an equivalent reativityproperty (possibly using past operators).Let ϕ and p be assertions.I1. Θ → ϕI2. ϕ→ pI3. {ϕ}Λ {ϕ}

S ⊢ G pFigure 2.1: General invariane rule INVAs an example, we onsider rule INV (see also [MP95℄) for invarianeproperties of the form G p, where p is an assertion (see Figure 2.1). The rulehas three premises. It requires that we �nd an assertion ϕ that is implied



24 Dedutive Approahes to Model Cheking [2.6by the initial ondition (premise I1), strengthens the assertion p (premiseI2) and is preserved by all system transitions (premise I3). An assertionsatisfying I3 is alled indutive. It is easy to see that this rule is sound: as
ϕ holds in all initial states (I1) and is preserved by all transitions (I3) ϕ(and hene p by I2) invariantly holds along any omputation. Thus, p is aninvariant of S.Rule INV is also omplete relative to assertional validity. This is shown byusing for ϕ the strongest possible invariant, namely, an assertion desribingexatly the set of Θ-reahable states (the assertion language is required to beexpressive enough to formulate suh an assertion). Note that even if p holdson all reahable states, it need not be indutive. In partiular, it is possiblethat a transition from some unreahable state leads to a state not satisfying
p. For this reason the auxiliary assertion ϕ is needed in this rule to obtainompleteness.2.6.4 Diagram-Based Veri�ationSome of the proof rules mentioned above have been reast into the graph-ial form of veri�ation diagrams in [MP94℄. A veri�ation diagram D =
(N,E, µ) for a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) is a graph (N,E) withnodes N and edges E, where eah node n ∈ N is labeled by an assertion µ(n)over X5. Depending on the rule some nodes may be terminal nodes with nooutgoing edges. We will below identify a node and its labeling.Veri�ation diagrams desribe a set of Hoare triple veri�ation onditions.Suppose a non-terminal node ϕ has an outgoing edge to eah of the suessornodes ϕ1, . . . , ϕn. The Hoare triple assoiated with ϕ is

{ϕ}Λ {
n∨

i=1

ϕi}No Hoare triple is assoiated with a terminal node. A veri�ation diagraman be seen as an abstrat representation of the system to be veri�ed: thenodes are the abstrat states that a system traverses during its exeution.Veri�ation onditions other than Hoare triples needed in proof rules areformulated externally to the diagrams.As an example, invariane diagrams are veri�ation diagrams with noterminal nodes used to prove properties of the form G p, for an assertion
p. Suppose {ϕ1, . . . , ϕn} is the set of nodes of an invariane diagram for asystem S with initial ondition Θ and let ϕ def

=
∨n
i=1 ϕi. It easy to see that the5We slightly simplify w.r.t. the presentation in [MP94℄.



2.6] Bakground 25validity of all Hoare triples assoiated with the nodes of the diagram impliesthat S |=G(ϕ → Gϕ) (�one ϕ, always ϕ�) holds. By proving the additionalonditions Θ → ϕ and ϕ → p (ompare with I1 and I2 in rule INV) we anonlude S |= G p.Generalised Veri�ation DiagramsThe idea of veri�ation diagrams is further developed and generalised in[BMS95, MBSU98℄ (see also the theses [Uri98, Sip99℄). A generalised veri�-ation diagram (GVD) Ψ = (N,N0, E, µ, ν,A) for a system S and temporalproperty φ extends a veri�ation diagram as desribed above by
• designating a set of initial nodes N0 ⊆ N ,
• adding a labeling funtion ν that labels nodes with (boolean ombina-tions of) assertions appearing in the property formula φ, and
• adding an aeptane ondition A ⊆ P(N) in the form of a subset ofthe strongly onneted subgraphs6 (SCS) of the underlying graph (aMüller-type aeptane ondition as known from ω-automata theory,see [Tho90℄).An in�nite sequene σ : s0s1 · · · of states of S is aepted by the GVD Ψ, ifthere is a path π : n0n1 · · · suh that inf(π) ∈ A and we have si |= µ(ni) forall i ∈ ω. The veri�ation method proposed by GVDs is the following. Inorder to verify S |= φ a GVD Ψ for S and φ is onstruted suh that

L(S) ⊆ L(Ψ) ⊆ L(φ)where L(S)
def
= CS(Θ), L(Ψ) is the language aepted by the the GVD Ψ and

L(φ) is the language desribed by the formula φ (that is, the set of statesequenes that satisfy φ).The �rst inlusion states that the diagram faithfully represents all om-putations of the system. In ontrast to the veri�ation diagrams desribedabove, Ψ not only represents the �nitary behaviour of S but also its in�nitary(limit) behaviour. In other words, Ψ is a sound abstration of the system
S. This inlusion is proved dedutively by disharging a set of veri�ationonditions for Ψ. In addition to the Hoare triples assoiated with Ψ, thediagram initiation ondition requires that Θ → µ(N0), where µ(N0) is thedisjuntion of µ(n) over all n ∈ N0 and the diagram aeptane ondition6a subgraph S of a graph G is strongly onneted if for every pair of nodes of S thereis a path in S onneting them



26 Trees, Games and Strategies [2.7requires that any non-aepting SCS S is shown to have a fair exit (that is,any run staying in S is unfair) or is well-founded (that is, there is no run andhene no omputation staying in S). The latter ondition ensures that non-aepting SCSs do not exlude any omputation of S from being aeptedby Ψ.Proving the seond inlusion involves showing that µ(n) → ν(n) for eahnode n ∈ N . Then the inlusion an be model heked algorithmially byabstrating the assertions in ν(n) and φ into atomi propositions.Dedutive Model ChekingThe method of dedutive model heking [SUM99℄ (see also the theses [Uri98,Sip99℄) also uses diagrams, but follows a di�erent approah. It is based on thesuessive transformation of diagrams, alled falsi�ation diagrams. Givena system S the omponents of a falsi�ation diagram7 G = (N,N0, E, µ,A)are the same as the orresponding omponents of a GVD.The notion of a sequene of states aepted by G remains the same aswith GVDs. A proof of S |= φ starts from an initial falsi�ation diagram
G0 suh that L(G0) = L(¬φ) and all edges are labeled by Λ, that is, G0represents all sequenes of states not satisfying φ. The diagram G0 an beonstruted algorithmially. Falsi�ation diagram Gi+1 is obtained from Giby the appliation of a transformation rule. These are designed in suh away that the invariant

L(S) ∩ L(¬φ) ⊆ L(Gi)is preserved. Eah diagram Gi aepts all omputations of S violating φ. Theidea is to ontinue the transformations until it an be exluded that there is aounterexample, that is, until a falsi�ation diagram Gm with L(Gm) = ∅ hasbeen onstruted. It then follows from the invariant above that L(S) ⊆ L(φ),that is, S |= φ. The method is not guaranteed to terminate for in�nite-statesystems, but is omplete relative to assertional validity.2.7 Trees, Games and StrategiesTreesAn A-tree is a non-empty, pre�x-losed subset of A∗. Denote by Tr∞(A) theset of all trees and by Tr*(A) the set of �nite trees over alphabet A. If T ⊆ T ′for two A-trees T and T ′, we say that T is a tree-pre�x of T ′.7again slightly simplifying w.r.t. the presentation in [Sip99℄



2.7] Bakground 27Let T be an A-tree. Elements of T are alled nodes. De�ne nT = {n · a ∈
T | a ∈ A}, the set of hildren of n in T . A node n is a leaf if nT = ∅.Otherwise, it is alled an interior node. The subtree at node n is de�ned as
T/n = {m/n | n ≤ m and m ∈ T}. A �nite path in T is a leaf of T . Anin�nite path in T is a sequene π ∈ Aω suh that all of its �nite pre�xes arenodes of T . Call Pth(T ) the set of all paths in T .GamesLet B be a two-element set whose elements denote players. Ω denotes anyplayer, Ω his opponent. A game is a struture G = (A, T, λ,Ω,W ), where

• A is an alphabet whose elements are alled on�gurations,
• T is an A-tree whose nodes are alled positions and the paths of whihare alled plays (we write Play(G) for the set of all plays in T ),
• λ : T → B is a funtion speifying whose turn it is in eah position,and
• W ⊆ Play(G) is the subset of plays won by player Ω, alled the winningondition for player Ω.Player Ω wins a play µ ∈ Play(G) if µ ∈ W , otherwise Player Ω wins. Thegame G is equivalently spei�ed as (A, T, λ,Ω,W ), where W = Play(G)−Wis the omplement of W . Denote by Pos(Ω) = {p ∈ T | λ(p) = Ω} the set of

Ω-positions, that is, positions where it is player Ω's turn to move.StrategiesA (non-deterministi) Ω-strategy for G = (A, T, λ,Ω,W ) is a tree-pre�x τ ⊆
T satisfying the ondition

p ∈ τ, λ(p) = Ω, pτ 6= ∅ ⇒ pτ = pT ,that is, whenever p is an interior node of τ that is a Ω-position then τ ontainsall the hildren of p in T.We will write Strat(Ω) for the set of all Ω-strategies.For an Ω-strategy τ and an Ω-strategy τ ', we de�ne the set of playsresulting from playing these two strategies against eah other as
〈τ | τ ′〉 = Pth(τ ∩ τ ′) ∩ Play(G).We now introdue a ouple of properties of strategies. Let τ be an Ω-strategy. Then



28 Trees, Games and Strategies [2.7

• τ is deterministi if any Ω-position in τ has at most one hild, that is,
pa, pb ∈ τ, λ(p) = Ω ⇒ a = b

• τ is history-free (or memory-less) if its hoies depend only on the lastmove, i.e.,
pa, qa ∈ τ, λ(pa) = λ(qa) = Ω ⇒ (pa)τ/(pa) = (qa)τ/(qa).

• τ is omplete, if Ω-positions have some suessor whenever possible and
Ω-positions have all suessors, that is,

p ∈ τ, λ(p) = Ω, pT 6= ∅ ⇒ pτ 6= ∅

q ∈ τ, λ(q) = Ω ⇒ qτ = qT

• τ is non-losing, if all plays resulting from playing against opponentstrategies are won by Player Ω, i.e., 〈τ | τ ′〉 ⊆ W for all Ω-strategies
τ '.

• τ is a winning strategy, if it is omplete and non-losing.We say that player Ω wins G if there exists a winning Ω-strategy. A game
G is determined if one of the players wins.Useful haraterisations of some of the properties of strategies are statedinProposition 2.7.1. Let τ be an Ω-strategy. Then(i) τ is omplete if and only if all its paths are plays of G, that is, Pth(τ) ⊆

Play(G),(ii) τ is non-losing if and only if all its paths that are plays of G are wonby Player Ω, that is, Pth(τ) ∩ Play(G) ⊆ W , and(iii) τ is winning if and only if all its paths are plays of G won by Player Ω,that is, Pth(τ) ⊆ W.From the seond statement of the proposition we learn that in order todetermine whether a Ω-strategy τ is non-losing (losing) it is su�ient to playit against the vauous strategy T and hek that eah (some) resulting playis won by Player Ω (Ω).Note that any player has a simple (though rather owardly) non-losingstrategy: leave the sene of the game before it is too late!



Chapter 3LTL Proof StruturesDedutive loal model heking is a generalisation of �nite-state algorithmiloal model heking to in�nite state systems. It is a tableau-based proofmethod that allows us to establish arbitrary CTL* properties of (potentially)in�nite-state systems. There is no need to transform formulas into someanonial form and all temporal reasoning is redued to showing the validityof formulas from the assertion language L. In this hapter we introdue thesubsystem for LTL, whih will be extended to over full CTL* in Chapter 5.Our proof system for LTL onsists of a set of proof rules that are usedto onstrut graphs, alled LTL proof strutures (a.k.a. tableaux), in a goal-direted way starting from a root node. Some of the rules have side onditionsrequiring that the validity of an assertion from L is proved. The onstrutionof a branh stops when we reah a terminal node (an axiom or anti-axiom)or when a rule appliation generates a subgoal that is already present in thegraph onstruted so far, in whih ase we an loop bak to that node. Assome of the yles introdued in this way are �bad� ones, a suess riterionidenti�es the proof strutures that are legal proofs of the onsidered property.Unlike with �nite-state systems, where the suess riterion an be veri�edalgorithmially by analysing the strongly onneted subgraphs of a proofstruture and where (at least in the absene of fairness) any unsuessfulyle immediately produes a ounter-example omputation, the generalityof our approah requires a well-foundedness argument for proving that thesuess riterion holds. We will present an additional proof rule (Rule A(S))implementing this argument. In summary, the method of dedutive loalmodel heking establishes in two steps that a system S satis�es a LTLproperty Aφ:1. onstrut a proof struture Π for S and Aφ, and2. use Rule A(S) to prove that Π is suessful.29



30 Definition of LTL Proof Strutures [3.1The seond step an be omitted if there are no anti-axioms in Π and φ issyntatially reognisable as desribing a safety property, that is, if thereare no U-subformulas in φ. The method is sound and omplete relative tovalidity of assertions from L as will be demonstrated in the next hapter.The outline of the present hapter is as follows. Setion 3.1 de�nes proofstrutures and the proof rules used to onstrut them. The rules are thendisussed in detail and some useful new rules are derived. The suess rite-rion is de�ned in Setion 3.2 as a property of a system derived from the proofstruture and the original system, alled the assoiated system. A syntatiharaterisation of the suess riterion is formulated, serving as the basisfor the design of the proof rule A(S) for suess in Setion 3.3. Finally, insetion 3.4 we illustrate our proof method with some examples.3.1 De�nition of LTL Proof StruturesGiven a transition system spei�ation S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), asequent in our proof system is of the form p ⊢ A(Φ) where p is a stateassertion over X from our assertion language L (see Setion 2.3) and Φis a �nite, non-empty set of ground-quanti�ed, path-quanti�er-free CTL*formulas. A sequent p ⊢ A(Φ) is alled valid if all p-omputations of Ssatisfy the disjuntion of the formulas in Φ, that is, p |= A(
∨
φ∈Φ φ). Unlikein the �nite-state ase, where a sequent would have a single state on itsleft-hand side, the assertion p denotes a (possibly in�nite) set of states of S.Notation. We will write p ⊢ A(φ1, . . . , φn) instead of p ⊢ A({φ1, . . . , φn})and use p ⊢ A(Φ, φ) to mean p ⊢ A(Φ ∪ {φ}). With Φ = {φ1, . . . , φn}, wealso use X Φ and X(φ1, . . . , φn) as a shorthand for the set {Xφ1, . . . ,Xφn}.Furthermore, for a given sequent γ = p ⊢ A(Φ) we let pγ and Φγ denote pand Φ, respetively.The proof rules (see Table 3.1) are stated and used in a goal-orientedupside-down style with the onlusion above the line and the premises below,with the intention that a rule is applied to a (sub-)goal to redue it to othersubgoals (bakwards reasoning). We an distinguish four di�erent groups ofrules:1. The terminal rules (A(ax), A(nx)) are not, stritly speaking, properrules. They de�ne the sequents that do not have any suessors. Asequent to whih rule A(ax) (A(nx)) is applied is alled an axiom (anti-axiom). The axioms and anti-axioms are also alled terminal sequents.



3.1] LTL Proof Strutures 312. The propositional rules (A(bsf),A(∨),A(∧)) deal with assertions andwith the boolean operators. An assertion an be removed from thesequent in ase it does not ontribute to its truth (Rule A(bsf)1). Theboolean rules eliminate the respetive boolean onnetive.3. The temporal rules (A(U),A(V),A(X)) deal with the temporal onne-tives. The rules for Z-formulas exploit the �xed point haraterisationof these operators and simply unfold the respetive formula. The Nextrule A(X) requires that all right-hand side formulas exhibit a Next op-erator at the top-level and is applied to all of them at one to eliminateall the Next operators. This is the only rule onerned with state tran-sitions. It requires a Hoare triple to be disharged as part of its sideondition.4. The Split rule (A(sp)) is used for ase analysis and weakening. It a�etsonly the left-hand side of the sequent by dividing it up into several ases.In order to prove that for a system S, an assertion Ξ and an LTL formula
Aφ the statement S,Ξ |= Aφ holds, a graph whose nodes are sequents,alled a proof struture for system S and sequent Ξ ⊢ A(φ), is built. Theonstrution is goal-direted, starting from the root sequent Ξ ⊢ A(φ) andproeeding by suessively applying proof rules to the remaining subgoals.The onstrution of a given branh an be terminated whenever we eitherreah a terminal node (an axiom or anti-axiom) or a rule appliation reatesa subgoal that already exists in the graph onstruted so far, in whih asewe an loop bak to that node. This looping bak avoids the onstrutionof in�nite branhes due to suessive unfolding of Z-formulas. Here is theformal de�nition of a proof struture:Definition 3.1.1. Given a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), an as-sertion Ξ and a LTL formula Aφ, a LTL proof struture for system S andsequent Ξ ⊢ A(φ) is a rooted graph

Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ),where Γ is a �nite set of sequents, γr = Ξ ⊢ A(φ) is the root sequent and foreah node γ ∈ Γ we require that(A-SAT) pγ is satis�able,1The abbreviation 'bsf ' means basi state formula, whih is either an assertion or apath-quanti�ed formula. The rule applies only to assertions for the moment, but will beextended in Chapter 5 to over path-quanti�ed formulas.



32 Definition of LTL Proof Strutures [3.1(A-RCH) γ is reahable from γr,(A-RUL) if γ has n ≥ 0 suessors {γ1, . . . , γn} = {γ′ | (γ, γ′) ∈ ∆} then
R

γ

γ1 · · · γn
CRis the orret appliation of some rule R from Table 3.1, that is,the rules' side ondition CR is satis�ed, and(A-SPL) if (γ, γ′) ∈ ∆ then rule A(sp) is not applied to both γ and γ′.If the assertion Ξ is idential with the initial ondition Θ of S then we saythat Π is a proof struture for system S and property Aφ. ♦Note that we write the side onditions of the proof rules in Table 3.1 inthe form p |= r for the respetive assertion r, whih is in fat equivalentto |= p → r. Reall also that the side ondition p |= [Λ] q of rule A(X) isequivalent to the Hoare triple {p}Λ {q}. This notational style for the sideonditions was hosen, beause it will more learly exhibit the duality withthe side onditions of the ELL rules to be introdued in Chapter 5.Definition 3.1.2. Let Π be a LTL proof struture. We de�ne ΓR to bethe set of sequents of Π where rule R is applied. We also write Γterm

def
=

ΓA(ax) ∪ ΓA(nx) for the set of terminal sequents.A pseudo-proof struture Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ) for a system S andsequent Ξ ⊢ Aφ is de�ned in the same way as a proof struture for S and
Ξ ⊢ A(φ), exept that

• the set Γ of sequents need not be �nite, and
• ondition (A-RUL) of De�nition 3.1.1 is relaxed to apply to a sequent
γ only if it has at least one suessor.A �nite pseudo-proof struture is alled a pre-proof struture. ♦Note that in a pseudo-proof struture there may be nodes other thanterminal sequents with no suessors. Thus, a pre-proof struture an beseen as a partially onstruted proof struture.Definition 3.1.3. A path π : γ0γ1 · · · γi · · · in a pseudo-proof struture Π isa maximal sequene of nodes suh that γ0 = γr and (γi, γi+1) ∈ ∆ for all isuh that i+ 1 < |π|. ♦
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A(ax)
p ⊢ A(Φ, q)

·
p |= q

A(nx)
p ⊢ A(q)

·
p |= ¬q

A(bsf)
p ⊢ A(Φ, q)

p ⊢ A(Φ)
p |= ¬q

A(∨)
p ⊢ A(Φ, φ1 ∨ φ2)

p ⊢ A(Φ, φ1, φ2)

A(∧)
p ⊢ A(Φ, φ1 ∧ φ2)

p ⊢ A(Φ, φ1) p ⊢ A(Φ, φ2)

A(U)
p ⊢ A(Φ, φ1 Uφ2)

p ⊢ A(Φ, φ2 ∨ (φ1 ∧ X(φ1 Uφ2)))

A(V)
p ⊢ A(Φ, φ1 V φ2)

p ⊢ A(Φ, φ2 ∧ (φ1 ∨ X(φ1 V φ2)))

A(X)
p ⊢ A(X Φ)

q ⊢ A(Φ)
p |= [Λ] q

A(sp)
p ⊢ A(Φ)

q1 ⊢ A(Φ) · · · qn ⊢ A(Φ)
p |=

∨n
i=1 qiTable 3.1: LTL proof rules



34 Definition of LTL Proof Strutures [3.13.1.1 Disussion of the RulesThe need to have a set of formulas on the right-hand side of a sequent insteadof just a single formula is imposed by the semantis of disjuntion. Supposewe want to prove p |= A(φ1 ∨ φ2). A hypotheti rule like
A(∨)′

p ⊢ A(φ1 ∨ φ2)

q1 ⊢ A(φ1) q2 ⊢ A(φ2)
p |= q1 ∨ q2would be sound, but put a serious threat on the ompleteness of the proofsystem. Supposing p |= A(φ1 ∨ φ2), it is essential for ompleteness2 that wean �nd assertions q1 and q2 suh that q1 |= Aφ1, q2 |= Aφ2 and p→ q1 ∨ q2is valid, but this is not possible in general. Consider a state s |= p. Then

s |= A(φ1 ∨ φ2), but neither s |= Aφ1 nor s |= Aφ2 need to hold, sine thereould be s-omputations σ1 and σ2 with σ1 satisfying φ1 but not φ2 and σ2satisfying φ2 but not φ1. In this ase, the required assertions q1 and q2 donot exist. This is the reason for making the right-hand side of a sequenta �nite set of formulas whih is to be interpreted as a disjuntion over allset members. This naturally leads to rule A(∨) in Table 3.1 whih simplydisards the disjuntion symbol.The onjuntion rule A(∧) just splits the two onjunts as expeted. Theassertion rule A(bsf) eliminates an assertion q in ase it does not ontributeto the truth of the disjuntion of the formulas on the right-hand side, thatis, if no state an at the same time satisfy the left-hand side prediate p andassertion q on the right-hand side. Note that, by the de�nition of a sequent,the set of formulas Φ must be non-empty. In general, an appliation of A(bsf)will have to be preeded by an appliation of the Split rule A(sp) in order toseparate the states satisfying q from those that do not (see also derived rule
A(bsf)′ below).The rules A(U) and A(V) for Z-formulas exploit the �xpoint harateri-sations of these operators. The following equivalenes hold:

φ1 Uφ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 Uφ2))
φ1 V φ2 ≡ φ2 ∧ (φ1 ∨ X(φ1 V φ2))The appliation of a Z-rule simply unfolds the respetive Z-formula. We de-note by unf(φ1 Zφ2) the respetive unfolding (right-hand side formula above).Case analysis is implemented in the Split rule A(sp). The n ≥ 1 asesneed not be disjoint. It is the only rule not modifying the right-hand sideof sequents. We note the following speial ase of the Split rule, alled2Completeness proofs most often rely on the bakwards preservation of satisfation.



3.1] LTL Proof Strutures 35weakening
A(wk)

p ⊢ A(Φ)

q ⊢ A(Φ)
p |= qWeakening an also be useful for replaing a left-hand side assertion by anequivalent one.The Next rule A(X) is the only one onerned with state transitions. Itre�ets the fat that proving p |= A(

∨
φ∈Φ Xφ) an be redued to proving

q |= A(
∨
φ∈Φ φ) provided that any system transition starting in a p-stateleads to a q-state as required by the side ondition. The rule is not bakwardsound in general. Choosing q to be the strongest post-ondition spcΛ(p)w.r.t. all system transitions leads to the following speial ase of A(X) whihis forward and bakward sound

A(X)0
p ⊢ A(X Φ)

spcΛ(p) ⊢ A(Φ)Rule A(X)0 would be su�ient for ompleteness and rule A(X) is derivablefrom it with the help of weakening (rule A(wk) above). However, we havedeided to inlude the more general rule A(X) for onveniene.3.1.2 The Split Condition (A-SPL)Condition (A-SPL) in De�nition 3.1.1 disallows two suessive appliationsof the Split rule and deserves some explanation. The Split rule A(sp) is quitea powerful rule as it does not only allow us to reason by ase analysis, butalso to generalise the sequent to whih it is applied (the side ondition beingan impliation in ontrast to an equivalene, the latter being su�ient forpure ase analysis). It turns out that when applied without the restritionimposed by ondition (A-SPL), this rule is even too powerful in the sense thatthe proof system would beome unsound, as is illustrated by the followingExample 3.1.4. Consider the three node proof struture displayed below.
Ξ ⊢ A(φ)

Ξ ∧ p ⊢ A(φ) Ξ ∧ ¬p ⊢ A(φ)Here the Split rule has been applied to the root sequent Ξ ⊢ A(φ) toobtain two suessor sequents Ξ∧p ⊢ A(φ) and Ξ∧¬p ⊢ A(φ) whih are then



36 Definition of LTL Proof Strutures [3.1reonneted to the root sequent by weakening. Suh irular propositionalreasoning is obviously unsound and leads to an inonsistent system. ♣Note that ondition (A-SPL) also preludes self-loops on nodes where theSplit rule is applied. More generally, soundness requires that every in�nitepath through a proof struture must ontain an in�nite number of applia-tions of the Next rule A(X), eah appliation orresponding to a transition ofthe system. The reason is that the Next rule is the only one making (qual-itative) time advane, thus e�etively introduing the temporal aspet intothe reasoning.The following Lemma identi�es the suessive appliation of the Splitrule A(sp) as the malefator and shows that ondition (A-SPL) is su�ientto avoid irular reasoning �on the spot�.Lemma 3.1.5. (Temporal Consisteny) Let Π be a pseudo-proof stru-ture for system S and sequent Ξ ⊢ A(φ) and let π be an in�nite path in Π.Then rule A(X) is applied in�nitely often on π.Proof. Let π : γ0 · · · γj · · · be an in�nite path in a pseudo-proof struture Π.Suppose for a ontradition that rule A(X) is applied only �nitely many timeson π. De�ne a ranking funtion r on sequents by r(p ⊢ A(Φ)) =
∑

φ∈Φ r0(φ),where the funtion r0 is indutively de�ned on formulas by
r0(q) = r0(Xφ) = 1
r0(φ1 ∧ φ2) = r0(φ1 ∨ φ2) = r0(φ1) + r0(φ2) + 1
r0(φ1 V φ2) = r0(φ1 Uφ2) = r0(φ1) + r0(φ2) + 4An inspetion of the proof rules shows that all rules exept A(sp) and A(X)derease the ranking r. Rule A(sp) applied to some γi leaves the rank onstantfrom γi to γi+1, but by ondition (A-SPL) in De�nition 3.1.1 it is alwaysfollowed by some rule other than A(sp) applied to γi+1. By assumption, rule

A(X) is never applied on π from some point k on. It follows that the ranking
r dereases in�nitely often along πk, ontraditing the well-foundedness ofthe natural numbers.Translated to (pre-)proof strutures this lemma says that there is no ylewithout at least one appliation of the Next rule A(X) appearing on it.Finally, we note that ondition (A-SPL) does not really restrit the sounduse of the Split rule, sine suessive appliations not introduing yles analways be merged into a single appliation.



3.1] LTL Proof Strutures 373.1.3 Derived RulesA number of interesting rules an be derived from the basi ones in Table 3.1.Some of these are displayed in Table 3.2. The derived rule for weakening(A(wk)) has already been disussed above.
A(wk)

p ⊢ A(Φ)

q ⊢ A(Φ)
p |= q

A(bsf)′
p ⊢ A(Φ, q)

p ∧ ¬q ⊢ A(Φ)

p ∧ q, p ∧ ¬qboth satis�able
A(U)′

p ⊢ A(Φ, φ1 Uφ2)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ1 Uφ2))

A(V)′
p ⊢ A(Φ, φ1 V φ2)

p ⊢ A(Φ, φ2) p ⊢ A(Φ, φ1,X(φ1 V φ2))

A(F)
p ⊢ A(Φ, Fψ)

p ⊢ A(Φ, ψ,X Fψ)

A(G)
p ⊢ A(Φ,Gψ)

p ⊢ A(Φ, ψ) p ⊢ A(Φ,X Gψ)

A(W)
p ⊢ A(Φ, φ1 W φ2)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ1 W φ2))

A(X)′
p ⊢ A(X Φ)

q1 ⊢ A(Φ) · · · qn ⊢ A(Φ)
p |= [Λ]

∨n

i=1 qiTable 3.2: Derived LTL rulesRule A(bsf)′ is derivable from rule A(bsf) and the Split rule A(sp). Itallows one to shift the assertion q from the right to the left-hand side of thesequent.The unfolded formula in the two Z-rules A(U) and A(V) an be furtherdeomposed by applying rules A(∨) and A(∧), yielding their more eonomiversions A(U)′ and A(V)′. In rules A(F) and A(G) these are further speialisedfor the derived operators 'eventually' and 'always'. Rule A(W) is sound, but� stritly speaking � not derivable in our system. However, the following



38 Definition of LTL Proof Strutures [3.2rule is derivable:
p ⊢ A(Φ, φ2, (Xφ2) V φ1)

p ⊢ A(Φ, φ1, φ2) p ⊢ A(Φ, φ2,X(φ2, (Xφ2) V φ1))By a slight abuse of notation, writing φ1 W φ2 for φ2, (Xφ2) V φ1 in sequents(whih is semantially justi�ed), we get exatly rule A(W).Finally, rule A(X)′ is a variant of the next rule derivable from A(X) and
A(sp). We will use these derived rules freely in our examples.A Simple ExampleExample 3.1.6. Consider the very simple system S0 with a single naturalnumber variable x, initial ondition Θ0

def
= x = M for some given parameter

M ≥ 0 and with the only possible transition inrementing x by an arbitrarypositive number n:
ρinc

def
= ∃n > 0. x′ = x+ nThe property we want to prove for this system is expressed by the invarianeformula ψ0

def
= A G(x ≥M). Figure 3.1 shows a proof struture for S0 and ψ0.

x = M ⊢ A(G(x ≥M))

x ≥M ⊢ A(X G(x ≥M))

✓

x ≥M ⊢ A(G(x ≥M))

x ≥M ⊢ A(x ≥M)

A(X)

A(wk)

A(G)

Figure 3.1: Proof struture Π0 for S0 and ψ0Note the use of weakening in the �rst step, generalising the statement tobe proved. The veri�ation onditions generated by this proof struture are
x = M |= x ≥ M from weakening rule A(wk)
x ≥M |= x ≥M from axiom rule A(ax)
x ≥M |= [inc] x ≥M from Next rule A(X)and are all easily disharged. As we will see later in this hapter, this proofstruture is indeed a valid proof for S0 |= ψ0. ♣



3.2] LTL Proof Strutures 393.2 The Suess CriterionSimilarly to �nite-state model heking, not every proof struture for system
S and sequent Ξ ⊢ Aφ an be onsidered as a valid proof of S,Ξ |= φ. Thisis beause proof strutures generally ontain yles. In this setion, we �rstde�ne a notion of suess for paths and then lift it to proof strutures. Onlysuessful proof strutures will be onsidered as legal proofs.3.2.1 Suessful PathsLet Π be a proof struture for S and Ξ ⊢ Aφ. The signi�ane of suessfulpaths is best stated negatively as:a path π of Π is unsuessful preisely if any omputation follow-ing it provides a ounter-example to S,Ξ |= AφInformally, a omputation σ follows a path π if σ an be laid along π suhthat transitions on σ are mathed with appliations of rule A(X) and thestates on σ satisfy the onstraints imposed by the left-hand side assertionsof the sequents on π.For instane, any omputation σ of system S0 of Example 3.1.6 followsthe (unique) in�nite path in proof struture Π0 of Figure 3.1, sine it startsin the initial state (where x = M) and all states of σ satisfy x ≥M .Definition 3.2.1. For a Z-formula ψ de�ne the set Uψ of unfolding formsof ψ by

Uψ
def
= {θ | ψ 4 θ 4 unf(ψ)}.

♦An unfolding form of a Z-formula ψ is thus any formula that is a subfor-mula of the unfolding of ψ and ontains at the same time ψ as a subformula.Definition 3.2.2. Let Π = (Γ,∆, γr) be a proof struture for system S.De�ne the set of sequents Qψ for a Z-formula ψ = φ1 Zφ2 by
Qψ

def
= {γ ∈ Γ | Φγ ∩ Uψ 6= ∅ ∧ φ2 6∈ Φγ},that is, Qψ onsists of those sequents of Π the right-hand side of whihontains some unfolding form of ψ, but not its seond subformula φ2. ♦For example, for ψ = φ1 V φ2 we get Uψ = {ψ,Xψ, φ1∨Xψ, φ2∧(φ1∨Xψ)}and p ⊢ A(Xψ, φ1 ∧ φ2) ∈ Qψ, but q ⊢ A(φ1 ∨ Xψ, φ2) 6∈ Qψ as well as

q ⊢ A(φ1 ∧ Xψ, φ2 ∨ ψ) 6∈ Qψ.



40 The Suess Criterion [3.2Definition 3.2.3. Let Π be a proof struture Π for S and Ξ ⊢ A(φ). A path
π in Π is suessful if one of the following holds:(a) π is �nite and ends in an axiom, or(b) π is in�nite and there is a V-formula ψ ∈ V(φ) suh that inf(π) ⊆ Qψ.

♦Reall from Setion 2.4 that V(φ) is the set of V-subformulas of φ andobserve that, sine proof strutures are �nite, inf(π) ⊆ Qψ means that fromsome position in π on all sequents are in Qψ.Let us try to give an intuitive motivation for this de�nition. Suppose Πis a proof struture for system S and sequent Ξ ⊢ A(φ). The �rst part ofthe de�nition is quite obvious: any path ending in an axiom should ountas suessful, as it provides, by soundness of the proof rules, a de�nitiveontribution to the truth of the root sequent.The seond part states that an in�nite path π is suessful if, from somepoint on, some unfolding form of a V-subformula φ1 V φ2 of the original prop-erty φ appears in every sequent, but without φ2 ever ourring beyond thatpoint. The absene of φ2 implies that φ1 V φ2 in�nitely often regenerates it-self along the path π by unfolding and subsequent elimination of the booleanand next onnetives. Let us all ω-regenerated (along π) any Z-subformulawith this inde�nite unfolding property. But why should suh a path π ountas suessful and not others?Although the de�nitive answer of this question has to be deferred to thenext hapter, we an say at this point that the ω-regeneration of a U-formula
ψ1 Uψ2 along a path π orresponds to inde�nitely delaying the satisfationof ψ2, whih is in ontradition to the semantis of the Until operator, while
ω-regenerating a V-formula φ1 V φ2 on the other hand orresponds to thepossibility that φ2 always holds, whih is a possible way to satisfy φ1 V φ2. Aswill be shown in the next hapter, some Z-formula is ω-regenerated along anyin�nite path. Sine all propositions are eliminated on an in�nite path π onthe basis of their falsity (see side ondition of rule A(bsf)), there should betterbe a V-formula that is ω-regenerated along π if π is supposed to be suessful.Otherwise, any omputation following π provides a ounter-example.3.2.2 A Tentative Suess Criterion for Proof Stru-turesOne ould now be tempted to de�ne a proof struture to be suessful if allits paths are suessful. Let us examine this de�nition in this setion. This



3.2] LTL Proof Strutures 41notion of suess is sound. Disregarding fairness issues, it is also ompletein the ase of �nite-state model heking [BCG95℄: any unsuessful pathprodues a ounter-example, namely, the omputation that an be extratedfrom it. However, in the in�nite state ase, it is insu�ient and would makethe proof system inomplete as the following two examples illustrate.Example 3.2.4. Let the system S1 have a single natural number variable xwith initial ondition Θ1
def
= true and transition relations ρdec, ρzero and ρtende�ned by

ρdec
def
= x > 0 ∧ x′ = x− 1

ρzero
def
= x = 0 ∧ x′ = x

ρten
def
= x = 10 ∧ x′ = xA proof struture Π1 for this system and property φ1

def
= A F(x = 0) is shown inFigure 3.2 below. Clearly, φ1 does not hold for S1. As required for soundness,proof struture Π1 is unsuessful aording to our tentative de�nition ofsuess, sine the only in�nite path indued by the yle in Π1 is unsuessful.

true ⊢ A(x = 0,XF(x = 0))

x > 0 ⊢ A(x = 0,XF(x = 0)) x = 0 ⊢ A(x = 0,XF(x = 0))

true ⊢ A(F(x = 0))

x > 0 ⊢ A(XF(x = 0))

✓Figure 3.2: Proof struture Π1 for S1 (S ′
1) and φ1

def
= A F(x = 0)Now onsider the system S ′

1 obtained from S1 by removing transition ten.For this modi�ed system property φ1 holds. Proof struture Π1 is still anunsuessful proof struture for system S ′
1 and property φ1. The di�erenebetween the two ases lies in the way that system omputations an follow thein�nite path π arising from the yle in the proof struture. Any omputation

σ of system S1 ending in the yle at x = 10 an follow π inde�nitely (sineall states on σ satisfy x > 0). On the other hand, every omputation σ′of system S ′
1 leaves π towards the axiom when it eventually reahes a statewhere x = 0, as required to ful�ll the eventuality.It is not di�ult to see that when working with our tentative de�nitionof suess there does not exist any suessful proof struture for S ′

1 and φ1



42 The Suess Criterion [3.2at all. Sine there is no V-subformula in φ1, suh a proof struture must notinlude an in�nite path. Sine the property is to be proved for an in�niteset of initial states, there is no hope to �nd a yle-free, suessful proofstruture. Nonetheless, for ompleteness, Π1 should ount as suessful. ♣The seond example shows that not even all anti-axioms need to be on-sidered as harmful, as there might be no omputation (pre�x) following apath leading to it.Example 3.2.5. Let system S2 be the same as system S1 of the previousexample exept that the initial ondition is strengthened to Θ2
def
= x > M forsome parameter M ≥ 0. Figure 3.3 shows proof struture Π2 for system S2and the simple one-step property φ2

def
= A X(x ≥M).

x > M ⊢ A(X(x ≥M))

true ⊢ A(x ≥M)

x < M ⊢ A(x ≥M) x ≥M ⊢ A(x ≥M)

✓✗Figure 3.3: Proof struture Π2 for system S2 and property φ2
def
= A X(x ≥M)In this proof struture, the Next rule is applied to the root sequent therebyweakening the left-hand side assertion to true. Then Split is applied yieldingan anti-axiom and an axiom. Thus, aording to our preliminary de�ni-tion, Π2 is unsuessful due to the presene of the anti-axiom. However, theproperty obviously holds for S2, so Π2 should ount as suessful.3Observe that, sine the assertion x ≥ M is the strongest post-onditionof x > M w.r.t. the transition relation, it is lear that there an be noomputation of S2 following the path to the anti-axiom, that is, reahing astate satisfying x < M after only one transition. ♣As these examples learly demonstrate, the in�nite-state ase requires are�ned, weaker notion of suess. Of ourse, the intriay stems from thefat that the left-hand side assertion of eah sequent desribes (potentially)in�nite set of states. As a onsequene, given a path in a proof struture,it is not only possible that in�nitely many omputations follow it, but also3At least for the strong ompleteness result we are striving at, whih states that anyproof struture for a system S and LTL property Aψ is suessful, provided S |= Aψ.



3.2] LTL Proof Strutures 43that no omputation at all follows the path. In the latter ase, there is noounter-example omputation and the unsuessful path is thus harmless.Hene, a proof struture should be de�ned to be suessful if(A-SUC) every path that is followed by some omputation is suessfulThis notion of suess is now formalised in the next setion.3.2.3 Trails and Suess for Proof StruturesIn order to formally de�ne the suess riterion (A-SUC) for proof strutures,we have to make more preise what it means for a run or omputation tofollow a path in a proof struture. To this end, we will de�ne a systemderived from a given original system S and a proof struture Π for S, alledthe assoiated system, a run of whih is alled a trail of Π and ombinesa path of Π with a run of S that satis�es the onstraints imposed by theassertions along Π. The notion of Π-fairness is then introdued for trails andsuess of a proof struture de�ned in terms of Π-fair trails.The System Assoiated with a Proof StrutureTo this end, we �rst slightly extend proof struture Π by adding an edgefrom every axiom to the pseudo-sequent ⊤ def
= true ⊢ true and an edge fromevery anti-axiom to the pseudo-sequent ⊥ def

= true ⊢ false plus self-loops on ⊤and ⊥.Definition 3.2.6. Let Π = (Γ,∆, γr) be a LTL proof struture. De�ne
Γ+ def

= Γ ∪ {⊤ | ΓA(ax) 6= ∅} ∪ {⊥ | ΓA(nx) 6= ∅}

∆+ def
= ∆ ∪ ∆⊤ ∪ ∆⊥

∆⊤
def
= {(γ,⊤) ∈ Γ+ × Γ+ | γ ∈ ΓA(ax) ∪ {⊤}}

∆⊥
def
= {(γ,⊥) ∈ Γ+ × Γ+ | γ ∈ ΓA(nx) ∪ {⊥}}

♦A pseudo-sequent and the orresponding edges are added only in ase thatthe orresponding terminal sequent appears in the proof struture. Supposethat we have a �xed enumeration of the (pseudo-)sequents in Γ+ and let inthe following ⌈γ⌉ be the number assigned to γ. For a set Γ0 ⊆ Γ+ we de�ne
⌈Γ0⌉

def
= {⌈γ⌉ | γ ∈ Γ0}.



44 The Suess Criterion [3.2Definition 3.2.7. Let Π = (Γ,∆, γr) be a proof struture for system S =
(X,Σ, {ρλ | λ ∈ Λ},Θ,F) and sequent Ξ ⊢ Aφ. The system

SΠ = (XΠ,ΣΠ, {ρΠ
(γ,λ,γ′) | (γ, λ, γ′) ∈ ΛΠ},ΘΠ,FΠ)assoiated with Π is de�ned by

XΠ def
= X ∪ {K} where K ∈ V −X

ΣΠ def
= Σ extended by mapping K to elements of ⌈Γ+⌉

ΘΠ def
= (K = ⌈γr⌉) ∧ Ξ

ΛΠ def
= ΛΠ

sys ∪ ΛΠ
log

ΛΠ
sys

def
= {(γ, λ, γ′) | (γ, γ′) ∈ ∆+, γ ∈ Γsys, λ ∈ Λ}

ΛΠ
log

def
= {(γ,=, γ′) | (γ, γ′) ∈ ∆+, γ 6∈ Γsys}where Γsys

def
= ΓA(X) ∪ Γterm ∪ {⊥,⊤}, and

ρΠ
(γ,λ,γ′)

def
= p̂γ(x,K) ∧ p̂γ′(x′, K ′) ∧ ρλ(x, x′) for (γ, λ, γ′) ∈ ΛΠ

sys

ρΠ
(γ,=,γ′)

def
= p̂γ(x,K) ∧ p̂γ′(x′, K ′) ∧ x′ = x for (γ,=, γ′) ∈ ΛΠ

logwhere p̂γ def
= (K = ⌈γ⌉) ∧ pγ, and �nally

FΠ def
= (PΠ,WΠ, FΠ)

PΠ def
= {π−1

2 (Λ′) | Λ′ ∈ P} ∪ {ΛΠ
log}

WΠ def
= {π−1

2 (Λw) | Λw ∈W}

FΠ def
= {π−1

2 (Λf) | Λf ∈ F}where π−1
2 (Λ′)

def
= {(γ, λ, γ′) ∈ ΛΠ | λ ∈ Λ′} for Λ′ ⊆ Λ. ♦The state spae of SΠ extends the state spae of S with an additionalontrol variable K indiating the position in the proof struture. The labelset ΛΠ is divided into a set ΛΠ

sys of system-related transitions and a set ΛΠ
logof �logial� transitions. Eah transition (γ, λ, γ′) ∈ ΛΠ

sys departs from a Γsys-sequent γ (that is, γ is an A(X)-sequent, a terminal or a pseudo-sequent) andinvolves the underlying system transition λ. On the other hand, a transition
(γ,=, γ′) ∈ ΛΠ

log departs from a sequent other than a Γsys-sequent and requiresthat the values of system variables are preserved. All transitions, in additionto moving ontrol K along an edge in (γ, γ′) ∈ ∆+, are onstrained by theleft-hand side assertions pγ and pγ′ appearing in the (pseudo-)sequents γ and
γ′. Note that, as these assertions are true for the pseudo-sequents ⊤ and



3.2] LTL Proof Strutures 45
⊥, one ontrol variable K has reahed a pseudo-sequent on a run of SΠ, itsfurther behaviour is governed essentially by the underlying system transitionsonly.The partition PΠ of the fairness onstraint FΠ extends the original parti-tion P to aount for the modi�ation of the transition labeling set: eah set
Λ0 ∈ P is turned into a set ΛΠ

0 ∈ PΠ ontaining all (γ, λ, γ′) ∈ ΛΠ suh that
λ ∈ Λ0. The transitions in ΛΠ

log have no equivalent in S, so this set appearsas an additional element of PΠ. The fairness sets WΠ and FΠ are derived inthe same way from W and F . Note that there is no fairness onstraint on
ΛΠ
log ∈ PΠ.Trails and Π-FairnessFor the rest of this setion, unless otherwise stated, let Π = (Γ,∆, γr) be anarbitrary but �xed proof struture for system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F)and sequent Ξ ⊢ Aφ. Furthermore, let SΠ be the system assoiated with Π,the omponents of SΠ being denoted as in De�nition 3.2.7.Definition 3.2.8. A trail of the proof struture Π is a ΘΠ-run of its assoi-ated transition system SΠ. ♦Loosely speaking, a trail of Π knits together a Ξ-run of the system and apath in the proof struture. We an now de�ne two projetions on trails of

Π, one to the underlying run in S and the other to the underlying path in
Π. De�ne the maps hΣ : ΣΠ → Σ ∪ {ǫ} and hΓ : ΣΠ → Γ ∪ {ǫ} by

hΣ(t)
def
=

{
t|X if t(K) ∈ ⌈Γsys⌉
ǫ otherwise

hΓ(t)
def
=

{
γ if t(K) = ⌈γ⌉ and γ 6∈ {⊥,⊤}
ǫ otherwiseThese maps are now extended to trails.Definition 3.2.9. Let ϑ be a trail of Π. De�ne

• the run σϑ of S indued by ϑ: σϑ def
= hωΣ(ϑ), and

• the path πϑ of Π indued by ϑ: πϑ def
= hωΓ(ϑ).Furthermore, we say that a run σ of S follows a path π of Π, if there is atrail ϑ of Π induing σ and π. ♦In order to obtain a lose math between system omputations and fairtrails, we need to strengthen the notion of fairness for trails.



46 The Suess Criterion [3.2Definition 3.2.10. (Π-Fairness) Suppose that ΛΠ
w ∈ WΠ, ΛΠ

f ∈ FΠ and
Λw ∈ W , Λf ∈ F suh that ΛΠ

w = π−1
2 (Λw) and ΛΠ

f = π−1
2 (Λf), where

FΠ = (PΠ,WΠ, FΠ) and F = (P,W, F ) are the fairness onstraints of SΠand S, respetively. A trail ϑ of Π is alled
• weakly Π-fair w.r.t. ΛΠ

w, if in ase Λw is enabled on ϑ from some pointon, then ΛΠ
w is taken in�nitely often on ϑ,

• strongly Π-fair w.r.t. ΛΠ
f , if in ase Λf is in�nitely often enabled on ϑ,then ΛΠ

f is taken in�nitely often on ϑ, and
• Π-fair if it is weakly Π-fair w.r.t. eah ΛΠ

w ∈ WΠ and strongly Π-fairw.r.t. eah ΛΠ
f ∈ FΠ. ♦We remark that a Π-fair trail is also fair w.r.t. FΠ in the usual sense. Wenote some basi properties of trails inLemma 3.2.11. (Trail Lemma) We have:(i) all trails of Π are in�nite, and(ii) any run σ of S follows some path π of Π,(iii) a trail ϑ of Π is Π-fair i� σϑ is a omputation of S.Proof. (i) and (ii): From the de�nitions by the totality of the (global)transition relation ρΛ of S (Assumption 2.2.2) and the side ondition of theSplit rule.(iii) Let ΛΠ

0 ∈WΠ∪FΠ and Λ0 ∈W ∪F (where FΠ = (PΠ,WΠ, FΠ) and
F = (P,W, F ) are the fairness onstraints of SΠ and S, respetively) suhthat ΛΠ

0 = π−1
2 (Λ0). It is not di�ult to see that ΛΠ

0 is taken in�nitely oftenon ϑ if and only if Λ0 is taken in�nitely often on σϑ. Furthermore, sine Λ0is enabled on an extended state t ∈ ΣΠ (of SΠ) preisely if it is enabled onits projetion t|X ∈ Σ (of S) and σϑ di�ers from ϑ|X only by a repetition ofstates, we onlude that Λ0 is enabled on ϑ from some point on (in�nitelyoften) if and only if Λ0 is enabled on σϑ from some point on (in�nitely often).The result then follows immediately.The LTL Suess CriterionNow we are ready to formally de�ne our suess riterion, by lifting thesuess ondition for paths to trails and then to proof strutures.Definition 3.2.12. (Suessful Trail) A trail ϑ of a LTL proof stru-ture Π is suessful if the indued path πϑ is suessful. ♦



3.2] LTL Proof Strutures 47Definition 3.2.13. (LTL Suess Criterion) A LTL proof struture Πis suessful if all its Π-fair trails are suessful. ♦Note that by the Trail Lemma (ii) and (iii), this de�nition aptures ex-atly the informal de�nition given in ondition (A-SUC) above. On the otherhand, in any unsuessful proof struture Π for S and sequent Ξ ⊢ Aφ thereis an unsuessful Π-fair trail ϑ whih projets to a Ξ-omputation σϑ of Sand to an unsuessful path πϑ. The omputation σϑ provides a ounter-example, that is, it does not satisfy Aφ, a fat that will be proved in thenext hapter.Example 3.2.14. Consider proof struture Π1 of Example 3.2.4 (depitedin Figure 3.2). The (unique) in�nite path π is unsuessful and is followedby exatly the (ounter-example) omputations σm of S1 of the form
σm : 〈x = m〉 〈x = m− 1〉 · · · 〈x = 11〉 (〈x = 10〉)ωfor allm ≥ 10. Therefore, Π1 is unsuessful when viewed as a proof struturefor S1. On the other hand, there is no omputation of S ′

1 following π. Thus,
Π1 is suessful for S ′

1. ♣For the purpose of designing proof rules for suess, we need a moresyntati formulation of the suess riterion.Definition 3.2.15. Let ΨA

def
= V(φ) ∪ {⊤}4 and let Qψ be as in De�ni-tion 3.2.2. De�ne the assertions Kψ for ψ ∈ ΨA by

Kψ
def
=

{
K ∈ ⌈Qψ⌉ for ψ ∈ V(φ)
K = ⌈⊤⌉ for ψ = ⊤

♦Note as the sets Qψ are �nite, the assertions Kψ are de�nable in ourassertion language. It is now easy to lift the suess ondition for paths totrails:Proposition 3.2.16. (LTL Suess, Syntatially)(i) A trail of Π is suessful i� it satis�es the suess formula
ΩA

def
=
∨

ψ∈ΨA

F GKψ4The index A in ΨA and in ΩA below is to distinguish these sets from their ousins ΨEand ΩE, whih will be de�ned in Chapter 5.



48 A Rule for Proving Suess [3.3(ii) A proof struture Π is suessful i� all its Π-fair trails satisfy ΩA, thatis,
SΠ |= AΠ ΩA,where AΠ quanti�es over all Π-fair trails.Proof. (i) Observe that ϑ |= F GK⊤ if and only if πϑ ends in an axiom.Thus, the suess formula ΩA holds for a trail ϑ preisely if the indued path

πϑ is suessful. (ii) Immediate.3.3 A Rule for Proving SuessThe suess riterion (De�nition 3.2.13) lays down the ondition for aeptinga proof struture for a system S and sequent Ξ ⊢ Aφ as a legal proof of
S,Ξ |= Aφ. What is missing for a full-blown proof system is a rule forproving suess.We restrit ourselves, for the time being, to saturated systems (trivialfairness onstraint). Suess rules inluding fairness are presented in Chap-ter 6. Let S be suh a system and suppose Π is a proof struture for S andsome sequent γr. By Proposition 3.2.16, suess of Π an be established byproving that all trails satisfy ΩA, that is, SΠ |= A(

∨
ψ∈ΨA

F GKψ).3.3.1 Rule A(F,
∨

F G)Let us �rst somewhat generalise the setting and present a rule (see Figure 3.4)allowing us to prove the validity of a formula of the form A(F q∨
∨m
i=1 F G pi)over an arbitrary saturated system S (but still with a total transition rela-tion). The reason for adding the formula F q will beome lear in the nextsetion.The appliation of Rule A(F,

∨
F G) requires that we �nd an intermediateassertion βi for eah pi, a well-founded domain (W,≻) and a ranking funtion

δ : Σ → W mapping system states to elements of W . Condition P1 statesthat the initial ondition implies q or β, the latter being the disjuntion ofall the βi. The Hoare triple in premise P2 requires that from a βi-state alltransitions lead to a q-state, to a β-state with a lower rank or again to a
βi-state with a rank not higher than the soure state. By the �nal premiseP3 transitions from a βi-state where pi does not hold lead to a q-state or toa β-state with a lower rank.Rule A(F,

∨
F G) is derived from Rule F-RESP presented in [MP91℄ forproving response properties of the form G(p → F q) under weak and strong



3.3] LTL Proof Strutures 49Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let
p1, . . . , pm and q be assertions. In order to apply this rule, �nd:(a) a ranking funtion δ : Σ → W mapping states of S into ele-ments of a well-founded domain (W,≻), and(b) assertions {β1, . . . , βm} (setting β def

=
∨m

i=1 βi),and hek the validity of onditions P1-P3.P1. Θ → q ∨ βP2. {βi ∧ δ = w} Λ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)}P3. {βi ∧ δ = w ∧ ¬pi} Λ {q ∨ (β ∧ δ ≺ w)}

S ⊢ A(F q ∨
∨m

i=1 F G pi)Figure 3.4: Rule A(F,
∨

F G)(transition) fairness. Note the equivalenes
F q ∨

∨m

i=1 F G pi ≡S

∧m

i=1 G F¬pi → F q

≡S

∧m

i=1 G F¬pi → G(Θ → F q)
(e1)for a system S with initial ondition Θ. The subformula ∧m

i=1 G F¬pi on theright-hand side an be interpreted as a (generalised) unonditional fairnessonstraint. Unonditional fairness being losely related to weak fairness, ourrule A(F,
∨

F G) is very similar to Rule F-RESP under weak fairness only.Let us now explain why this rule is sound. As a onsequene of P1 and P2,on any run of S the assertion β is invariant and the ranking never inreasesunless q beomes true. The idea behind this rule is then that by the dereasein rank eah time βi∧¬pi-state is met, a run σ is fored by well-foundednessto either reah q (hene σ |= F q) or stabilise eventually in βj ∧ pj-states(hene σ |= F G pj). In words orresponding to the seond formula in (e1),eah enounter of a βi ∧ ¬pi-state brings us loser to a q-state. With this inmind, it is not di�ult to see thatProposition 3.3.1. (Soundness of Rule A(F,
∨

F G)) Let S be a satu-rated system and let p1, . . . , pm (with m ≥ 1) and q be assertions. Then
S ⊢ A(F q ∨

∨m

i=1 F G pi) implies S |= A(F q ∨
∨m

i=1 F G pi).



50 A Rule for Proving Suess [3.3Note that the appliation of the rule requires that the set of assertions
{p1, . . . , pn} is non-empty. However, in order to apply the rule to prove A F q(with an empty set of assertions pi) we an simply use the single dummyassertion p1

def
= false. Condition P3 then requires that the ranking dereaseson every transition until q is reahed.3.3.2 Rule A(S)In order to obtain a proof rule for LTL suess, all we have to do is toinstantiate Rule A(F,

∨
F G) with the assoiated system SΠ for S, assertions

{Kψ | ψ ∈ ΨA} for {p1, . . . , pn} and to set q def
= false, thus yielding a rule forproving SΠ |= A(

∨
ψ∈ΨA

F GKψ). This is orret, sine all trails are in�niteby Lemma 3.2.11. However, as we know that ontrol K always stabilises at
⊤ one it got there, there is no need to prove this every time. So a morepratial instantiation is based on the equivalene:

(ΩA =)
∨

ψ∈ΨA

F GKψ ≡SΠ FK⊤ ∨
∨

ψ∈V(φ)

F GKψ (e2)The right-hand side formula more losely re�ets the semanti de�nition ofsuess5 (De�nition 3.2.13).In order to aount for the ase where there are no V-subformulas (thatis, V(φ) = ∅), we de�ne
Ω̂A

def
= FK⊤ ∨

∨

ψ∈Ψ̂A

F GKψwhere Ψ̂A

def
= V(φ) ∪ {•}. Assertion K• ould be set to false as suggested atthe end of the previous setion. Again for pratial reasons, we an do betterthan that:

K•
def
= ¬Ksys

Ksys
def
= K ∈ ⌈Γsys⌉where Ksys is the syntatial ounterpart of Γsys. Observe that sine in eahtrail the ontrol variable K either traverses in�nitely many A(X)-sequents(by Lemma 3.1.5), or eventually stabilises at ⊥ or ⊤, we have F GK• ≡SΠ

F G false ≡SΠ false and therefore Ω̂A ≡SΠ ΩA. For later referene we state5At this point the reader may wonder why we did not use the right-hand side formula inthe syntati haraterisation of LTL suess (Proposition 3.2.16) right from the beginning.This is beause the formula ΩA =
∨
ψ∈ΨA

F GKψ more leanly exhibits the duality betweenLTL suess and ELL suess (de�ned in Setion 5.2).



3.3] LTL Proof Strutures 51Let Π be a LTL proof struture for a saturated system S. Let{
Kψ | ψ ∈ Ψ̂A

} be as disussed in the text. Find:(a) a ranking funtion δ : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (W,≻), and(b) assertions {βψ | ψ ∈ Ψ̂A

} (setting β def
=
∨
ψ∈Ψ̂A

βψ),suh that onditions A1-A3 are valid.A1. ΘΠ → K⊤ ∨ βA2. {βψ ∧ δ = w} ΛΠ {K⊤ ∨ (β ∧ δ ≺ w) ∨ (βψ ∧ δ � w)}A3. {βψ ∧ δ = w ∧ ¬Kψ} ΛΠ {K⊤ ∨ (β ∧ δ ≺ w)}

SΠ ⊢ A Ω̂AFigure 3.5: Rule A(S) for proving suessProposition 3.3.2. A proof struture Π is suessful i� SΠ |= AΠ Ω̂A.Rule A(F,
∨

F G) an thus be instantiated with SΠ for S, K⊤ for q and
{Kψ | ψ ∈ Ψ̂A} for {p1, . . . , pn} yielding Rule A(S) of Figure 3.5.To see the pratial advantage of de�ning K• as above rather than settingit to false, onsider Condition A3 of Rule A(S) for ψ = •. It requires thatthe ranking dereases along every transition from a β•-state where K• doesnot hold. With K• set to false this would mean every transition from a β•-state, while with K• as de�ned above, a derease in rank is only required at
Ksys-states (where ontrol K is at a Γsys-sequent). The hosen de�nition isthus more permissive. Moreover, the transitions from Ksys-states orrespondto underlying system transitions, whih we feel to be more intuitive and tomake the rule easier to apply. Note that if V(φ) is non-empty, K• is notneeded and may be �swithed o�� by setting β• def

= false.Proofs and Soundness of Rule A(S)Definition 3.3.3. Let Π be proof struture for S and Ξ ⊢ A φ. We say thatRule A(S) is appliable to Π if SΠ ⊢ A Ω̂A, that is, we an �nd a well-foundeddomain (W,≻), a ranking funtion δ : ΣΠ → W and assertions {βψ | ψ ∈ Ψ̂A}suh that onditions A1-A3 are valid. ♦



52 A Rule for Proving Suess [3.3Definition 3.3.4. (LTL Proofs) Let Π be proof struture for S and Ξ ⊢
Aφ.

• Π is a proof of S,Ξ |= Aφ, written Π : S,Ξ  Aφ, if it is suessful,and
• Π is a S-proof of S,Ξ |= Aφ, written Π : S,Ξ ⊢ Aφ, if Rule A(S) isappliable to Π.We say that S,Ξ |= Aφ is provable (S-provable), written S,Ξ  Aφ (S,Ξ ⊢

Aφ), if there is a proof struture Π for S and Ξ ⊢ Aφ suh that Π: S,Ξ  Aφ(Π: S,Ξ ⊢ Aφ). ♦Notation. If Π proves S,Θ |= Aφ with Θ being the initial ondition of S,we write Π : S ⊢ Aφ and S ⊢ Aφ instead of Π : S,Θ ⊢ A φ and S,Θ ⊢ Aφ,respetively, and similarly for S-proofs and S-provability.From Propositions 3.3.1 and 3.3.2 we immediately getProposition 3.3.5. (Soundness of Rule A(S) for Proving Suess)Let S be a saturated system. If Π: S,Ξ ⊢ Aφ then Π: S,Ξ  Aφ.Note that the fat that Π is a proof of S,Ξ |= Aφ does of ourse not apriori imply that S,Ξ |= Aφ holds. That this is indeed the ase follows fromthe soundness of our proof system, whih will be proved along with relativeompleteness in the next hapter.Safety FormulasThe ase where there is no V-subformula in φ has already been disussedextensively. To onlude this setion, we also onsider the other extremewhere there are no U-subformulas in φ. In this ase φ desribes a safetyproperty, sine there are no (sub-)formulas that are promised to beome truein the future (as is the ase with φ2 in φ1 Uφ2). We would then expet thatno well-foundedness argument is neessary to establish suess of a proofstruture for a system S and a sequent Ξ ⊢ A(φ), sine all in�nite paths aresuessful. Indeed, the following proposition, the proof of whih is deferredto the next hapter (see Proposition 4.2.21), exempts us from applying Rule
A(S) altogether, at least in ase all terminals are axioms. Note that theproposition holds for any system S, with or without fairness onstraints,sine only liveness properties but not safety properties depend on fairness.Proposition 3.3.6. Let Π be a proof struture for system S and sequent
Ξ ⊢ Aφ, where φ does not ontain any U-subformulas. Suppose that allterminals in Π are axioms. Then Π: S  Aφ.



3.4] LTL Proof Strutures 53As will also be shown in the next hapter, provided that the property tobe shown is true, there is always a proof struture all of whose terminals areaxioms, so this restrition in the proposition is only a mild one.3.4 Some ExamplesIn this setion, we illustrate the appliation of our proof method with threeexamples. In partiular, we will prove a guarantee, a safety and a persisteneproperty.3.4.1 A Guarantee PropertyIn order to omplete Example 3.2.4, it remains to show that proof struture
Π1 is suessful for system S ′

1 (and property φ1). Reall that system S ′
1simply derements a natural number variable x or loops at x = 0. Proofstruture Π1 is reprodued in Figure 3.6 in a deorated form for referene.

γ2 : true ⊢ A(x = 0,XF(x = 0))

γ1 : x > 0 ⊢ A(x = 0,XF(x = 0)) γ4 : x = 0 ⊢ A(x = 0,XF(x = 0))

γ3 : true ⊢ A(F(x = 0))

γ0 : x > 0 ⊢ A(X F(x = 0))

✓Figure 3.6: Proof struture Π1 for system S ′
1 and property φ1

def
= A F(x = 0).In the following we suppose that the oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for

0 ≤ i ≤ 4, ⌈⊤⌉ = 5. In order to apply Rule A(S) we hoose the auxiliaryassertion β• and the ranking δ as follows:
β•

def
= true δ(x,K)

def
= xNote that β ≡ β•, sine β• is the only auxiliary assertion, and that ¬K• ≡

K ∈ {0, 4, 5}. Condition A1 is trivially satis�ed. For ondition A2, we anrestrit ourselves to the ases where K• holds, the others being overed byA3. Condition A2 then boils down to showing
{x = n ∧ (1 ≤ K ≤ 3)}ΛΠ {K⊤ ∨ x ≤ n}



54 Some Examples [3.4For 1 ≤ K ≤ 3, the relevant transitions are (γ1,=, γ0), (γ2,=, γ1), (γ2,=
, γ4) and (γ3,=, γ2) and all of them maintain the ranking onstant. Finally,for ondition A3 we have to hek

{x = n ∧K ∈ {0, 4, 5}}ΛΠ {K⊤ ∨ x < n}It is now easy to see that the only enabled transition for K = 0 is (γ0, dec, γ3)and dereases the rank, while the relevant transitions from K ∈ {4, 5},namely (γ4, zero,⊤) and (⊤, zero,⊤), lead to K⊤.Hene Π1 is a proof of S ′
1 |= A F(x = 0) by soundness of Rule A(S)(Proposition 3.3.5).3.4.2 A Safety PropertyConsider the system S3 with a boolean-valued variable b, a natural numbervariable x, initial ondition Θ3

def
= (b = tt) ∧ (x = 0) and transition relations:

ρinc
def
= (x′ = x− 1) ∧ (b′ = b)

ρup
def
= (b = ff) ∧ (b′ = tt) ∧ (x′ = x)The labeled transition system for this spei�ation is depited in Figure 3.7.

(0,ff) (1,ff)

(0, tt) (1, tt)

(2,ff)

(2, tt)

(3,ff)

(3, tt)

· · ·

· · ·

inc

up

inc

up

inc inc

inc

up

inc

up

Figure 3.7: LTS for system S3The property we want to verify for this system is φ3
def
= A((b = ff) W(b =

tt)). Figure 3.8 shows proof struture Π3 for system S3 and property φ3. Re-all that ψ0 Wψ1 is de�ned as ψ2∨(Xψ2) Vψ1, so there are no U-subformulasin φ3. By Proposition 3.3.6, this proof struture is suessful, sine all itsterminal sequents are axioms. Therefore, proof struture Π3 is a proof of
S3 |= φ3.
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Θ ⊢ A(bf W bt)

true ⊢ A(bf W bt)

true ⊢ A(bf , bt) true ⊢ A(bt,X(bf W bt))

bf ⊢ A(bt,X(bf W bt))bf ⊢ A(bf , bt) bt ⊢ A(bf , bt) bt ⊢ A(bt,X(bf W bt))

bf ⊢ A(X(bf W bt))

✓ ✓ ✓Figure 3.8: Proof struture Π3 for system S3 and property φ3
def
= A((b =

ff) W(b = tt)), writing bt for b = tt and bf for b = ff.3.4.3 A Persistene PropertySystem S4 has a single natural number variable x with initial ondition Θ4
def
=

true and the transition relations ρdec and ρev de�ned by
ρdec

def
= x > 0 ∧ x′ = x− 1

ρev
def
= ev(x) ∧ x′ = xAs a property to be proved for this system onsider the persistene formula

φ4
def
= A F G ev(x) expressing that x eventually stabilises on an even value. Thelabeled transitions system for S4 appears in Figure 3.9 and a proof struturefor S4 and φ4 is displayed in Figure 3.10.

3 2 1 0· · · 4
dec dec decdec

ev ev ev

Figure 3.9: LTS for system S4Suessful paths in this proof struture are exatly those that are either�nite, ending in the axiom γ5, or in�nite, ending in (γ1γ6γ7)
ω.In order to prove that Π4 is suessful using Rule A(S), we quite naturally
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γ0 : true ⊢ A(F G e)

γ1 : true ⊢ A(G e,XF G e)

γ2 : true ⊢ A(e,XFG e) γ6 : true ⊢ A(XG e,XFG e)

γ7 : true ⊢ A(G e,FG e)γ3 : o ⊢ A(e,XFG e) γ5 : e ⊢ A(e,XF G e)

γ4 : o ⊢ A(XFG e)

X
h=0

h=3

h=2

h=2

h=0

h=2

h=2h=1

Figure 3.10: Proof struture Π4 for S4 and φ4
def
= A F G ev(x) with ev(x)abbreviated to e and od(x) to ohoose the auxiliary assertions β• and βG e as follows:

β•
def
= od(x)

βG e
def
= ev(x)This yields β ≡ true, so ondition A1 of Rule A(S) is trivially satis�ed. Wepropose the following ranking funtion:

δ(x,K)
def
= (x, h(K))with the lexiographi ordering, where the value of h(K) is as indiated beloweah node in Figure 3.10 and is de�ned for K = ⊤ by h(⊤) = 0. We supposethat the oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for 0 ≤ i ≤ 7 and ⌈⊤⌉ = 8. Thisyields

K• ≡ K ∈ {0, 1, 2, 3, 7}
KG e ≡ K ∈ {1, 6, 7}It remains to prove that A2 and A3 are satis�ed. For ondition A2 we againassume that Kψ holds, the other ases being overed by A3. The ase ψ = •then boils down to

{od(x) ∧ (x, h) = (m,n) ∧K ∈ {0, 1, 2, 3, 7}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n) ∨ (od(x) ∧ (x, h) ≤ (m,n))}



3.4] LTL Proof Strutures 57All relevant transitions are of the form (γ,=, γ′), thus preserving the valueof x. Also, the value of h does not inrease along these transitions, so neitherdoes the overall ranking.For ψ = G e, the veri�ation ondition reads
{ev(x) ∧ (x, h) = (m,n) ∧K ∈ {1, 6, 7}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n) ∨ (ev(x) ∧ (x, h) ≤ (m,n))}For K ∈ {1, 7}, the relevant transitions are (γ1,=, γ2), (γ1,=, γ6) and (γ7,=
, γ1) whih learly preserve the value of x and h. For K = 6, transition
(γ6, ev, γ7) on one hand preserves the ranking (hene ev(x)) and transition
(γ6, dec, γ7) on the other hand dereases the ranking.Condition A3 for ψ = • is equivalent to

{od(x) ∧ (x, h) = (m,n) ∧K ∈ {4, 5, 6, 8}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n)}For K = 4 or K = 6, the relevant transitions (γ4, dec, γ0) and (γ6, dec, γ7)derease x, hene the ranking. For K = 5 and K = 8 (≡ K⊤), we learlyhave {K = 5}ΛΠ {K⊤} and {K⊤}ΛΠ {K⊤}, respetively.The remaining ase is A3 for ψ = G e, whih boils down to
{ev(x) ∧ (x, h) = (m,n) ∧K ∈ {0, 2, 3, 4, 5, 8}}
ΛΠ

{K⊤ ∨ (x, h) < (m,n)}We distinguish three ases. For K ∈ {0, 2} the all non-trivial transitionsare of the form (γ,=, γ′), thus preserving x while dereasing the value of
h. Hene, the rank dereases along these transitions. For K ∈ {3, 4} theondition holds trivially, sine any transition departing from these positionsrequires that od(x) holds. Finally, any transition departing from K ∈ {5, 8}reahes K⊤. We onlude that Π4 is a proof of S4 |= A F G ev(x).
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Chapter 4Soundness and Completeness viaGamesThis hapter is devoted to proving the followingTheorem 4.0.1. (Soundness and Relative Completeness) Let S bea saturated system, Ξ an assertion and φ a LTL formula. We have
S,Ξ |= φ if and only if S,Ξ ⊢ φ.Due to the expressiveness of the assertion language L we annot expetthat all veri�ation onditions are provable in some formal system. Therefore,ompleteness is shown relative to the validity of the veri�ation onditions,thereby deoupling the reasoning in our proof system from the reasoning inthe assertion language L.

S,Ξ |= φ
m 1.Player ∃ wins GS(Ξ, φ)
m 2.

S,Ξ  φ
m 3.

S,Ξ ⊢ φFigure 4.1: Road-map to soundness and relative ompletenessA major part of this theorem will be proved by a game-theoreti argument.The proof proeeds in three stages as depited in Figure 4.1. As an outlineof the present hapter, we will brie�y disuss eah of the three equivalenes.59



60 [4.01. CTL* Games (Setion 4.1) As a preparatory step we will de�ne, fora given model M = (T , V ), run σ ∈ RT and CTL* formula ψ, the CTL*game GM(σ, ψ), an in�nite two-player game, where � intuitively speaking� one player (alled ∃) tries to show that the property holds (M, σ |= ψ)and the other player (alled ∀) tries to refute it (M, σ 6|= ψ). We thenshow that the truth of M, σ |= ψ an be haraterised by the existene ofa winning strategy for Player ∃ in the game GM(σ, ψ). Furthermore, thisgame is determined, that is, one of the players has a winning strategy. Thisharaterisation is not diretly related to proof strutures and has an interestof its own.2. Trails and Strategies (Setions 4.2 and 4.3) In this seond stepwe investigate the internal struture of paths in proof strutures and showthat to any trail ϑ of a LTL proof struture Π for S and sequent Ξ ⊢ Aφorresponds a ∀-strategy τϑ for the LTL game GS(σϑ, φ). Clearly, if there isa trail ϑ suh that the ∀-strategy τϑ is winning then σϑ provides a ounter-example to the truth of S,Ξ |= Aφ.We introdue an alternative notion of suess proposed in the literaturealled admissibility [Dam94℄ and mathing more losely the winning ondi-tions of our games. We show that a trail ϑ induing a omputation σϑ isadmissible preisely if τϑ is a loosing strategy for GS(σϑ, φ). This an beinterpreted as a failed attempt to produe a ounterexample. On the otherhand, we demonstrate that if Player ∀ has a winning strategy τ for somegame GS(σ, φ) with σ a Ξ-run of S, then τ is represented in Π in the sensethat there exists a trail ϑ suh that τϑ = τ and σϑ = σ. As a onsequene,if all trails ϑ projeting to σ are admissible, we an onlude that Player ∃has a winning strategy for the game GS(σ, φ) and hene S, σ |= φ. Summingup, we an say that Player ∃ wins GS(Ξ,Aφ) preisely if Π is admissible.We then ompare admissibility with suess. Although the two notionsdo not preisely math on the level of individual paths or trails, they dooinide on the level of proof strutures, that is, Π is admissible exatlyif it is suessful. As a �nal ingredient for the establishment of the seondequivalene in the �gure above, we show in Setion 4.3 that, provided Player ∃wins the game GS(Ξ, φ), a proof struture does indeed exist for system S andsequent Ξ ⊢ φ.3. Soundness and Completeness of Rule A(S) (Setion 4.4) Thethird equivalene follows from the fat that Rule A(S) is sound and relativelyomplete for proving suess of LTL proof strutures.



4.1] Soundness and Completeness via Games 61We do not laim that our proof is the shortest possible one. However, ourgame-theoreti analysis of proof strutures provides interesting insights intotheir �ne struture and has as suh an interest of its own. We therefore thinkthat the little �detour� via games is well worth its prie.4.1 CTL* GamesIn this setion we will give a haraterisation of the CTL* satisfation relationin terms of winning strategies in an in�nite two-player game. This harater-isation is similar in spirit to the one for the modal µ-alulus [Sti95, Sti96a,Sti97℄. An alternative notion of CTL* games is proposed in the very reent,as yet unpublished work by Lange and Stirling [LS00℄.4.1.1 Game De�nitionGiven a CTL* model M = (T , V ) and a run σ ∈ RT , the CTL* game
GM(σ, φ) is de�ned as follows. There are two players, alled ∃ and ∀. Intu-itively, Player ∃ is trying to establishM, σ |= φ while his opponent, Player ∀,is trying to refute M, σ |= φ (that is, establish M, σ 6|= φ). Game on�gu-rations are pairs onsisting of a run of T and an CTL* formula. The initialon�guration is (σ0, φ0) = (σ, φ). The rules of the game are desribed inTable 4.1.

ψ ation new on�guration
p end of play -
ψ1 ∨ ψ2 Player ∃ hooses one of the ψi (ς, ψi)
ψ1 ∧ ψ2 Player ∀ hooses one of the ψi (ς, ψi)
ψ1 Zψ2 Player ∃ unfolds ψ1 Zψ2 (ς, unf(ψ1 Zψ2))
Xψ Player ∀ advanes ς by one state (ς1, ψ)
Eψ Player ∃ hooses some ς̂ ∈ CM(ς(0)) (ς̂ , ψ)
Aψ Player ∀ hooses some ς̂ ∈ CM(ς(0)) (ς̂ , ψ)Table 4.1: Game moves in on�guration (ς, ψ)The possible moves in a on�guration (ς, ψ) depend on the top-level on-netive of the formula ψ. A game play ends if ψ is an atomi proposition.For boolean formulas it is Player ∃ that hooses one of the disjunts if ψ is adisjuntion and Player ∀ hooses one of the onjunt in ase ψ is a onjun-tion. For the temporal onnetives, Player ∃ unfolds Z-formulas and Player ∀eliminates Next onnetives and advanes the run by one state. Note that



62 CTL* Games [4.1for these onnetives, it is quite irrelevant whih player atually moves, sinethere is no hoie to be made. In ase of a top-level path quanti�er in ψthere is a hoie � namely, of a omputation ς̂ starting in the same state as
ς � and it is made (not surprisingly) by Player ∃ in ase of an existentialpath quanti�er and by his opponent ∀ in ase of a universal path quanti�er.Table 4.1 de�nes a relation ⊲ on on�gurations. The game tree TGM(σ,φ)indued by this relation ontains the root ǫ together with all positions p =
c0c1 · · · cm with m ≥ 0 suh that

• c0 = (σ, φ), and
• ci ⊲ ci+1 for all 0 ≤ i < m.A play either ends at an atomi proposition or proeeds ad in�nitum by re-peated unfolding of some Z-formula. The winning onditions are summarisedin Table 4.2.play type Player ∃ wins Player ∀ wins
µ �nite, ending in (ς, p) ς(0) ∈ V (p) ς(0) 6∈ V (p)
µ in�nite ∃ωi. π2(µ(i)) ∈ V(φ) ∃ωi. π2(µ(i)) ∈ U(φ)Table 4.2: Winning onditions for game GM(σ, φ)We say that a on�guration (ς, ψ) is true if ς |= ψ, and false otherwise.For �nite plays the winner is determined aording to the truth or falsity ofthe �nal on�guration. For in�nite plays µ, Player ∃ wins if there is some V-subformula of φ appearing in in�nitely many on�gurations on µ and Player ∀wins if some U-subformula of φ appears in�nitely often along µ.The game GM(U, φ) for a non-empty set U ⊆ ST is initiated by Player ∀hoosing a U-omputation σ of T , yielding the initial on�guration (σ, φ).Then the game proeeds as GM(σ, φ), with the same winning onditions.Thus,

TGM(U,φ) =
⋃

σ∈CT (U)

TGM(σ,φ).Given a system S with system variablesX and a ground-quanti�ed CTL*formula φ overX, the games GS(σ, φ) for σ ∈ RS and GS(Ξ, φ) for a satis�ableassertion Ξ are de�ned in the obvious way. As usual, when there is noonfusion possible we will drop indies M or S. Finally, we speak of an LTL,ELL, CTL game when the formula φ is in the respetive sublogi of CTL*.



4.1] Soundness and Completeness via Games 634.1.2 Charaterisation of CTL* satisfationFor this setion, onsider a �xed, but arbitrary CTL* modelM = (T , V ), run
σ ∈ RT and CTL* formula φ. The following lemma states that the winningonditions stated for eah player in Table 4.2 are indeed omplementary, thatis, any play is won by some player (there are no draws).Lemma 4.1.1. (No Draws) Any play of G(σ, φ) won by some player. Inpartiular, any in�nite play µ ends in the following pattern for some run
ς ∈ RT and Z-formula ψ = φ1 Zφ2:

µ : · · · (ς, ψ)(ς, unf(ψ))(ς, φ1 ♭ Xψ)(ς,Xψ)(ς1, ψ)(ς1, unf(ψ)) · · ·where ♭ ∈ {∧,∨} aording to Z.Proof. The statement is trivial for �nite plays. For in�nite plays, let usall Z-move a move from a on�guration with a Z-formula. It is lear thatany in�nite play µ must exhibit an in�nite number of Z-moves, sine anyother type of move dereases the size of the formula. As there are onlya �nite number of possible formulas ourring in on�gurations � namely,subformulas of φ and subformulas of unfoldings of Z-subformulas of φ � theremust be some Z-formula, say ψ = φ1 Zφ2, whih is unfolded in�nitely oftenin µ. But the only way to do so is to follow the sequene in the statementof the Lemma from the �rst point on where ψ ours in a on�gurationon µ. Any other sequene would prevent the regeneration of ψ in a lateron�guration.Note that game moves are designed to preserve the respetive goal of eahplayer. More preisely, if it is Player ∃'s (∀'s) turn to move and the urrenton�guration is true (false), then he has the hoie of making a move to atrue (false) next on�guration. This observation provides the basis forProposition 4.1.2.1. if σ |= φ then Player ∃ has a (deterministi) history-free winning strat-egy for G(σ, φ), and2. if σ 6|= φ then Player ∀ has a (deterministi) history-free winning strat-egy for G(σ, φ).Proof. We prove the �rst ase, the seond one follows by a symmetrialargument. Suppose σ |= φ. Player ∃ determines his moves aording to a�xed hoie funtion ε, a partial funtion that is de�ned at least on true



64 CTL* Games [4.1on�gurations of the forms (ς, φ1 ∨ φ2), (ς, φ1 Z φ2) and (ς,Eψ). On theformer two types of on�gurations ε is de�ned by
ε(ς, ψ1 ∨ ψ2)

def
=

{
(ς, ψ1) if ς |= ψ1 and (ς 6|= ψ2 or |ψ1| ≤ |ψ2|)
(ς, ψ2) otherwise

ε(ς, ψ1 Zψ2)
def
= (ς, unf(ψ1 Zψ2))Furthermore, on true on�gurations of the form (ς,Eψ) we require that

ε(ς,Eψ) = (η, ψ) suh that η ∈ CT (ς(0)) and η |= ψ (∗)Clearly, suh a funtion ε exists by the semantis of the existential pathquanti�er.We show by indution on the length of a play that ε indues a strategy forPlayer ∃ that allows him to preserve the truth of on�gurations regardless ofthe moves of his opponent, that is, we have ς |= ψ for any on�guration (ς, ψ)ourring along a play. The initial on�guration of the game is (σ0, φ0) =
(σ, φ) and is true by assumption. Suppose the game play has proeeded for
k moves to position

(σ0, φ0)(σ1, φ1) · · · (σk, φk)suh that σk |= φk. Then, aording to the struture of φk, we have:
• φk = p for an atomi proposition p: Player ∃ wins
• φk = ψ1∨ψ2: By indution hypothesis we have σk |= ψ1∨ψ2. Thus, thehoie funtion ε gives us on�guration (σk, ψi), where ψi is the smallerof ψ1 and ψ2 suh that σk |= ψi holds (ψ1 in ase of a tie-break).Player ∃ sets (σk+1, φk+1) = (σk, ψi).

• φk = ψ1 ∧ ψ2: Sine σk |= ψ1 ∧ ψ2 by indution hypothesis, whiheverof (σk, ψ1) or (σk, ψ2) Player ∀ hooses as (σk+1, φk+1), we always have
σk+1 |= φk+1.

• temporal operators: there is no real hoie and truth is easily seen tobe preserved aross moves.
• φk = Eψ: sine (σk,Eψ) is true by indution hypothesis, Player ∃ anset (σk+1, φk+1) = ε(σk,Eψ) whih is a true on�guration and a legalmove by onstraint (∗) above.
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• φk = Aψ: By indution hypothesis σk |= Aψ, so whatever omputation
ς with ς(0) = σk(0) Player ∀ may hoose as σk+1, we always have
σk+1 |= ψ.By the above onstrution, the hoie funtion ε indues a (unique) deter-ministi, omplete and history-free ∃-strategy τ . We have already seen thatPlayer ∃ wins any �nite play. It remains to be shown that, following thestrategy τ , Player ∃ also wins any in�nite play

µ : (σ0, φ0)(σ1, φ1) · · · (σk, φk) · · ·Suppose for a ontradition that his opponent, Player ∀, wins suh an in�niteplay µ, with ψ = θ1 U θ2 appearing in�nitely often on µ. By Lemma 4.1.1 µends in the pattern
· · · (ς, ψ)(ς, θ2 ∨ (θ1 ∧ Xψ))(ς, θ1 ∧ Xψ)(ς,Xψ)(ς1, ψ)(ς1, unf(ψ)) · · ·for some omputation ς. Sine all on�gurations on µ are true by our in-variant, it follows that ς i |= θ1 U θ2 for all i ≥ 0. By the semantis of U wealso have ςj |= θ2 for in�nitely many j ≥ 0. Thus for some m ≥ 0 there isa on�guration c = (ςm, θ2 ∨ (θ1 ∧ Xψ)) on µ suh that ςm |= θ2. But thismeans that µ is not played aording to τ , sine strategy τ moves from cto on�guration (ςm, θ2) (beause ςm |= θ2 and |θ2| < |θ1 ∧ Xψ|) and not to

(ςm, θ1∧Xψ) as is the ase on µ. Contradition. Hene, Player ∀ annot winthe play µ. Aording to Lemma 4.1.1, Player ∃ wins µ .Theorem 4.1.3. Let M = (T , V ) be a CTL* model, σ a run of T and φ aCTL* formula. Then(i) The game GM(σ, φ) is determined, and(ii) Player ∃ wins GM(σ, φ) if and only if M, σ |= φ.Proof. Diretly from Proposition 4.1.2.Corollary 4.1.4. Let M = (T , V ) be a CTL* model, U ⊆ ST and φ aCTL* formula. Then(i) The game GM(U, φ) is determined, and(ii) Player ∃ wins GM(U, φ) if and only if M, U |= φ.



66 Trails and Strategies [4.24.2 Trails and StrategiesPaths through proof strutures exhibit themselves onsiderable internal stru-ture. In the following, we will make this struture expliit and show that toeah trail ϑ of a proof struture Π orresponds a ∀-strategy of the game
GS(σϑ, φ). We then relate winningness of these strategies with the suessondition for trails: we will see that the LTL game GS(Ξ,Aφ) is won byPlayer ∃ (and hene S,Ξ |= Aφ) preisely if Π is suessful. Unless other-wise stated we onsider throughout this setion an arbitrary but �xed LTLproof struture Π = (Γ,∆, γr) for some system S and sequent γr = Ξ ⊢ A(φ).4.2.1 Generative Paths and AdmissibilityWe start by de�ning, in a similar way as in [Dam94℄, the generation relationsfor the LTL proof rules in Figure 3.1. These relations desribe dependeniesamong formulas as reated by the appliation of a proof rule.Definition 4.2.1. The generation relation  γ,γ′⊆ Φγ × Φγ′ is de�ned foreah edge (γ, γ′) ∈ ∆ of Π by ase analysis on the rule applied at γ:
 p⊢A(Φ,q), p⊢A(Φ)

def
= Id(Φ)

 p⊢A(Φ,φ1∨φ2), p⊢A(Φ,φ1,φ2)
def
= {(φ1 ∨ φ2, φ1), (φ1 ∨ φ2, φ2)} ∪ Id(Φ)

 p⊢A(Φ,φ1∧φ2), p⊢A(Φ,φ1)
def
= {(φ1 ∧ φ2, φ1)} ∪ Id(Φ)

 p⊢A(Φ,φ1∧φ2), p⊢A(Φ,φ2)
def
= {(φ1 ∧ φ2, φ2)} ∪ Id(Φ)

 p⊢A(Φ,φ1 Zφ2), p⊢A(Φ,unf(φ1 Zφ2))
def
= {(φ1 Zφ2, unf(φ1 Zφ2))} ∪ Id(Φ)

 p⊢A(X Φ), q ⊢A(Φ)
def
= {(Xφ, φ) | φ ∈ Φ}

 p⊢A(Φ), q ⊢A(Φ)
def
= Id(Φ)where Id(Φ) = {(φ, φ) | φ ∈ Φ} is the identity relation on Φ. ♦Definition 4.2.2. (Generative Paths) Let π : γ0γ1 · · · γj · · · be a pathin Π. We say that a (�nite or in�nite) sequene ι : φ0φ1 · · ·φk · · · of LTLformulas with 0 ≤ |ι| ≤ |π| is a generative path running along π if either

• ι = ǫ, or
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• Φγ0 = {φ0} and φi  γi,γi+1

φi+1 for all i with i+ 1 < |ι|.Denote by I(π) the set of all generative paths and by I∗(π) the set of �nitegenerative paths running along π. We all the tree I∗(π) the internal pre-strategy of π. ♦In order to link up the game-theoreti notions of strategies and winning-ness to suess of paths, it is onvenient to introdue an alternative notionof suess alled admissibility whih rests on generative paths. In a seondstep, we will then ompare admissibility with suess.Definition 4.2.3. (Admissibility)1. a path π in Π is alled admissible if it is
• �nite and ends in an axiom, or
• in�nite and there is a generative path ι running along π suh that

inf(ι) ∩ V(φ) 6= ∅.2. a trail ϑ of Π is admissible if πϑ is admissible.3. a proof struture Π is admissible in ase all its Π-fair trails are. ♦4.2.2 Internal Strategies of TrailsWe now de�ne the notion of internal (pseudo-)strategy of a trail ϑ, whihis obtained by ombining the su�xes of the run σϑ indued by ϑ with theinternal pre-strategy of the path πϑ indued by ϑ.Definition 4.2.4. Let ϑ : t0t1 · · · tj · · · be a trail of Π. De�ne1. the sequene σ̃ϑ for i ∈ ω bỹ
σϑ(i)

def
= hωΣ(ϑi)2. the trees Tϑ and τϑ by

Tϑ
def
= {σ̃ϑ ∗ ι | ι ∈ I∗(πϑ)} and τϑ

def
= ♮Tϑwhere the operation x ∗ y is de�ned on words x, y ∈ A∞ oindutivelyby x ∗ ǫ = ǫ ∗ x = ǫ and ay ∗ bz = (a, b) · (y ∗ z). The tree Tϑ is alledthe internal pseudo-strategy and τϑ is alled the internal strategy of thetrail ϑ. ♦



68 Trails and Strategies [4.2Note that σ̃ϑ is a sequene of su�xes of σϑ and that both Tϑ and τϑ areindeed trees. We will see shortly that τϑ is a ∀-strategy for the game G(σ, φ).Before that we reord some basi properties of the internal (pseudo-)strategyof a trail ϑ in the form of two lemmas.Lemma 4.2.5. Let ϑ be a trail of Π with πϑ : γ0γ1 · · · γj · · ·. Then for 0 ≤
k < |πϑ|

ψ ∈ Φγk
⇐⇒ ∃p ∈ Tϑ. |p| = k + 1 & p(k) = (σ̃ϑ(k), ψ).Proof. By a routine indution on the length of nodes of Tϑ.The previous lemma implies that the height of Tϑ is |πϑ|.Lemma 4.2.6. There is a bijetion between the paths of Tϑ and those of τϑ.Proof. Note that whenever some node n = n′c of Tϑ has more than onehild, we have c = (_, φ1 ∨ φ2) and nTϑ

= {nc1, nc2} with ci = (_, φi). Sine
c 6= c1 and c 6= c2, the stutter removal operator preserves the branhingstruture of Tϑ and is therefore a bijetion between the paths of Tϑ and thoseof τϑ.Definition 4.2.7. We say that a path π in Π is losed if it is either in�nite orends in a terminal sequent γt suh that all ψ ∈ Φγt are assertions. Otherwise,
π is alled open. ♦Proposition 4.2.8. (Trails and ∀-strategies I) Let ϑ be a trail of Π.Then we have(i) τϑ is a deterministi ∀-strategy for G(σϑ, φ), and(ii) τϑ is omplete if and only if πϑ is losed.Proof. (i) Let ϑ be a trail with πϑ : γ0γ1 · · · γi · · · and suppose

p : (σ0, ψ0)(σ1, ψk) · · · (σk, ψk) ∈ TϑBy the de�nitions of Tϑ and σ̃ϑ we have σj = σ̃ϑ(j) for all 0 ≤ j ≤ k, and forall 0 ≤ i < k

σi+1 =

{
(σi)

1 if γi ∈ ΓA(X)

σi otherwiseand ψi  γi,γi+1
ψi+1. It follows that either (σi, ψi) ⊲ (σi+1, ψi+1) or (σi, ψi) =

(σi+1, ψi+1). Thus ♮p is a position of the game G(σϑ, φ). Consequently, τϑ is



4.2] Soundness and Completeness via Games 69a tree pre�x of TG(σ,φ). The fat that it is a deterministi ∀-strategy an beseen by inspeting the ases for the boolean operators in De�nition 4.2.1.(ii) �⇒�: By ontraposition. Suppose πϑ is open with |πϑ| = k+ 1. Thenthere is a formula ψ ∈ Φπϑ(k) that is not an assertion. By Lemma 4.2.5 thereis a path µ ∈ Tϑ with µ(k) = (σ̃ϑ(k), ψ). Hene, ♮µ is a path of τϑ that isnot a play of G(σϑ, φ), so τϑ is not omplete.�⇐�: Suppose πϑ : γ0 · · · γj · · · is losed. Let µ be a path of Tϑ. ByLemma 4.2.6 it is su�ient to show that ♮µ is a play of G(σϑ, φ). Suppose�rst that µ is �nite, i.e., µ = n · (σ, ψ) with |µ| = k + 1, and γk = p ⊢ A(Φ).By Lemma 4.2.5 we have ψ ∈ Φ. We show that ψ is an assertion and thus
♮µ a play of G(σϑ, φ). There are three ases:(a) |µ| = |π| and γk is an axiom. Then ψ is an assertion sine πϑ is losedby assumption.(b) |µ| = |π| and γk is an anti-axiom. Then ψ is ertainly an assertion.() |µ| < |π|. Then ψ must be an assertion, sine otherwise by De�nitions4.2.1 and 4.2.4 µ would be extensible and hene not a path of Tϑ.If, on the other hand, µ is in�nite, then ♮µ is an in�nite path of τϑ, hene aplay of G(σ, φ).4.2.3 Winning and Losing StrategiesAs a preparation to relating admissibility of trails and winningness of theirinternal strategies, we state some fundamental properties of �nite plays inLemma 4.2.9. (Finite plays) Let ϑ be a trail of Π. Then(i) if πϑ ends in an axiom τϑ is losing,(ii) if πϑ ends in an anti-axiom τϑ is winning, and(iii) if πϑ does not end in an axiom all �nite plays in τϑ are won by ∀.Proof. Suppose π : γ0 · · · γj · · · is the path indued by a trail ϑ of Π. ByLemma 4.2.5, we an distinguish three situations from whih a �nite path
µ ∈ Tϑ of length |µ| = k + 1 ending in some on�guration (σ, q) with q anassertion may arise:1. γk = p ⊢ Φ, q is an axiom: sine σ(0) |= p, also σ(0) |= q, so ♮µ is wonby Player ∃.



70 Trails and Strategies [4.22. γk = p ⊢ q is an anti-axiom: sine σ(0) |= p, we have σ(0) 6|= q, so ♮µ iswon by Player ∀.3. γk = p ⊢ Φ, q and rule A(bsf) is applied at γk: for similar reasons as inthe previous ase ♮µ is won by Player ∀.These are the only ases giving rise to �nite plays in τϑ. Thus, point 1 proves(i), points 2 and 3 entail (iii) and (ii) follows from 2 and 3 together withProposition 4.2.8(ii).Proposition 4.2.10. (Trails and ∀-strategies II) Let ϑ be a trail of
Π. Are equivalent:(i) ϑ is admissible,(ii) τϑ is losing, and(iii) τϑ is non-winning.Proof. (i)⇒(ii): Suppose ϑ is admissible. If πϑ is �nite then τϑ is losingby Lemma 4.2.9(i). If πϑ is in�nite then σ̃ϑ ∗ ι is an in�nite play won byPlayer ∃, where ι is the generative path witnessing the admissibility of π.The impliation (ii)⇒(iii) is trivial. We show (iii)⇒(i) by ontraposition.Suppose πϑ is inadmissible. If πϑ is �nite then it ends in an anti-axiom and so
τϑ is winning by Lemma 4.2.9(ii). If, on the other hand, πϑ is in�nite, then τϑis omplete by Proposition 4.2.8. We also know, by virtue of Lemma 4.2.9(iii),that all �nite plays in τϑ are won by Player ∀. Moreover, by assumption noin�nite play an be won by Player ∃. Thus τϑ is a winning ∀-strategy.4.2.4 Represented StrategiesAs the internal strategy of an admissible trail is loosing by the previousproposition, it an be seen as a failed attempt to produe a ounter-example.Now the question naturally arises whih types of strategies arise as internalstrategies of trails and, more spei�ally, whether some winning ∀-strategyfor a game G(σ, φ) with σ ∈ RS(Ξ) is represented as a trail of Π, wheneverPlayer ∀ wins that game (that is, whenever he has a winning strategy for thegame).Definition 4.2.11. Let σ ∈ RS(Ξ) and let τ be a ∀-strategy for GS(σ, φ).

• two positions p, q ∈ τ are alled step-equivalent, written p ≃ q, if
cf(p) = cf(q) and #X(p) = #X(q),



4.2] Soundness and Completeness via Games 71where cf(p) = c if c is the urrent on�guration in position p (that is,
p = p′c for some p′ ∈ τ) and #X(p) denotes the number ourrenes of
X-formulas on p.

• τ is alled step-uniform if it makes the same deisions for step-uniformpositions, that is, for all p, q ∈ τ :
p ≃ q ⇒ pτ/p = qτ/q

• a trail ϑ of Π represents τ if
σϑ = σ and {

τϑ = τ if πϑ losed
τϑ ⊂ τ if πϑ openWe say that τ is represented in Π if there is a trail ϑ of Π representing τ .We all τ ompletely represented in Π if there is a trail ϑ representing

τ suh that τϑ = τ . ♦Step-uniformity restrits the history-dependene of strategies by requiringthem to make uniform deisions at uniform times (that is, after a givennumber of Next moves). In turns out that all omplete, deterministi andstep-uniform ∀-strategies are represented in Π.Proposition 4.2.12. (Represented ∀-strategies) Suppose σ ∈ RS(Ξ)and let τ∀ be a omplete, deterministi and step-uniform ∀-strategy for
G(σ, φ). Then τ∀ is represented in Π.Proof. We onstrut two in�nite sequenes {σi}i∈ω, {γi}i∈ω of su�xes of
σ and elements of Γ+, respetively, suh that the following invariants aremaintained:I1. σi(0) |= pγi

, andI2. for all ι ∈ I(πi) with |ι| = i+ 1 we have ♮(ζi ∗ ι) ∈ τ∀.where πi = γ0 · · ·γi and ζi = σ0 · · ·σi. We will then de�ne a trail ϑ fromthese two sequenes and show that the laim of the Proposition holds forthat ϑ.We start the onstrution with σ0 = σ and the root sequent γ0 = Θ ⊢
A(φ). Clearly, both invariants are ful�lled. Suppose that we have onstrutedthe sequenes up to some k ≥ 0 and that both invariants hold for i = k.Consider two ases:



72 Trails and Strategies [4.2Case (1) γk is a terminal sequent. We omplete the onstrution byde�ning σj and γj for j > k by
σj = (σk)

j−k and γj =

{
⊤ if γk is an axiom
⊥ otherwiseCase (2): γk is not a terminal sequent. We onstrut σk+1 and γk+1 byase analysis on the rule R applied at γk. For rules A(bsf), A(∨), A(U) and

A(V), we set σk+1 = σk and we let γk+1 be the unique suessor sequent of
γk in Π. The invariants are easily shown to be preserved. For rule A(sp)we set σk+1 = σk and hoose γk+1 to be some suessor of γk suh that (I1)is preserved. The existene of suh a suessor is guaranteed by the sideondition of A(sp). (I2) is then trivially preserved. For rule A(X) we set
σk+1 = (σk)

1 and γk+1 the only suessor of γk. Again, both invariants arepreserved.The remaining and only interesting ase is that of rule A(∧), so supposerule A(∧) is applied at γk = p ⊢ A(Φ, φ1 ∧ φ2). Then there exists ι ∈ I(πk)suh that |ι| = k + 1 and ι = φ · · · (φ1 ∧ φ2), implying by (I2) that p =
p′ · (σk,φ1 ∧ φ2) = ♮(ζk ∗ ι) ∈ τ∀. Sine τ∀ is omplete and deterministi wehave p · (σk, φj) ∈ τ∀ for either j = 1 or j = 2. Set σk+1 = σk and γk+1 = p ⊢
A(Φ, φj). Invariant (I1) is trivially preserved. To see that (I2) is preserved,note that any position q ∈ τ∀ with q = ♮(ζk ∗ ι′) for some ι′ ∈ I(πk) of length
k+1 and ending in φ1 ∧φ2 is in fat step-equivalent with p. Sine τ∀ is step-uniform by assumption, it follows that q · (σk, φj) = ♮(ζk+1 ∗ (ι′ · φj)) ∈ τ∀.Hene, (I2) is preserved.Now, de�ne the trail ϑ for j ∈ ω by

ϑ(j) = σj(0)[K 7→ γj]It is not di�ult to see that ϑ is indeed a trail with
σϑ = σ and σ̃ϑ(i) = σi for all i ∈ ωSine any position p ∈ τϑ an be represented as ♮(ζk ∗ ι) for some k ≥ 0 and

ι ∈ I(πk), we ertainly have τϑ ⊆ τ∀. Moreover, as τϑ is omplete preiselyif πϑ is losed (Lemma 4.2.8(ii)), we have τϑ = τ∀ if and only if πϑ is losed,showing that τ∀ is represented in Π.The observation that any history-free winning strategy is omplete andstep-uniform immediately yieldsCorollary 4.2.13. Suppose σ ∈ RS(Ξ) and let τ∀ be a deterministi,history-free winning ∀-strategy for G(σ, φ). Then τ∀ is ompletely repre-sented in Π.



4.2] Soundness and Completeness via Games 73Note that the onverse of Proposition 4.2.12 does not hold, even if wedrop the ompleteness requirement: as the following example shows not everystrategy represented in Π is neessarily step-uniform.Example 4.2.14. Figure 4.2 displays a path segment γ0γ1γ2γ3 of a proofstruture.
γ0 : p ⊢ A(φ1 ∧ φ2,G(φ1 ∧ φ2))

γ1 : p ⊢ A(φ1,G(φ1 ∧ φ2))

γ2 : p ⊢ A(φ1, φ1 ∧ φ2)

γ3 : p ⊢ A(φ1, φ2)Figure 4.2: A path segment leading to a non-step-uniform strategyAs a result of applying rule A(∧) to φ1∧φ2 at γ0 the disjunt φ1 is seleted,while at γ2 the appliation of the same rule to φ1 ∧ φ2 selets φ2. It is nothard to see that as a onsequene the internal strategy τϑ of any trail ϑ with
πϑ ontaining this segment is not step-uniform. ♣As the example suggests, proof strutures an be onstruted in a waysuh that multiple hoies as in the example an be avoided and all strategiesprodued by its trails are step-uniform. A su�ient ondition is to hooseat any sequent γ a 4-maximal formula ψ ∈ Φγ and apply to ψ the ruleorresponding to its top-level operator.But let us after this short digression return to our main trak.4.2.5 Winningness and AdmissibilityPutting together the results of the previous two setions, we getProposition 4.2.15. (Winningness and admissible trails) Let σ ∈
RS(Ξ). Then Player ∃ wins GS(σ, φ) if and only if all trails induing σ areadmissible.Proof. By ontraposition using Proposition 4.2.10 and Corollary 4.2.13.The previous proposition an now easily be lifted to the level of proofstrutures as is reorded in



74 Trails and Strategies [4.2Theorem 4.2.16. (Winningness and admissible proof strutures)Let Π be a LTL proof struture for S and sequent Ξ ⊢ A(φ). Then Player ∃wins GS(Ξ,Aφ) if and only if Π is admissible.Proof. Note that Player ∃ wins GS(Ξ,Aφ) i� he wins GS(σ, φ) for all σ ∈
CS(Ξ). The result then follows diretly from Proposition 4.2.15.4.2.6 Admissibility vs. SuessThe previous setion showed that the notion of admissibility of a proof stru-ture Π for system S and sequent Ξ ⊢ A(φ) haraterises the property thatPlayer ∃ wins the game GS(Ξ,Aφ) (and hene S,Ξ |= Aφ). In this setionwe study the relation between admissibility and suess.By examining the proof rules and the de�nition of the generation relation,it beomes lear that a suessful path is also admissible. The onverseimpliation does not hold for in�nite paths in general as is demonstrated bythe following ounter-example.Example 4.2.17. Figure 4.3 shows a path π in a proof struture for property
A(G p∨ F G p). As the atual system is quite irrelevant for this example onlythe right-hand side of eah sequent is shown. The dashed arrows indiategenerative paths. Clearly, π is admissible, but not suessful. ♣

G p, F p

XG p, F p

XG p, XF p, p)

XG p, X F p)

A(

A(

A(

A(

A(G p ∨ F p)

)

)

Figure 4.3: An admissible, but unsuessful pathHowever, it turns out that if there is an admissible, but unsuessful trail
ϑ in a proof struture then, although τϑ is a losing ∀-strategy, it an betransformed into a winning strategy.



4.2] Soundness and Completeness via Games 75Lemma 4.2.18. Let ϑ be an admissible, but unsuessful trail of Π. Then(i) Player ∀ wins the game GS(σϑ, φ), and(ii) there is an inadmissible trail ϑ′ in Π suh that σϑ′ = σϑ.Proof. (i) Suppose ϑ is an admissible, but unsuessful trail of ϑ. It followsthat σϑ is a Ξ-run of S and that πϑ is in�nite, admissible and unsuessful.We show that from τϑ we an onstrut a winning ∀-strategy for GS(σϑ, φ).Clearly, all �nite plays are won by Player ∀, but we have to eliminate the�o�ending� in�nite plays won by Player ∃. Loosely speaking, any play in τϑlost by Player ∀ is due to some �unluky� hoies, while the right (winning)hoie is possible eah time and even present elsewhere in τϑ.Let us all ψ-path a path in a (pre-)strategy on whih V-formula ψ appearsin�nitely often (i.e., a play won by ∃) and let V be the set of V-formulaswith a ψ-path appearing in τϑ (and thus in Tϑ). Let ψ1, ψ2, . . . , ψm be somelinearisation of the partial order (V,<), that is, for all ψi, ψj with i ≤ jeither ψi < ψj or they are inomparable w.r.t. the subformula order. Suppose
ψj = φj1 V φj2 for eah 1 ≤ j ≤ m.We onstrut a sequene T1, . . . , Tm+1 of trees starting from T1 = Tϑ andrespeting the following two invariants:J1. τi = ♮Ti is a omplete ∀-strategy with all �nite plays won by Player ∀J2. if there is a ψ-path in Ti then ψ ∈ {ψi, . . . , ψm}.It follows that Tm+1 ontains no ψ-path and thus τm+1 is winning. Clearly,both invariants hold for T1.In order to onstrut Ti+1 from Ti, onsider a ψi-path µ in Ti. Note that

• (σk, unf(ψi)) is present on µ for all but �nitely many k by Lemma 4.1.1
• sine πϑ is in�nite and there is a ψi-path in τϑ, the unsuessfulness of
πϑ is due to an in�nite number of ourrenes of φi2 on πϑ, implyingthat there are in�nitely many j suh that cf(n) = (σj, φi2) for somenode n ∈ TϑIt follows from these two observation that there exist a l ≥ 0, a �nite pre�x

pµ ∈ Ti of µ with cf(pµ) = (σl, unf(ψi)) and a node qµ ∈ Tϑ with cf(qµ) =
(σl, φi2). Now we replae in Ti the set of nodes pµ · (Ti/pµ) by

pµ · (σ
l, φi2) · (Tϑ/qµ)

Ti+1 is obtained from Ti by performing suh a replaement for eah ψi-path
µ in Ti. Clearly, J1 is preserved. Sine any of the trees Tϑ/qµ an ontain
ψj-paths at most for j > i, invariant J2 is also preserved.(ii) Follows from (i) by Proposition 4.2.15.



76 Existene of a Proof Struture [4.3Proposition 4.2.19. (Winningness and suessful trails) Let σ ∈
RS(Ξ). Then Player ∃ wins GS(σ, φ) if and only if all trails of Π induing σare suessful.Proof. �⇒�: By ontraposition. Let σ ∈ RS(Ξ) and suppose there is anunsuessful trail ϑ of Π induing σ. We have to show that Player ∀ wins
GS(σ, φ). If ϑ is inadmissible this follows from Proposition 4.2.15, otherwisefrom Lemma 4.2.18. �⇐�: By Proposition 4.2.15, sine any suessful trail isadmissible.An important onsequene of this proposition is that any Ξ-omputation
σ following an unsuessful path provides a ounter-example to the statement
S,Ξ |= φ, that is, σ 6|= φ.The next theorem shows that, although the notions of admissibility andsuess do not oinide on the level of individual paths or trails, they do onthe level of proof strutures.Theorem 4.2.20. (Winningness, admissibility and suess) Let Π bea proof struture for system S and sequent Ξ ⊢ A(φ). Are equivalent:(i) Player ∃ wins GS(Ξ,Aφ), and(ii) Π is admissible, and(iii) Π is suessful, i.e., Π: S,Ξ  Aφ.Proof. By Theorem 4.2.16 and Proposition 4.2.19.We are now in a position to make up for the proof of Proposition 3.3.6.The proposition is restated here for onveniene.Proposition 4.2.21. Let Π be a proof struture for system S and sequent
Ξ ⊢ A(φ). Suppose that there are no U-subformulas in φ and that all termi-nals in Π are axioms. Then Π: S,Ξ  Aφ is suessful.Proof. Sine there are no U-subformulas in φ and all terminals in Π are ax-ioms all paths in Π are admissible. Hene Π is admissible. By Theorem 4.2.20
Π is suessful.4.3 Existene of a Proof StrutureResults obtained so far indiate that any given proof struture Π for a system
S and sequent Ξ ⊢ A(φ) is suessful preisely if Player ∃ wins the game
GS(Ξ,Aφ). The next step is to show that suh a proof struture does indeed



4.3] Soundness and Completeness via Games 77exist, whenever Player ∃ wins GS(Ξ,Aφ), that is, S,Ξ |= Aφ. For thispurpose we need the ability to haraterise the set of states satisfying a LTLformula Aψ by an assertion from Lµ. It is at this point that the need for theexpressiveness of the �xed point operators in Lµ arises.Lemma 4.3.1. There is a funtion χ : CTL∗ → Lµ suh that for any system
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) and any ground-quanti�ed CTL* formula ψwith free variables Y ⊆ X we have that χ(ψ) is a formula of Lµ with thesame free variables Y suh that

{s ∈ Σ | s |= ψ} = ‖χ(ψ)‖Proof. By Proposition 2.4.4 we an transform ψ into an equivalent formulaof the modal µ-alulus using the translation desribed by Dam [Dam94℄ (seealso [Ref96℄). The translation from the modal µ-alulus to our extendedassertion language Lµ is then straightforward.Notation. We will write χψ instead of χ(ψ).Lemma 4.3.2. Let S be a system, Ξ a satis�able assertion and Aφ a LTL for-mula. Suppose Player ∃ wins GS(Ξ,Aφ). Then there exists a proof struture
Π for S and Ξ ⊢ A(φ).Proof. We onstrut a sequene Π0,Π1, . . . ,Πn of pre-proof strutures for
S and φ, while maintaining the following invariant for all nodes p ⊢ A Φ ofeah Πi:

p |= A(
∨

φ∈Φ

φ) and p is satis�able.From the hypothesis it follows that S,Ξ |= Aφ and Ξ is satis�able, sothe invariant holds for the root sequent Ξ ⊢ A(φ), whih makes up the initialpre-proof struture Π0. Let us all a node of a pre-proof struture open,in ase it has no suessors, but is not a terminal. In order to onstrut
Πi+1 from Πi we pik an open node γ in Πi and apply some rule(s) to itin the way desribed below. If some rule appliation generates a node thatexists already, we loop bak to that node. Finally, we will show that thisproedure terminates, yielding a �anonial� proof struture Π = Πn for Sand Ξ ⊢ A(φ).Let γ = p ⊢ A(Φ) be an open node of Πi. We �rst onsider the ase,where rule A(X) is not appliable to γ. Let Φ = Ψ, ψ where ψ is not a Nextformula. We proeed by ase analysis on the struture of ψ. In ase thetop-level onnetive in ψ is a binary operator (∧,∨,V or U), we simply apply



78 Existene of a Proof Struture [4.3the respetive rule (A(∧),A(∨), A(V) or A(U)) at γ. Sine these rules are allbakwards sound, the invariant is preserved and Πi+1 is easily seen to be apre-proof struture.Now suppose ψ = q is an assertion. Sine γ is an open node, hene not aterminal sequent, we have the following two ases:(a) |= p → ¬q and Ψ 6= ∅. We simply apply rule A(bsf). The invariant islearly preserved and Πi+1 is a pre-proof struture.(b) p ∧ q and p ∧ ¬q are both satis�able. Let r be an assertion equivalentto q suh that sequent p ∧ ¬r ⊢ A(Ψ, q) does not appear in Πi. Weontinue the onstrution as follows
A(sp)

γ : p ⊢ A(Ψ, q)

γ′ : p ∧ r ⊢ A(Ψ, q)

X
A(bsf)

γ′′ : p ∧ ¬r ⊢ A(Ψ, q)

γ′′′ : p ∧ ¬r ⊢ A(Ψ)The appliation of rule A(sp) yields two new sequents γ′ (an axiom)and γ′′. Our hoie of r avoids a potential loop bak to a node wherethe Split rule is already applied. This ensures that ondition (A-SPL)in the de�nition of a (pre-)proof struture is preserved. Clearly, theinvariant holds for both γ′ and γ′′. Hene γ′′ an not be an anti-axiom,so Ψ 6= ∅ and we an apply rule A(bsf) at γ′′ yielding node γ′′′ whihalso satis�es the invariant. In this way we obtain pre-proof struture
Πi+1.For the ase that rule A(X) is appliable to γ, we apply it in the followingway:

p ⊢ A(X Φ)

χA(Φ) ⊢ A(Φ)Sine p |= A(
∨
φ∈Φ Xφ) by the invariant, the side ondition p |= [Λ]χA(Φ) ofthe rule holds. As p is satis�able by the invariant and any state of S hasa suessor by assumption, χA Φ is satis�able as well. Hene Πi+1 is a pre-proof struture. Moreover, χA(Φ) |= A(Φ) holds trivially, so the invariant ispreserved.Finally, we show that the above proedure terminates. Suppose for aontradition that it does not terminate yielding an in�nite pseudo-proofstruture Π̂ by trans�nite iteration. Now onsider a spanning tree T for Π̂rooted at γr. As any node of Π̂ is reahable from γr, all nodes of Π̂ mustappear on T . Sine Π̂ (and hene T ) is �nitely branhing, there is an in�nitebranh π in T by König's Lemma. By Lemma 3.1.5, there must be an in�nite



4.5] Soundness and Completeness via Games 79number of appliations of rule A(X) on π. But sine there an only be a �nitenumber of di�erent right-hand sides of the form A(X Φ) appearing in sequentsof Π̂, there must be two sequents γ and γ′ ontaining same set of formulas
X Φ on π. By onstrution γ and γ′ have the same and only suessor sequent
χA(Φ) ⊢ A(Φ) whih must thus appear twie on π, a ontradition, beause πbeing a branh of the tree T is yle-free. Hene, our onstrution terminatesafter a �nite number of steps, yielding a proof struture Π.Theorem 4.3.3. (Winningness and Provability) Let S be a system, Ξa satis�able assertion and Aφ a LTL formula. Then Player ∃ wins GS(Ξ,Aφ)if and only if S,Ξ  Aφ (that is, there exists a suessful proof struture Πfor S and Ξ ⊢ Aφ).Proof. By Theorem 4.2.20 and Lemma 4.3.2.4.4 Soundness and Completeness of Rule A(S)The �nal missing link in our orretness proof (third equivalene in Table 4.1)states that Rule A(S) is sound and omplete relative to assertional validityfor proving suess of a proof struture.Proposition 4.4.1. (Relative ompleteness of Rule A(F,

∨
F G)) Let

S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let q and p1, . . . , pmbe assertions. Then S |= A(F q∨
∨m
i=1 F G pi) implies S ⊢ A(F q∨

∨m
i=1 F G pi).Proof. The proof of relative ompleteness of Rule F-RESP in [MP91℄ anbe adapted without di�ulties, so we do not repeat it here.From this proposition and Proposition 3.3.5 we immediately getTheorem 4.4.2. (Soundness and relative ompleteness of Rule

A(S)) Let Π be a proof struture for a saturated system S and sequent
Ξ ⊢ Aφ. Then Π: S,Ξ  Aφ if and only if Π: S,Ξ ⊢ Aφ.4.5 Main ResultThe results of this hapter are summarised inTheorem 4.5.1. (Soundness and Relative Completeness for LTL)Let S be a saturated system, Ξ a satis�able assertion and Aφ a LTL formula.Then

S,Ξ |= Aφ if and only if S,Ξ ⊢ Aφ.



80 Main Result [4.5Proof. The three steps depited in Figure 4.1 are overed by Corollary 4.1.4and Theorems 4.3.3 and 4.4.2, respetively.



Chapter 5ELL and CTL* Proof StruturesIn this hapter we extend our proof system to CTL*. To this end, we �rstintrodue ELL proof strutures, the duals of LTL proof strutures. The ELLproof rules an essentially be derived from the LTL rules by dualising theright-hand sides of sequents and side onditions. The symmetry is howevernot perfet. In partiular, handling disjuntion in the ELL system is moredi�ult than onjuntion in the LTL system. We have two rules for dis-juntion whih need to be applied in ombination with the (ELL) Split rule,requiring a judiious hoie of assertions. The notion of the assoiated sys-tem and trails of an ELL proof struture are analogous to the LTL ase, andthe suess ondition is dual to the one for LTL. We also present a suessrule for ELL proof struture.As expeted, trails of ELL proof strutures orrespond to ∃-strategies ina similar way as LTL trails orrespond to ∀-strategies. Most of the resultsabout strategies an be transferred diretly from the LTL ase by duality.The existene of a �anonial� ELL proof struture and the strategies repre-sented in it needs to be reviewed. The proof system for ELL is shown to besound and relatively omplete.We extend our proof systems to apply to arbitrary CTL* formulas byombining LTL and ELL proof strutures. The LTL and ELL rules dealingwith assertions are extended to path-quanti�ed formulas, whih may appeararbitrarily nested inside CTL* formulas. For the ase of a path-quanti�edformula, the side onditions for the extended rules require the onstrutionof a new proof struture. As we prove statements of the form S,Ξ |= φ and
φ ≈ Aφ for any CTL* formula φ we an assume w.l.o.g. that any CTL*formula has a top-level path quanti�er. A CTL* proof struture is thenessentially a olletion of ELL and LTL proof strutures and it is a (S-)proof ifthe onstituent proof strutures are (S-)proofs. As the dependeny among thelatter proof strutures is ayli, path-quanti�ed formulas an essentially be81



82 ELL Proof Strutures [5.1treated like assertions and the proof of soundness and relative ompletenessfor CTL* diretly lifts from the base ases for LTL and ELL.5.1 ELL Proof StruturesGiven a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), an ELL sequent is of theform p ⊢ E(Φ), where p is an assertion and Φ is a non-empty, �nite set ofground-quanti�ed, path-quanti�er-free CTL* formulas. A sequent p ⊢ E(Φ)is valid if p |= E(
∧
φ∈Φ φ), that is, from any state s satisfying p there is a

s-omputation of S satisfying the onjuntion of the formulas appearing in
Φ. We use abbreviations analogous to those used for LTL sequents.An ELL proof struture is de�ned in the same way as a LTL proof stru-ture, exept that the form of the sequents and the set of rules is replaed:Definition 5.1.1. A ELL proof struture for a system S = (X,Σ, {ρλ | λ ∈
Λ},Θ,F) and sequent Ξ ⊢ Eφ is a rooted graph

Π = (Γ,∆ ⊆ Γ × Γ, γr ∈ Γ),where Γ is a �nite set of sequents, γr = Ξ ⊢ Eφ is the root sequent and foreah node γ ∈ Γ we have that(E-SAT) pγ is satis�able,(E-ACC) γ is reahable from γr,(E-RUL) if γ has n ≥ 0 suessors {γ1, . . . , γn} = {γ′ | (γ, γ′) ∈ ∆} then
R

γ

γ1 · · · γn
CRis the orret appliation of some rule R from Table 5.1, that is,the rules' side ondition CR is satis�ed, and(E-SPL) if (γ, γ′) ∈ ∆ then rule E(sp) not applied to both γ and γ′. ♦We all a sequent γ an axiom (anti-axiom) if rule E(ax) (E(nx)) is appliedto γ. A sequent that is either an axiom or an anti-axiom is alled terminal.The set of sequents where rule R is applied is again denoted by ΓR.Note that ondition (E-SPL) ensures the temporal onsisteny of proofstrutures. In fat, Lemma 3.1.5 diretly transfers to ELL proof strutures:on any in�nite path through an ELL proof struture, there is an in�nitenumber of appliations of Rule E(X).



5.1] ELL and CTL* Proof Strutures 83
E(ax)

p ⊢ E(q)

·
p |= q

E(nx)
p ⊢ E(Φ, q)

·
p |= ¬q

E(bsf)
p ⊢ E(Φ, q)

p ⊢ E(Φ)
p |= q

E(∨l)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1)

E(∨r)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ2)

E(∧)
p ⊢ E(Φ, φ1 ∧ φ2)

p ⊢ E(Φ, φ1, φ2)

E(U)
p ⊢ E(Φ, φ1 Uφ2)

p ⊢ E(Φ, φ2 ∨ (φ1 ∧ X(φ1 Uφ2)))

E(V)
p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2 ∧ (φ1 ∨ X(φ1 V φ2)))

E(X)
p ⊢ E(X Φ)

q ⊢ E Φ
p |= 〈Λ〉 q

E(sp)
p ⊢ E Φ

q1 ⊢ E Φ · · · qn ⊢ E Φ
p |=

∨n
i=1 qiTable 5.1: ELL proof rules



84 ELL Proof Strutures [5.15.1.1 Some Remarks on the RulesThe interpretation of right-hand side of sequents is dual to the one for LTLsequents. Note that no dualisation takes plae on the left-hand side of se-quents: the intended meaning of p ⊢ E(Φ) is still �for all states s satisfying
p, ...�. Besides the obvious substitution of E for A, the ELL rules an besystematially obtained from the LTL rules by

• swapping the format of axioms and anti-axioms w.r.t. their LTL oun-terparts, that is, ELL axioms are of the form p ⊢ E(q) and anti-axiomsof the form p ⊢ E(Φ, q),
• replaing all operators in the right-hand side of sequents by their du-als; hene, rule A(op) beomes rule E(opd), where op and opd are dualoperators (pairs of dual operators are (∧,∨), (V,U) and the self-dual

(X,X)),
• negating assertions in side onditions that also our on the right-handside of the sequent (onretely, side onditions for axioms, anti-axiomsand the prediate rule of the form p |= q are replaed by p |= ¬q andvie versa), and
• replaing the weakest preondition operator [Λ] in the side ondition ofRule A(X) by its dual 〈Λ〉 in the side ondition of Rule E(X); observethat the assertion q is not negated as it appears on the left-hand sideof the premise sequentThe Split Rule remains the same (up to substituting E for A) as it onernsonly the left-hand side of sequents. There is one exeption to this symmetry:rule A(∧) should beome

E(∨)′
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1) p ⊢ E(Φ, φ2)but there are two disjuntion rules, E(∨l) and E(∨r), in our system. Thereason is that the above rule is not bakwards sound: p |= E(Φ, φ1 ∨ φ2)does not neessarily imply p |= E(Φ, φ1) and p |= E(Φ, φ2), hene threateningompleteness of the proof system (see also disussion of A-sequent format inSetion 3.1.1). The reader might objet that none of our two rules E(∨l) and
E(∨r) is bakwards sound either. This is orret, but they form the buildingbloks for the following rule, whih is derivable from E(∨l), E(∨r) and E(sp):

E(∨)
p ⊢ E(Φ, φ1 ∨ φ2)

q1 ⊢ E(Φ, φ1) q2 ⊢ E(Φ, φ2)
p |= q1 ∨ q2



5.1] ELL and CTL* Proof Strutures 85This rule generalises rule E(∨)′ above. The reason for not inluding rule E(∨)instead of E(∨l) and E(∨r) right from the beginning is that by ondition (E-SAT) we annot hoose one of the qi's to be equivalent to false, so E(∨l) and
E(∨r) are still needed. The ase is reminisent of rule A(bsf) that in generalneeds to be applied in onjuntion with the Split rule A(sp).Observe that in general there are more hoies to be made in the on-strution an ELL proof struture than in the onstrution of a LTL proofstruture. In partiular, the disjuntion rule E(∨) above requires a judiioushoie of the two assertions q1 and q2.5.1.2 Derived RulesSome useful derived ELL proof rules are summarised in Table 5.2.

E(∨)
p ⊢ E(Φ, φ1 ∨ φ2)

q1 ⊢ E(Φ, φ1) q2 ⊢ E(Φ, φ2)
p |= q1 ∨ q2

E(U)′
p ⊢ E(Φ, φ1 Uφ2)

q1 ⊢ E(Φ, φ2) q2 ⊢ E(Φ, φ1,X(φ1 Uφ2))
p |= q1 ∨ q2

E(V)′
p ⊢ E(Φ, φ1 V φ2)

q1 ⊢ E(Φ, φ2, φ1) q2 ⊢ E(Φ, φ2,X(φ1 V φ2))
p |= q1 ∨ q2

E(F)
p ⊢ E(Φ, Fψ)

q1 ⊢ E(Φ, ψ) q2 ⊢ E(Φ,X Fψ)
p |= q1 ∨ q2

E(G)
p ⊢ E(Φ,Gψ)

p ⊢ E(Φ, ψ,X Gψ)

E(X)′
p ⊢ E(X Φ)

q1 ⊢ E(Φ) · · · qn ⊢ E(Φ)
p |= 〈Λ〉

∨n

j=1 qjTable 5.2: derived ELL rulesDue to the disjuntions appearing in unfoldings of temporal formulas,there also exists left and right single branh versions of rules E(V)′, E(U)′and E(F) for the ase where one of q1 and q2 is equivalent to false. Forinstane, rule E(V)′ also appears in the following variants:
E(Vl)

p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2, φ1)
E(Vr)

p ⊢ E(Φ, φ1 V φ2)

p ⊢ E(Φ, φ2,X(φ1 V φ2))



86 Definition of ELL Suess [5.2This said, rule E(G) is nothing else than rule E(Vr) with φ1
def
= false.The following rule for the 'unless' operator (W) is not derivable, butsound and an thus be added to our system:

E(W)
p ⊢ E(Φ, φ1 W φ2)

q1 ⊢ E(Φ, φ2) q2 ⊢ E(Φ, φ1,X(φ1 W φ2))
p |= q1 ∨ q2It is based on the equivalene

φ1 W φ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 W φ2)).Again, we will use these rules freely in our examples.5.2 De�nition of ELL SuessBy now it omes as no surprise that the notion of ELL suess is dual to theone for LTL.Definition 5.2.1. (Suessful Path)A path π in an ELL proof struture
Π is suessful if it is

• �nite, ending in an axiom, or
• in�nite and for all ψ ∈ U(φ) we have that

inf(π) ∩Rψ 6= ∅where Rψ = Γ −Qψ with Qψ as in De�nition 3.2.2. ♦Note that for ψ = φ1 Uφ2 we have
Rψ = {γ | Φγ ∩ Uψ = ∅ ∨ φ2 ∈ Φγ}.In other words, an in�nite path is suessful if it is not the ase that thereis an U-formula ψ = φ1 Uφ2 whih is unfolded in�nitely often along the pathwith its �promise� φ2 ourring only �nitely many times on that path. Intu-itively, suh inde�nite unfolding of ψ without the promised φ2 also ourringin�nitely often would orrespond to postponing the ful�llment of the promiseforever from some point on, whih is in ontradition to the semantis of theuntil operator.The system SΠ assoiated with an ELL proof struture Π is de�ned in thesimilar way as in De�nition 3.2.7 with the di�erene that ΓA(♯) is everywherereplaed by ΓE(♯) for ♯ ∈ {ax, nx,X} (the sets Γterm and Γsys are rede�nedaordingly). Also the notions of an ELL trail and its projetions to system



5.2] ELL and CTL* Proof Strutures 87runs and paths in the proof struture remain the same up to a replaementof ΓA(♯) by ΓE(♯) as above. The de�nition of Π-fairness remains unhanged forELL trails. The LTL Trail Lemma (Lemma 3.2.11) is then omplemented bythe followingLemma 5.2.2. (ELL Trail Lemma) Let Π be an ELL proof struture for
S and Ξ ⊢ E(φ). We have:(i) all trails of Π are in�nite,(ii) for any state s |= Ξ there exists a s-run σ of S following some path πof Π, and(iii) a trail ϑ of Π is Π-fair i� σϑ is a omputation of S.Proof. (i) and (ii): By the side onditions of rules E(X) and E(sp). (iii) Thesame argument as in the LTL ase applies also here.Note in partiular that point (ii) of this Lemma is weaker than the or-responding statement of the LTL Trail Lemma (Lemma 3.2.11), the lattersaying that any run of S follows some path in a LTL proof struture. Clearly,this is due to the hange of the side ondition from a Hoare triple (for Rule
A(X)) to a possibility triple (for Rule E(X)).Definition 5.2.3. (Suessful ELL Trail) An ELL trail ϑ is suessfulif πϑ is suessful. ♦Definition 5.2.4. (ELL Suess Criterion) An ELL proof struture Πfor system S and sequent Ξ ⊢ E(φ) is suessful if for any state s |= Ξ thereis a suessful Π-fair trail ϑ suh that ϑ(0)|X = s. ♦We proeed to a syntati haraterisation of the ELL suess riterion.Definition 5.2.5. Let ΨE

def
= U(φ)∪{⊥}. The assertions Kψ for ψ ∈ ΨE arede�ned by

Kψ
def
=

{
K ∈ ⌈Qψ⌉ for ψ ∈ U(φ)
K = ⌈⊥⌉ for ψ = ⊥

♦Proposition 5.2.6. (ELL Suess, Syntatially) Let Π be an ELLproof struture. Then



88 A Proof Rule for ELL Suess [5.3(i) a trail ϑ of Π is suessful i� it satis�es the ELL suess formula
ΩE

def
=
∧

ψ∈ΨE

G F¬Kψ(ii) Π is suessful i� SΠ |= EΠ ΩE, where EΠ quanti�es over Π-fair trails.Proof. (i) Observe that for ψ ∈ U(φ) and a state t ∈ ΣΠ with t(K) ∈ {⊤,⊥}we have t |= ¬Kψ, so any trail traversing an axiom and thus ending up withontrol K aught at ⊤ is suessful. It is then easy to see that a trail ϑ issuessful if and only if ϑ |= ΩE. (ii) Immediate from the de�nitions.5.3 A Proof Rule for ELL SuessFor the time being let us disregard fairness onditions and work with satu-rated systems S only (fairness issues will be dealt with in Chapter 6). We arelooking for an appropriate proof rule to establish that an ELL proof stru-ture Π for a saturated system S is suessful, i.e., SΠ |= EΠ ΩE. We takea similar approah as for LTL suess and �rst introdue a rule (E(
∧

GF))for proving properties of the general form E(
∧m

i=1 G F ri) over arbitrary satu-rated systems and then instantiate and modify it slightly yielding Rule E(S)for proving ELL suess.Remark (history variables) For ompleteness, the partiular systemunder study possibly needs to be augmented with a history variable1 priorthe appliation of Rule E(
∧

G F) or E(S), respetively (see Setion 5.5.4).5.3.1 Rule E(
∧

G F)We propose Rule E(
∧

G F) (see Figure 5.1) for arbitrary systems and exis-tentially quanti�ed onjuntions of reurrene properties (that is formulas ofthe form E(
∧m
i=1 G F ri) with assertions ri ).Let us now explain the �mehanis� of Rule E(

∧
GF). In ontrast to Rule

A(F,
∨

F G), we have a ranking funtion δi mapping program states to a well-founded domain (Wi,≻i) for eah 1 ≤ i ≤ m. Just like Rule A(F,
∨

F G) thepresent rule relies on auxiliary assertions αi.Condition R1 states that any initial state satis�es αi for some 1 ≤ i ≤ m.Condition R2 requires that from any αi-state there is some transition leading1A history variable [AL91℄ is a system variable that reords information about the pastbehaviour of a system without a�eting the original state omponents.



5.3] ELL and CTL* Proof Strutures 89to an αi⊕1-state also satisfying ri or preserving αi and dereasing the ranking
δi. Intuitively speaking, the ranking δi measures the distane to the next
αi⊕1 ∧ ri-state.Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let

r1, . . . , rm be assertions. To apply this rule, �nd for 1 ≤ i ≤ m:(a) a ranking funtion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,and hek the validity of onditions R1 and R2 below, where α def
=∨m

i=1 αi and a⊕ b
def
= ((a + b− 1) modm) + 1.R1. Θ → αR2. {αi ∧ δi = w} 〈Λ〉 {(αi⊕1 ∧ ri) ∨ (αi ∧ δi ≺i w)}

S ⊢ E(
∧m
i=1 GF ri)Figure 5.1: Rule E(

∧
G F)Suppose that for a given proof struture Π we have identi�ed rankings

δi and assertions αi satisfying onditions R1 and R2. Then starting fromany initial state s |= Θ of S, we an onstrut a s-run (= s-omputation) of
S satisfying ∧m

i=1 G F ri in the following way. By R1 s satis�es αi for some
1 ≤ i ≤ m. Suppose that we have onstruted the run pre�x σk : s0 · · · sk with
sk satisfying αj . Then by R2 there is a system transition leading to a state
s′ that either satis�es αi⊕1 ∧ ri or still satis�es αi and dereases the ranking
δi. Set sk+1 = s′. By repeated appliation of this onstrution step wewill eventually obtain a run pre�x σk+l : so · · · sk · · · sk+l with sk+l satisfying
αi⊕1 ∧ ri by well-foundedness of the domain Wi. Then we repeat the sameproedure for αi⊕1, onstruting a pre�x σk+l+n : so · · · sk · · · sk+l · · · sk+l+nwith sk+l satisfying αi⊕2 ∧ ri⊕1, et., ad in�nitum. This yields a s-run σ of Ssatisfying ∧m

i=1 GF ri as required. Thus, we have just provedProposition 5.3.1. (Soundness of Rule E(
∧

GF)) Let S be a saturatedsystem and let r1, . . . , rm be assertions. Then S ⊢ E(
∧m
i=1 G F ri) implies

S |= E(
∧m

i=1 G F ri).



90 A Proof Rule for ELL Suess [5.35.3.2 Rule E(S)The ELL suess rule for saturated systems, alled Rule E(S), is displayedin Figure 5.2. It is essentially obtained from Rule E(
∧

GF) by instantia-tion, taking SΠ for S and {¬Kψ | ψ ∈ ΨE} for {r1, . . . , rm}. However, aslight modi�ation has been made to ondition E2 in Rule E(S) omparedto its ounterpart R2 in Rule E(
∧

GF): we have added K⊤ as a disjunt tothe right-hand side of the possibility triple. The justi�ation for this step issimple. If in the onstrution of a trail witnessing ΩE (see proof of Proposi-tion 5.3.1) we are able to reah K⊤-state at some point, then we an safelystop the onstrution. This is beause we know that the trail pre�x an beompleted into a suessful trail, so there is no need to prove it eah timeRule E(S) is applied.Let Π be an ELL proof struture, let ΩE =
∧
ψ∈ΨE

G F¬Kψ as de�nedin Setion 5.2 and suppose K1, . . . , Km enumerates {Kψ | ψ ∈ ΨE}.Find for 1 ≤ i ≤ m:(a) a ranking funtion δi : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,suh that onditions E1 and E2 below are valid, where α def
=
∨m

i=1 αiand a⊕ b
def
= ((a + b− 1) modm) + 1.E1. ΘΠ → αE2. {αi ∧ δi = w}

〈
ΛΠ
〉
{K⊤ ∨ (αi⊕1 ∧ ¬Ki) ∨ (αi ∧ δi ≺i w)}

SΠ ⊢ EΩEFigure 5.2: Rule E(S) for proving suess of ELL proof struturesDefinition 5.3.2. Let Π be an ELL proof struture for S and Ξ ⊢ E(φ).We say that Rule E(S) is appliable to Π if SΠ ⊢ E ΩE, that is, there existrankings δi and assertions αi suh that onditions E1 and E2 are valid. ♦Definition 5.3.3. (ELL Proofs) Let Π be an ELL proof struture for Sand Ξ ⊢ E(φ).



5.4] ELL and CTL* Proof Strutures 91
• Π is a proof of S,Ξ |= Eφ, written Π : S,Ξ  Eφ, if it is suessful,and
• Π is a S-proof of S,Ξ |= Eφ, written Π : S,Ξ ⊢ Eφ, if Rule E(S) isappliable to Π.We say that S,Ξ |= Eφ is provable (S-provable), written S,Ξ  Eφ (S,Ξ ⊢

Eφ), if there exists a proof struture Π for S and Ξ ⊢ E(φ) suh that Π :
S,Ξ  Eφ (Π: S,Ξ ⊢ Eφ). ♦Soundness of Rule E(S) follows from soundness of Rule E(

∧
G F) (Propo-sition 5.3.1) and from the disussion above:Proposition 5.3.4. (Soundness of Rule E(S) for Proving ELL Su-ess) Let Π be an ELL proof struture for a saturated system S and sequent

Ξ ⊢ E(φ). Then Π: S,Ξ ⊢ Eφ implies Π: S,Ξ  Eφ is suessful.Consider now the ase where there is no U-subformula in φ. Then φdesribes a safety property and we would expet that we do not need a well-foundedness argument to establish suess. Indeed, the suess formula forthis ase reads ΩE = G F¬K⊥ and is satis�ed by any trail not traversingan anti-axiom. In partiular, any in�nite path is suessful. Sine in theabsene of fairness any run is a omputation, the following proposition is aonsequene of Lemma 5.2.2(ii):Proposition 5.3.5. Let Π be an ELL proof struture for a saturated system
S and sequent Ξ ⊢ E(φ) suh that φ does not ontain any U-subformula andthere is no anti-axiom in Π. Then Π: S,Ξ  Eφ.This should be ompared with the orresponding result for LTL (Propo-sition 3.3.6), where no restrition to saturated systems was neessary. Here,we an in general only guarantee the existene of witnessing Ξ-runs. Forsystems with fairness onstraints we still have to apply Rule E(S) in order toshow the existene of the required fair Ξ-runs.5.4 ExampleExample 5.4.1. System S5 has a single natural number variable x and thefollowing two transition relations:

ρinc
def
= x′ = x+ 1

ρzero
def
= ∃y. y2 = x ∧ x′ = 0



92 Example [5.4
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Figure 5.3: LTS indued by system S5.
γ7 : true ⊢ E(F(x = 0))

γ4 : ∃y.y2 = x ⊢ E(F(x = 0)) γ6 : ∀y.y2 6= x ⊢ E(F(x = 0))

γ3 : ∃y.y2 = x ⊢ E(XF(x = 0))

✓

γ5 : ∀y.y2 6= x ⊢ E(X F(x = 0))

γ2 : x = 0 ⊢ E(F(x = 0))

γ1 : x = 0 ⊢ E(x = 0)Figure 5.4: Proof struture Π5 for system S5 and sequent true ⊢ E F(x = 0).



5.5] ELL and CTL* Proof Strutures 93The LTS indued by this system is shown in Figure 5.3. The statement thatwe want to verify for this system is S5, true |= E F(x = 0), that is, from anystate it is possible to eventually reah the state where x = 0.A possible proof struture Π5 for this purpose is shown in Figure 5.3.Note that at the root sequent γ7 we have applied rule E(sp), splitting asesaording to whether or not x is a square number. At sequent γ2 we use rule
E(Fl) and at γ4 and γ6 we use rule E(Fr) (see Setion 5.1.2). Let us now showthat this proof struture is suessful using Rule E(S).Setting γ0 = ⊤, suppose that the oding ⌈·⌉ is de�ned by ⌈γi⌉ = i for
0 ≤ i ≤ 7. Sine there is only one U-subformula (F(x = 0)), we write just Finstead of F(x = 0) in αF and KF. In order to apply Rule E(S) we de�ne the
α⊥ and αF by

α⊥
def
= false and αF

def
=
∨

γ∈Γ+

p̂γand hoose the single ranking
δ(x,K) = (d(x), K)for ψ ∈ {⊥, F} with the lexiographi ordering ≺ on N

2, where
d(x)

def
=

{
q(x) − x+ 1 if x > 0
0 otherwise

q(x)
def
= min{m ∈ N | ∃z. z2 = m ∧ m ≥ x}Thus, d(x) measures the distane of from x to the smallest square numbergreater or equal to x.Condition E1 holds trivially. Condition E2 for ψ = ⊥ is also trivial. For

ψ = F, E2 boils down to showing
{p̂γ ∧ (δ = (u, v))}

〈
∆Π5

〉
{K⊤ ∨ (αF ∧ (δ ≺ (u, v)))}.for eah γ ∈ Γ+. This means that every witnessing trail will have to reah

K⊤ at some point. The preservation of αF being immediate this redues to
{p̂γ ∧ (δ = (u, v))}

〈
∆Π5

〉
{K⊤ ∨ (δ ≺ (u, v))}.For γ0 and γ1 we an obviously reah K⊤ in one step. In the other ases,we have to show that the ranking dereases. For γ ∈ {γ2, γ4, γ6, γ7}, itis a transition from ΛΠ5

log whih makes the seond omponent of the rankderease while preserving the �rst (for γ7 this may be either (γ7,=, γ4) or
(γ7,=, γ6), depending on whether x is square or not). From γ3 the transition
(γ3, zero, γ4) dereases both omponents of the rank if x > 0 and only theseond if x = 0. For γ5, the transition (γ5, inc, γ7) dereases the distane
d(x), hene the ranking δ. ♣



94 Soundness and Completeness [5.55.5 Soundness and Completeness5.5.1 Admissible Trails and Winning StrategiesDefinition 5.5.1. Let Π = (Γ,∆, γr) be an ELL proof struture. The E-generation relation  γ,γ′⊆ Φγ ×Φγ′ is de�ned for eah edge (γ, γ′) ∈ ∆ in aELL proof struture by ase analysis on the rule applied at γ:
 p⊢E(Φ,q), p⊢E(Φ) = Id(Φ)

 p⊢E(Φ,φ1∨φ2), p⊢E(Φ,φ1) = {(φ1 ∨ φ2, φ1)} ∪ Id(Φ)

 p⊢E(Φ,φ1∨φ2), p⊢E(Φ,φ2) = {(φ1 ∨ φ2, φ2)} ∪ Id(Φ)

 p⊢E(Φ,φ1∧φ2), p⊢E(Φ,φ1,φ2) = {(φ1 ∧ φ2, φ1), (φ1 ∧ φ2, φ2)} ∪ Id(Φ)

 p⊢E(Φ,φ1 Zφ2), p⊢E(Φ,unf(φ1 Zφ2)) = {(φ1 Zφ2, unf(φ1 Zφ2))} ∪ Id(Φ)

 p⊢E(X Φ), q ⊢E(Φ) = {(Xφ, φ) | φ ∈ Φ}

 p⊢E(Φ), q ⊢E(Φ) = Id(Φ)where Id(Φ) = {(φ, φ) | φ ∈ Φ} is the identity relation on Φ. ♦The following notions are then de�ned in a similar way as their LTLounterparts:
• given a path π in an ELL proof struture an E-generative path runningalong π is determined as in De�nition 4.2.2 but using the E-generationrelation; the set of all E-generative paths running along π is denotedby IE(π) and its subset of �nite E-generative paths by I∗E(π); the latterset is alled internal pre-strategy of π
• given a trail ϑ of an ELL proof struture Π, the de�nitions of theinternal (pseudo-) strategy Tϑ and τϑ of ϑ are the same as in De�ni-tion 4.2.4 exept that I∗(πϑ) is replaed by I∗E(πϑ).Definition 5.5.2. (Admissibility) Let Π be an ELL proof struture forsystem S and sequent Ξ ⊢ Eφ.1. A path π in Π is admissible if

• �nite, ending in an axiom, or



5.5] ELL and CTL* Proof Strutures 95
• in�nite and for all ι ∈ IE(π) we have that

inf(ι) ∩ U(φ) = ∅2. A trail ϑ of Π is admissible if πϑ is an admissible path.3. Π is admissible if for all states s of S with s |= Ξ there is a admissible
Π-fair trail ϑ suh that ϑ(0)|X = s. ♦By duality an admissible path (trail) is also suessful, but the onverse doesnot hold for in�nite paths in general. It omes as no surprise that we haveProposition 5.5.3. (Trails and ∃-strategies) Let Π be a proof stru-ture for S and Ξ ⊢ Eφ, and let ϑ be a trail of Π. Then(i) τϑ is a deterministi ∃-strategy for GS(σϑ, φ),(ii) τϑ is omplete if and only if πϑ is losed, and(iii) τϑ is winning if and only if ϑ is admissible.Proof. By duality.By this proposition and Lemma 5.2.2 we obtain the soundness result inProposition 5.5.4. Let Π be an ELL proof struture for S and Ξ ⊢ Eφ. If

Π is admissible then Player ∃ wins GS(Ξ,Eφ).In ontrast to the LTL ase, the onverse diretion does not hold in gen-eral, even in the absene of fairness: although we know by the ELL TrailLemma that for eah initial state of the system there is a run following somepath, we annot guarantee that this path is admissible. In fat, there neednot be an admissible path at all in an ELL proof struture as the followingsimple example shows.Example 5.5.5. System S6 has a single natural number variable x and thetwo transition relations
ρinc

def
= x′ = x+ 1

ρzero
def
= x′ = 0with initial ondition Θ6

def
= true. Figure 5.5 shows a possible ELL proofstruture for this system and property φ6

def
= E F(x = 0), whih is learlysatis�ed by S6.The only path in Π6 is inadmissible (and also unsuessful). Obviously,the mistake was that we have hosen to apply Rule E(∨r) at γ2 instead ofusing E(∨) to split o� the ase where x = 0. ♦
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γ1 : true ⊢ E(F(x = 0))

γ2 : true ⊢ E(x = 0 ∨ XF(x = 0))

γ3 : true ⊢ E(X F(x = 0))Figure 5.5: Proof struture Π6 for S6 and φ6
def
= EF(x = 0)5.5.2 Existene of an Admissible ELL Proof StrutureThe onstrution of an admissible proof struture requires a judiious appli-ation of the Split Rule in ombination with the two rules for disjuntion (orthe derived rule E(∨)). Therefore, we onstrut in (the proof of) the followinglemma a �anonial� proof struture ΠK and show that it is admissible.Lemma 5.5.6. (Existene of admissible ELL proof struture) Let

Ξ be a satis�able assertion and suppose Player ∃ wins the game GS(Ξ,Eφ).Then(i) there exists a proof struture ΠK for S and Ξ ⊢ E(φ),(ii) any deterministi, history-free winning ∃-strategy τ∃ for GS(σ, φ) with
σ ∈ RS(Ξ) is ompletely represented in ΠK(iii) ΠK is admissible.Proof. (i) The onstrution is similar to the one for LTL proof struturesin Lemma 4.3.2. We onstrut a �nite sequene of pre-proof strutures

Π0, . . . ,Πn suh that Πn is a proof struture for S and Ξ ⊢ E(φ). Theinitial pre-proof struture Π0 onsists of the root sequent Ξ ⊢ E(φ). Pre-proof struture Πi+1 is onstruted from Πi by applying some rule(s) to anopen node (a non-terminal sequent with no suessors) while maintaining theinvariant
p |= E(

∧

φ∈Φ

φ) and p satis�able.The initial pre-proof struture Π0 satis�es the invariant by assumption. Inorder to onstrut Πi+1 from Πi, suppose �rst there is an open node γ : p ⊢
E(X Φ) in Πi where rule E(X) is appliable. We apply the rule in the followingway:

γ : p ⊢ E(X Φ)

γ′ : χE(Φ) ⊢ E(Φ)



5.5] ELL and CTL* Proof Strutures 97where χE(Φ) is an assertion haraterising the set of states where E(Φ) holds(see Lemma 4.3.1). The side ondition is satis�ed and our invariant is pre-served.Now suppose there is an open node γ : p ⊢ (Φ, ψ) in Πi where rule E(X)is not appliable and ψ is a formula other than a X-formula. We proeedby ase analysis on the top-level operator of ψ. The only interesting ase isdisjuntion, all other ases are straightforward.Suppose that ψ = φ1 ∨ φ2. From the invariant it follows that for eah
s |= p we have s |= E(Φ, φ1) or s |= E(Φ, φ2). We distinguish three ases:(a) p |= ¬E(Φ, φ2): it follows that p |= E(Φ, φ1) and we apply rule E(∨l)

E(∨l)
p ⊢ E(Φ, φ1 ∨ φ2)

p ⊢ E(Φ, φ1)learly preserving the invariant.(b) p |= ¬E(Φ, φ1): this ase is symmetrial to the previous one.() Otherwise, there exist p-states s1 and s2 suh that s1 |= E(Φ, φ1) and
s2 |= E(Φ, φ2). We proeed by applying a ombination of the Split anddisjuntion rules in the following way:

E(sp)
γ : p ⊢ E(Φ, φ1 ∨ φ2)

E(∨l)
γ1 : χ1 ⊢ E(Φ, φ1 ∨ φ2)

γ′1 : χ1 ⊢ E(Φ, φ1)
E(∨r)

γ2 : χ2 ⊢ E(Φ, φ1 ∨ φ2)

γ′2 : χ2 ⊢ E(Φ, φ2)where χ1 and χ2 are formulas equivalent to the harateristi prediates
χE(Φ,φ1) and χE(Φ,φ2), respetively, hosen in a way as to avoid loopingbak to a sequent where the Split rule E(sp) is already applied. Thisensures that ondition (E-SPL) is satis�ed. It is easy to see that theinvariant holds for all four new sequents γ1, γ′1, γ2 and γ′2.Finally, by a similar argument as in (the proof of) Lemma 4.3.2 we anshow that this onstrution terminates, thus yielding an ELL proof struturewhih we all ΠK . Observe that by the invariant ΠK an not ontain anyanti-axioms. We remark that ase () above is the only plae where rule E(sp)is applied in the onstrution of ΠK .(ii) Let σ ∈ RS(Ξ) and suppose τ is a deterministi, history-free winningstrategy for GS(σ, φ). We show that τ is ompletely represented in ΠK .In a similar way as in Lemma 4.2.12, we onstrut two in�nite sequenes

{σi}i∈ω and {γi}i∈ω of su�xes of σ and elements of Γ+, respetively, whilemaintaining the following invariants:



98 Soundness and Completeness [5.5J1. σi(0) |= pγi
, andJ2. for all ι ∈ IE(πi) suh that |ι| = i+ 1 we have ♮(ζi ∗ ι) ∈ τ .where πi = γ0 · · · γi and ζi = σ0 · · ·σi. Clearly both invariants hold for theinitial hoie σ0 = σ and γ0 = Ξ ⊢ E(φ). Continuing the onstrution wedetermine σk+1 and γk+1 by ase analysis on the rule R applied at γk. If

γk is a terminal then it must be an axiom by onstrution of ΠK and wede�ne σj = (σk)
k−j and γj = ⊤ for j > k. From the remaining ases we pik

R ∈ {E(∨l),E(∨r),E(sp)}.Suppose that rule E(∨l) is applied at γk = p ⊢ E(Φ, φ1 ∨φ2) and that it isnot preeded by an appliation of E(sp) at γk−1 (if k > 0). We set σk+1 = σkand γk+1 = p ⊢ E(Φ, φ1). Sine for any θ ∈ Φ∪{φ1∨φ2} there is a ιθ ∈ IE(πk)of length k + 1 suh that ιθ : φ · · · θ (see also Lemma 4.2.5), there is by (J2)a position nθ = mθ · (σk, θ) = ♮(ζk ∗ ιθ) ∈ τ . With τ being a winning strategywe must have σk |= θ. By onstrution of ΠK we know that p |= ¬E(Φ, φ2).As σk is a p-omputation by (J1) we dedue that σk 6|= φ2. Sine τ is winningit must move from any position of the form m · (σk, φ1 ∨ φ2) = ♮(ζk ∗ ι) (with
ι ∈ IE(πk) of length k+ 1) to position m · (σk, φ1 ∨ φ2) · (σk, φ1). Hene, (J2)is preserved. (J1) is trivially preserved. The ase where E(∨l) is applied to
γk without a preeding appliation of E(sp) is symmetrial.Suppose that E(sp) is applied to γk. By onstrution of ΠK we knowthat γk = p ⊢ E(Φ, φ1 ∨ φ2). Pik ι ∈ I(πk) suh that |ι| = k + 1 and
ι = φ · · · (φ1∨φ2). From (J2) it follows that n = ♮(ζk∗ι) = m·(σk, φ1∨φ2) ∈ τand sine τ is deterministi and omplete we have either n · (σk, φ1) ∈ τ or
n · (σk, φ2) ∈ τ . Suppose w.l.o.g. that n · (σk, φ1) ∈ τ . Sine there are alsopositions p · (σk, θ) ∈ τ for all θ ∈ Φ by (J2) and τ is winning we have σk |= θas well as σk |= φ1, hene σk(0) |= χ1 (reall χ1 is equivalent to χE(Φ,φ1)).We set σk+1 = σk and γk+1 = χ1 ⊢ E(Φ, φ1 ∨ φ2) whih appears as one ofthe suessor sequents of γk by onstrution of ΠK . Hene (J1) is preserved.(J2) is trivially preserved. Again by onstrution of ΠK we know that theonly suessor sequent of γk+1 is χ1 ⊢ E(Φ, φ1) whih we hoose as our γk+2.Set σk+2 = σk+1. Invariant (J1) is trivially preserved, while (J2) is preservedbeause τ is history-free and the hoie of the new on�guration (σk, φ1) atposition n = ♮(ζk ∗ ι) = m · (σk, φ1 ∨ φ2) of τ is therefore independent of thepartiular ι piked above.Having ompleted the onstrution of the sequenes {σi}i∈ω and {γi}i∈ω,we de�ne ϑ for j ∈ ω by ϑ(j) = σj(0)[K 7→ γj]. It is not di�ult to see that
ϑ is a trail with σϑ = σ and σ̃ϑ(i) = σi. Sine any position m ∈ τ an berepresented as ♮(ζi ∗ ι) for some i ≥ 0 and ι ∈ IE(πi), we have τϑ ⊆ τ byinvariant (J2). Beause all terminals of ΠK are axioms πϑ is losed, hene τϑ



5.5] ELL and CTL* Proof Strutures 99omplete and therefore τϑ = τ .(iii) Let s |= Ξ. By assumption Player ∃ wins the game GS(σ, φ) for some
σ ∈ CS(s). Hene, he has a deterministi, history-free winning strategy τ forthis game (Proposition 4.1.2). By point (ii) there is a trail ϑ with σϑ = σand τϑ = τ , whih is Π-fair by Lemma 5.2.2(iii). Thus, ϑ(0)|X = s and ϑ isadmissible by Proposition 5.5.3. Hene, ΠK is admissible.5.5.3 Winningness and Suessful Proof StruturesBefore we state our main theorem on winningness and the existene of su-essful or admissible ELL proof strutures, we have the following lemma,omparing admissibility and suess.Lemma 5.5.7. (Admissibility and Suess) Let Π be an ELL proof stru-ture for system S and sequent Ξ ⊢ E(φ). Suppose s |= Ξ and there existsa suessful, but inadmissible trail ϑ of Π with ϑ(0)|X = s. Then Player ∃wins the game GS(σϑ, φ).Proof. Suppose ϑ is a suessful, but inadmissible trail of Π. It followsthat πϑ must be in�nite. By observing that all �nite plays in τϑ are wonby Player ∃ we an apply exatly the same proedure as in the proof ofLemma 4.2.18 (but using U-formulas instead of V-formulas) to onstrutfrom τϑ a winning ∃-strategy for the game GS(σϑ, φ).Theorem 5.5.8. (Winningness and Existene of Admissible or Su-essful ELL P.S.) Let S be a system. Are equivalent:(i) Player ∃ wins the game GS(Ξ,Eφ),(ii) there exists an admissible proof struture Π for S and Ξ ⊢ E(φ), and(iii) there exists a suessful proof struture Π for S and Ξ ⊢ E(φ), that is,

S,Ξ  Eφ.Proof. (i)⇒(ii): By Lemma 5.5.6. (ii)⇒(iii): Any admissible proof stru-ture is also suessful. (iii)⇒(i): Suppose Π is a suessful proof struturefor S and Ξ ⊢ E(φ) and let s |= Ξ. Then there is a suessful Π-fair trail ϑin Π with ϑ(0)|X = s. Then Player ∃ wins GS(σϑ, φ) by Proposition 5.5.3 (i)and (iii), if ϑ is admissible, and by Lemma 5.5.7, otherwise. Hene, Player ∃wins the game GS(Ξ,Eφ).



100 A Proof System for Full CTL* [5.65.5.4 Soundness and Completeness of Rule E(S)Rule E(S) is sound and relatively omplete for showing suess of proof stru-tures for saturated systems as is stated inTheorem 5.5.9. (Soundness and Relative Completeness of Rule
E(S)) Let S be a saturated system and let Π be a proof struture for S andsequent Ξ ⊢ E(φ). Then Π: S,Ξ  Eφ if and only if Π: S,Ξ ⊢ E(φ).Proof. Soundness of Rule E(S) was shown in Proposition 5.3.4. The proof ofrelative ompleteness is deferred to Chapter 6 (it follows from Lemma 6.3.7(ii)).5.5.5 Main ResultTheorem 5.5.10. (Soundness and Relative Completeness for ELL)Let S be a saturated system, Ξ an assertion and Eφ an ELL formula. Then

S,Ξ |= Eφ if and only if S,Ξ ⊢ EφProof. By Corollary 4.1.4 and Theorems 5.5.8 and 5.5.9.Note that the only reason that this theorem is restrited to saturated sys-tems is that the same restrition appears in Theorem 5.5.9. This restritionwill be lifted in Chapter 6 on proving suess under fairness onstraints.5.6 A Proof System for Full CTL*Extending our proof systems for LTL and ELL to full CTL* is now straight-forward. Let S be a system, Ξ an assertion and φ a ground-quanti�ed CTL*formula. We would like to verify S,Ξ |= φ. As a onsequene of Proposi-tion 2.4.3(iii) we know that S,Ξ |= φ if and only if S,Ξ |= Aφ, so we mayassume w.l.o.g. that φ has a top-level path quanti�er. Therefore, there is noneed for an intermediate �gluing� proof system as presented in [Ki96℄ (forthe �nite-state ase) to resolve the top-level boolean ombinations of stateformulas.In ontrast to LTL and ELL formulas, the CTL* formula φ may havearbitrary path-quanti�ed subformulas (of the form Qψ for Q ∈ {A,E}). Letus all ψ a basi state formula if it is either a literal or a path-quanti�edformula. As already observed by Emerson and Lei in [EL85℄, with respet tothe LTL and ELL rules, path-quanti�ed formulas an fortunately be treatedvery muh like assertions. More preisely, we extend the axiom, anti-axiom



5.6] ELL and CTL* Proof Strutures 101and assertion rules (Q(ax), Q(nx) and Q(bsf)) of the LTL and ELL proofsystems to apply to all basi state formulas (see Table 5.3). The de�nitionsof LTL and ELL proof strutures are adapted to use the modi�ed sets ofLTL and ELL rules, but remain otherwise unhanged. The notion of a proofremains unhanged.
A(ax)

p ⊢ A(Φ, ψ)

·
p ⊢ ψ E(ax)

p ⊢ E(ψ)

·
p ⊢ ψ

A(nx)
p ⊢ A(ψ)

·
p ⊢ ¬ψ E(nx)

p ⊢ E(Φ, ψ)

·
p ⊢ ¬ψ

A(bsf)
p ⊢ A(Φ, ψ)

p ⊢ A(Φ)
p ⊢ ¬ψ E(bsf)

p ⊢ E(Φ, ψ)

p ⊢ E(Φ)
p ⊢ ψTable 5.3: modi�ed LTL and ELL rules; ψ is a basi state formula; p ⊢ qholds for an assertion q if p |= q.The side onditions of rules Q(ax), Q(nx) and Q(bsf), we replae p |= qand p |= ¬q by p ⊢ ψ and p ⊢ ¬ψ, respetively, where ψ is now a basi stateformula. Reall that negation is a meta-level operator on all formulas butassertions, so the side onditions for path-quanti�ed formulas have all theform p ⊢ Q θ and require the onstrution of a new LTL or ELL proof of

S, p |= Q θ (the ase depending on Q). For assertions the statement p ⊢ (¬)qis to be interpreted as p |= (¬)q as hitherto.As the type (LTL or ELL) of proof struture an be inferred from thetop-level path quanti�er of its root sequent, we will often just say �proofstruture for system S and sequent Ξ ⊢ Qφ�.Definition 5.6.1. (CTL* Proof Strutures) Given a system S, an as-sertion Ξ and a CTL* formula Qφ, a CTL* proof struture Π for system
S and sequent Ξ ⊢ Qφ is a tuple Π = (Π1, . . . ,Πn) of LTL or ELL proofstrutures suh that

• Πi is a proof struture for S and Ξi ⊢ Qi ψi, with Ξ1 ⊢ Q1 ψ1 = Ξ ⊢ Qφ,and
• for all 1 < j ≤ n there is a 1 ≤ i < j suh that Ξj ⊢ Qj ψj appears asa side ondition of Πi. ♦



102 Using Invariants in Proofs [5.7Definition 5.6.2. (CTL* Proofs) Let Π = (Π1, . . . ,Πn) be a CTL* proofstruture for system S and sequent Ξ ⊢ Qφ. Then Π is a proof (S-proof) of
S,Ξ |= Qφ, written Π : S,Ξ  Qφ (Π : S,Ξ ⊢ Qφ), if all onstituent proofstrutures Πi are proofs (S-proofs).We also say that the statement S,Ξ |= Qφ is provable (S-provable) andwrite S,Ξ  Qφ (S,Ξ ⊢ Qφ) if there is a CTL* proof struture Π suh that
Π: S,Ξ  Qφ (Π: S,Ξ ⊢ Qφ). ♦5.6.1 Soundness and Completeness for CTL*Let Π = (Π1, . . . ,Πn) be a CTL* proof struture. The mathing of sideonditions and root sequents appearing in the LTL and ELL proof strutures
Πi onstituting Π indues an ayli dependeny graph on the Πi (Π itself isa linearisation of this graph). The quanti�er depth of the temporal formulain the root sequent of the respetive proof struture stritly dereases alongeah path in that graph. This observation forms the basis forTheorem 5.6.3. (Soundness and Relative Completeness for CTL*)Let S be a saturated system, Ξ an assertion and Qφ a CTL* formula. Then

S,Ξ |= Qφ if and only if S,Ξ ⊢ QφProof. By well-founded indution on the quanti�er depth of Qφ. The baseases are overed by Theorem 4.5.1 for LTL and Theorem 5.5.10 for ELL.For the indution step, suppose Qφ has path-quanti�er depth n. It followsthat the side onditions in the proof struture for S and Ξ ⊢ Qφ of the form
p ⊢ Qψ have qd(Qψ) < n. Hene by indution hypothesis S, p |= Qψ if andonly if S, p ⊢ Qψ, so these side onditions an essentially be treated as ifthey were assertions. Thus, the results for the base ases lift to the indutionstep.5.7 Using Invariants in ProofsSuppose we want to verify S |= Qφ for some system S and CTL* property
Qφ. In the proess of onstruting a proof, we may reuse any previouslyproved invariant I of the system S in several ways. First, in the onstrutionof a proof struture Π for S and Qφ we may safely replae any side onditionof a LTL or ELL proof rule of the form p |= r by

I ∧ p |= r



5.7] ELL and CTL* Proof Strutures 103This proeeding is sound, beause I is also an invariant of the assoiatedsystem SΠ, so we know a priori that any state appearing on a trail willsatisfy I.Seond, for the same reason it is sound to use invariant I to strengthen theassertion on the left-hand side of any impliation or Hoare triple appearingas a veri�ation ondition in the suess rules A(S) or E(S). In the same waywe an also make use of invariants of the system SΠ itself. As an example,the assertion JK de�ned by
JK

def
=
∨

γ∈Γ+

(K = ⌈γ⌉ → pγ)is an invariant of SΠ. A type of formula ourring frequently as auxiliaryassertion in appliations is ∨γ∈Γ0
p̂γ for some Γ0 ⊆ Γ+. By alling on the helpof invariant JK in the proof this assertion an be simpli�ed to K ∈ ⌈Γ0⌉.



104 Using Invariants in Proofs [5.7



Chapter 6Proving Suess under FairnessIn order to prove interesting liveness properties of reative systems, it isimportant to be able to rely on the fair sheduling of system omponents(proesses, transitions, ...). By de�nition a run is unfair, if some system�omponent� is inde�nitely delayed though is it su�iently often ready toprogress. Liveness properties most frequently depend diretly on the progressof individual omponents. So with pure non-deterministi sheduling (nofairness onstraints), a muh smaller number of liveness properties will holdof a system.In our development of the loal dedutive model heking proof system,the LTL and ELL suess rules do not aount for fairness so far. It isimportant to note that this is the only reason why the soundness and rela-tive ompleteness theorems for LTL and ELL (Theorems 4.5.1 and 5.5.10)and thus also the one for CTL* (Theorem 5.6.3) are restrited to saturatedsystems.In this hapter, we will extend the suess rules A(S) and E(S) to aountfor fairness onstraints. As a onsequene of Theorems 6.2.3 and 6.3.8, es-tablishing soundness and relative ompleteness of the extended rule A(S)fairand E(S)fair for proving LTL and ELL suess, respetively, the restritionto saturated systems in the above-mentioned soundness and ompletenesstheorems for LTL, ELL and CTL* an be dropped. For CTL* we getTheorem 6.0.1. (Soundness and Relative Completeness of CTL*Proof Strutures) Let S be system, Ξ an assertion and φ a CTL* for-mula. Then S,Ξ |= φ if and only if S,Ξ ⊢ φ.Before we takle the development of the extended rules, let us examine thepossibility to express di�erent types of fairness onstraints in the temporallogi itself. 105



106 Expressing Fairness in CTL* [6.16.1 Expressing Fairness in CTL*Generalised FairnessLet us �rst onsider a general form of (state-based) fairness. In LTL this anbe expressed by the formula
Ω

def
=

n∧

i=1

(F G pi ∨ G F ri)This formula satis�ed by a run if for eah i either the assertion pi holds on-tinuously from some point on or the assertion ri holds in�nitely often. Thus,if assertion pi is seen to express non-readiness of some system omponent and
ri progress of that omponent, then formula Ω indeed expresses a generalisedform of strong fairness. Weak and unonditional forms an be obtained bysetting pi def

= false.A simple way to verify a CTL* property φ of a saturated system S undersuh a fairness onstraint Ω is to inlude the fairness onstraint into theformula. This is ahieved by replaing all path quanti�ers by their relativisedforms:
A(·) is replaed by AΩ(·)

def
= A(Ω → ·)

E(·) is replaed by EΩ(·)
def
= E(Ω ∧ ·)Let φΩ be the formula obtained from φ by this transformation. If wedenote by S; Ω the system with omputations CS = {σ ∈ RS | σ |= Ω}, thenit is easy to see that S; Ω |= φ preisely if S |= AΩ φ

Ω.Weak and Strong FairnessLet S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with fairness onstraint F =
(P,W, F ). Unfortunately, weak and strong fairness as de�ned by F are notdiretly expressible in CTL* (in the sense of the existene of CTL* formula
ΩF suh that any run σ of S is fair w.r.t. F preisely if σ |= ΩF). Expressingthat some Λ0-transition (with Λ0 ⊆ Λ) is taken requires a relativised 'Next'operator. Suh an operator is de�ned by

σ |= XΛ0
φ if (σ(0), σ(1)) |= ρΛ0

(x, x′) and σ1 |= φWith this new operator a formula ΩF is de�nable in CTL* by
ΩF

def
= WF (W ) ∧ SF (F )



6.1] Proving Suess under Fairness 107where
WF (W )

def
=

∧
Λw∈W (F G en(Λw) → G F XΛw true)

SF (F )
def
=

∧
Λf∈F

(
G F en(Λf) → G F XΛf

true
)Note that WF (W ) and SF (F ) an equivalently be expressed in the followingways:

WF (W ) ≡
∧

Λw∈W (GF¬en(Λw) ∨ G F XΛw true)

≡
∧

Λw∈W GF (¬en(Λw) ∨ XΛw true)

SF (F ) ≡
∧

Λf∈F

(
F G¬en(Λf ) ∨ G F XΛf

true
)Using the formula ΩF the veri�ation that system S satis�es a CTL* formula

φ, that is S |= φ, amounts to showing that S− |= AΩF
φΩF , where S− is thesaturated system underlying S.DisussionInluding fairness onstraints into the property formulas has the advantageof great �exibility. While this method an be used for the veri�ation ofsystems under generalised fairness, its use with the type of weak/strong fair-ness onstraints we have introdued for transition systems would require themodi�ation of the temporal logi and the proof system to inlude relativisedNext operators XΛ. However, while replaing Rule E(X) with a relativisedversion is no problem, the disjuntive semantis of LTL sequents reates somedi�ulties with generalising Rule A(X) to deal with these operators.Another, more pratial, disadvantage is that spei�ation formulas in-luding fairness onstraints quikly grow to an unhandy size. This in turnleads to larger proof strutures that are more di�ult to survey. For thesereasons we add the fairness onstraints diretly to the system spei�ationand modify the suess rules to aount for fairness.



108 LTL Suess under Fairness [6.26.2 LTL Suess under FairnessIn Setion 3.3, we have introdued Rule A(F,
∨

F G) for proving properties ofthe form
A

(
F q ∨

m∨

i=1

F G pi

)(where q and the pi are assertions) for saturated systems. Rule A(S) for show-ing suess of a LTL proof struture Π was then obtained by an appropriateinstantiation of Rule A(F,
∨

F G). In this setion, we follow a similar approahand �rst present Rule A(F,
∨

F G)fair, an extension of Rule A(F,
∨

F G) thataounts for fairness. Then this rule is slightly modi�ed to deal with Π-fairness and instantiated to yield Rule A(S)fair, the LTL suess rule underfairness.6.2.1 Rule A(F,
∨

F G)fairLet S be a system with fairness onstraint F = (P,W, F ) and let q and
p1, . . . , pm be assertions. Rule A(F,

∨
F G)fair for proving that the fair system

S satis�es A(F q∨
∨m
i=1 pi) is displayed in Figure 6.1. Just as Rule A(F,

∨
F G)this rule is derived from Rule F-RESP of [MP91℄ for proving future responseformulas of the form G(p→ F q) under weak and strong (transition) fairnessonstraints (see also the disussion in Setion 3.3.1).Supposing that Λ1, . . . ,Λn enumerates W ∪ F , this rule requires that we�nd an auxiliary assertion βi for eah pi (1 ≤ i ≤ m) just as Rule A(F,

∨
F G)does and additionally an assertion βm+j for eah Λj (1 ≤ j ≤ n), so we have

m+ n auxiliary assertions.Let us now take a look at the premises. Premises P1-P3 are the same asfor Rule A(F,
∨

F G), with the index i ranging from 1 to m + n in P2 and
j from 1 to m in P3. The new onditions are P4-P6. These deal with thesets of fair transitions Λk ∈ W ∪ F . Premise P4 states that from a βm+k-state any Λk-transition either reahes a q-state or dereases the rank. Thesetransitions are alled �helpful� in [MP91℄, sine they bring us nearer to a q-state. Conditions P5 and P6 deal with enabledness of fair transition sets. Forthe ase where Λk ∈W P5 requires that βm+k implies either q or enablednessof Λk. Finally, premise P6 overs the ase where Λk ∈ F and states thatwe have to prove that a modi�ed system, all it S ′, satis�es the modi�edproperty A(F(q ∨ en(Λk)) ∨

∨m

i=1 F G pi). System S ′ is the same as S exeptthat the initial ondition Θ is replaed by βm+k and the fairness onstraint
F = (P,W, F ) of S is replaed by Fk = (P,W, Fk), where Fk = F − {Λk}



6.2] Proving Suess under Fairness 109removes the set Λk from the set F of strongly fair transition sets. Observethat although P6 requires the reursive appliation of Rule A(F,
∨

F G)fair,this reursion is well-founded, beause the set F is �nite and Fk is smallerthan F .Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with F = (P,W, F ),where W ∪ F = {Λ1, . . . ,Λn}. Let q and p1, . . . , pm be assertions.In order to apply this rule, �nd:(a) a ranking funtion δ : Σ → W mapping states of S into ele-ments of a well-founded domain (W,≻), and(b) assertions {β1, . . . , βm+n} (setting β def
=
∨m+n
i=1 βi),and hek the validity of onditions P1-P6 below, where in P6 Fk

def
=

(P,W, F − {Λk}).P1. Θ → q ∨ βP2. {βi ∧ δ=w} Λ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)} i ∈ [1, m+n]P3. {βj ∧ δ=w ∧ ¬pj} Λ {q ∨ (β ∧ δ ≺ w)} j ∈ [1, m]P4. {βm+k ∧ δ=w} Λk {q ∨ (β ∧ δ ≺ w)} k ∈ [1, n]P5. βm+k → q ∨ en(Λk) Λk ∈WP6. S, βm+k;Fk ⊢ A(F(q ∨ en(Λk)) ∨
∨m
i=1 F G pi) Λk ∈ F

S ⊢ A(F q ∨
∨m

i=1 F G pi)Figure 6.1: Rule A(F,
∨

F G)fairSoundness and Relative CompletenessTheorem 6.2.1. (Soundness and Relative Completeness of Rule
A(F,

∨
F G)fair) Let S be a system and let q and p1, . . . , pm be assertions.Then S ⊢ A(F q ∨

∨m

i=1 F G pi) if and only if S |= A(F q ∨
∨m

i=1 F G pi).Proof. �⇒� (soundness) By indution on the size of the set F . Suppose wehave found the required assertions and the ranking and that premises P1-P6hold. Consider a run σ : s0 · · · sj · · · of the system S. We have to show that
σ is unfair or satis�es F q ∨

∨m

i=1 F G pi. If σ satis�es F q then we are done.



110 LTL Suess under Fairness [6.2Otherwise, q holds nowhere on σ, so β is invariant and the ranking δ doesnever inrease on σ by P1 and P2. By well-foundedness the ranking δ isonstant from some position l on in σ. Sine β is the disjuntion of all the βifor 1 ≤ i ≤ m+ n, some βi holds at sl and ontinues to hold for all sj with
j ≥ l by P2. If 1 ≤ i ≤ m, then also sj |= pi for all j ≥ l by P3, so σ satis�es
F G pi and we are done. Otherwise, i = m + k for some 1 ≤ k ≤ n and byP4 Λk is never taken from position l on. If Λk ∈ W it follows from P5 that
Λk is enabled from l on, so σ is weakly unfair w.r.t. Λk. On the other hand,if Λk ∈ F then by ondition P6 and the indution hypothesis σl satis�es
F(q ∨ en(Λk)) ∨

∨m

i=1 F G pi (sine sl |= βm+k). If σl satis�es ∨m

i=1 F G pi thenso does σ and we are done. Otherwise we have σj |= F en(Λk) for all j ≥ l,sine q holds nowhere on σ and βm+k ontinues to hold from position l on.But this means that Λk is enabled in�nitely often on σl and hene on σ, so σ isstrongly unfair w.r.t. the set Λk. This establishes S |= A(F q∨
∨m
i=1 F G pi) asrequired. Note that the base ase (F empty) also learly holds. We onludethat Rule A(F,

∨
F G)fair is sound.�⇐� (relative ompleteness) The proof of relative ompleteness of RuleF-RESP of [MP91℄ goes through with the obvious minor modi�ations, sowe do not repeat it here.6.2.2 Rule A(S)fair for LTL SuessReall that in Proposition 3.3.2 we have haraterised suess of a LTL proofstruture Π by

SΠ |= AΠ Ω̂Awhere the quanti�er AΠ ranges over Π-fair trails and
Ω̂A

def
= FK⊤ ∨ Ω0

A where Ω0
A

def
=
∨

ψ∈Ψ̂A

F GKψIn order to adapt Rule A(F,
∨

F G) for proving LTL suess, we have to modifyit to deal with Π-fairness instead of the usual fairness onstraints.Definition 6.2.2. (Π-Enabledness) Let S be a system with fairness on-straint F = (P,W, F ), let Π be a proof struture and SΠ the system asso-iated with Π with FΠ = (PΠ,WΠ, FΠ). De�ne the assertion enΠ(ΛΠ
0 ) for

ΛΠ
0 ∈WΠ ∪ FΠ by

enΠ(ΛΠ
0 )

def
= en(Λ0)where Λ0 ∈ W ∪ F is the transition set of S induing ΛΠ

0 , that is, ΛΠ
0 =

π−1
2 (Λ0) (see also De�nition 3.2.7). ♦



6.2] Proving Suess under Fairness 111
Let Π be a LTL proof struture for system S and let {Kψ | ψ ∈ Ψ̂A}and K⊤ as de�ned in Setion 3.2.3. Furthermore, let WΠ ∪ FΠ =
{ΛΠ

1 , . . . ,Λ
Π
n} and I = Ψ̂A ∪ {1, . . . , n}. In order to apply this rule,�nd:1. a ranking funtion δ : ΣΠ → W mapping states of SΠ intoelements of a well-founded domain (W,≻), and2. assertions {βi | i ∈ I} (setting β def

=
∨
i∈I βi),and hek the validity of onditions A1-A6 below, where Λj =

π2(Λ
Π
j ) in A5, A6 and FΠ

k = (PΠ,WΠ, FΠ − {ΛΠ
k }) in A6.A1. ΘΠ → q ∨ βA2. {βi ∧ δ=w} ΛΠ {q ∨ (β ∧ δ ≺ w) ∨ (βi ∧ δ � w)} i ∈ IA3. {βψ ∧ δ=w ∧ ¬Kψ} ΛΠ {q ∨ (β ∧ δ ≺ w)} ψ ∈ Ψ̂AA4. {βj ∧ δ=w} ΛΠ

j {q ∨ (β ∧ δ ≺ w)} j ∈ [1, n]A5. βk → q ∨ enΠ(ΛΠ
k ) ΛΠ

k ∈WΠA6. SΠ, βk;FΠ
k ⊢ AΠ

(
F
(
q ∨ enΠ(ΛΠ

k )
)
∨ Ω0

A

)
ΛΠ
k ∈ FΠ

SΠ ⊢ AΠ (F q ∨ Ω0
A)Figure 6.2: Rule A(S)fair: LTL suess under fairnessThis modi�ed enabledness for ΛΠ

0 ∈ WΠ ∪ FΠ means in fat enablednessof the original underlying transition set Λ0 ∈ W ∪F of S. It might be helpfulto see how weak and strong Π-fairness are expressed in LTL:
WF

Π(WΠ)
def
=

∧
ΛΠ

0
∈WΠ

(
F G enΠ(ΛΠ

0 ) → G F XΛΠ
0

true
)

SF
Π(FΠ)

def
=

∧
ΛΠ

0
∈FΠ

(
GF enΠ(ΛΠ

0 ) → G F XΛΠ
0

true
)Rule A(S)fair for showing LTL suess under fairness (see Figure 6.2) isthen obtained from Rule A(F,

∨
F G) by

• instantiating S with SΠ and p1, . . . , pn with {Kψ | ψ ∈ Ψ̂A}, and then
• replaing en(ΛΠ

k ) by enΠ(ΛΠ
k ) in P5 and P6.



112 ELL Suess under Fairness [6.3Note that, sine the rule invokes itself reursively, q remains uninstantiatedat this point. In order to prove SΠ |= AΠ Ω̂A holds, we use the rule with qset to K⊤.The notions of S-proof and S-provability (De�nition 3.3.4) are modi�edto rely on the appliability of Rule A(S)fair instead of Rule A(S). The proofof Theorem 6.2.1 an easily be adapted to show soundness and relativeompleteness of Rule A(S)fair (with q unspei�ed). Together with Propo-sition 3.3.2 this yieldsTheorem 6.2.3. (Soundness and Relative Completeness of Rule
A(S)fair for LTL Suess) Let Π be a LTL proof struture for a system Sand sequent Ξ ⊢ A(φ). Then Π: S,Ξ  Aφ if and only if Π: S,Ξ ⊢ Aφ.6.3 ELL Suess under FairnessIn Setion 5.3 we have introdued Rule E(

∧
G F) to prove properties of theform E (

∧m
i=1 G F pi), where p1, . . . , pm are assertions, for saturated systems.This rule was then instantiated to yield Rule E(S) for proving suess of ELLproof strutures.Reduing Strong to Unonditional Fairness and PersisteneIn order to �x some ideas for extending these rules to aount for fairnessonstraints reall from Setion 6.1 that proving an ELL property of the form

Eψ for a system S with fairness onstraint F = (P,W, F ) amounts to showingthat
S− |= E (ΩF ∧ ψ)where S− is the saturated system underlying S and ΩF = WF (W )∧ SF (F )is the formula expressing the fairness onstraint F . Also reall that SF (F )an be equivalently written as

ŜF (F )
def
=
∧

Λ∈F

(F G¬en(Λ) ∨ G F XΛ true)Consider a run σ of S− satisfying ΩF ∧ ψ, that is, a omputation of Ssatisfying ψ. Then σ determines a (unique) partition (U,D) of F (that is,
U ∪D = F and U ∩D = ∅) suh that

σ |= UF (U) ∧ F G dis(D)



6.3] Proving Suess under Fairness 113where
UF (U)

def
=

∧
Λ∈U GF XΛ true

dis(D)
def
=

∧
Λ∈D ¬en(Λ)The partition (U,D) desribes in what partiular way σ satis�es the strongfairness formula SF (F ): eah transition set Λ ∈ D is disabled almost every-where on σ (orresponding to the left disjunt for Λ in ŜF (F )), while any

Λ ∈ U is taken in�nitely often on σ (orresponding to the right disjunt for
Λ in ŜF (F )). The formula UF (U) expresses unonditional fairness of eah
Λ ∈ U . Note also that F G dis(D) is equivalent to ∧Λ∈D F G¬en(Λ).If we extend our fairness onstraints F to inlude unonditional fairnessby de�ning F = (P,W, F, U), where W and F are de�ned as before and
U ⊆ P is a set of unonditionally fair transition sets, then we an formulatethe statement

S− |= E(WF (W ) ∧ UF (U) ∧ F G dis(D) ∧ ψ)equivalently as
S;F [U ] |= E(F G dis(D) ∧ ψ)where S;F [U ] is the same as S exept that the fairness onstraint F of Sis replaed by F [U ]

def
= (P,W,∅, U). Clearly, S;F [U ] |= E(F G dis(D) ∧ ψ)implies S |= Eψ, but the onverse does not hold in general. However, wehave the followingProposition 6.3.1. Let S be a system with initial ondition Θ and fairnessonstraint F = (P,W, F ) and let Eψ be an ELL formula. Then S |= Eψ ifand only if there exist assertions Θj and partitions (Uj , Dj) of F for some

l ≥ 1 and 1 ≤ j ≤ l suh that(i) Θ →
∨l

j=1 Θj is valid, and(ii) S;F [Uj ],Θj |= E(F G dis(Dj) ∧ ψ) for all 1 ≤ j ≤ l.Proof. �⇐� This diretion is lear. �⇒� Let S be a system with fairnessonstraint F = (P,W, F ). Suppose S |= Eψ. De�ne
Ψ(U,D)

def
= WF (W ) ∧ UF (U) ∧ dis(D) ∧ ψand let P1, . . . , Pl with Pj = (Uj , Dj) enumerate the set

{
(U,D)

∣∣∣∣
(U,D) partitions F and there exists a
Θ−run σ of S suh that σ |= EΨ(U,D)

}



114 ELL Suess under Fairness [6.3Sine F is �nite, there are indeed �nitely many Pj. Now we an de�ne Θjfor 1 ≤ j ≤ l:
Θj

def
= Θ ∧ χEΨ(Pj)Note �rst that although E Ψ(Pj) is, stritly speaking, not a CTL* formula(beause of the relativised next operators), it is not di�ult to see thatthere is harateristi assertion χEΨ(Pj) in L. By the de�nition of the Pjand Θj the statement S−,Θj |= E Ψ(Pj) holds, thus also S;F [Uj ],Θj |=

E(F G dis(Dj) ∧ ψ) for eah 1 ≤ j ≤ l. Sine S |= Eψ by assumption, anyinitial state satis�es some Θj, hene Θ →
∨l

j=1 Θj is valid as required.Let us return to the problem of proving ELL suess. The ELL suessformula ΩE is of the form ψ
def
=
∧m
i=1 GF ri. Let us for the moment disregard

Π-fairness and stik with properties of this form over arbitrary systems. Let
S be a system with fairness onstraint F = (P,W, F ). The above propositionallows us to redue the problem of proving S |= Eψ to showing

S;F [Uj ],Θj |= E

(
F G dis(Dj) ∧

m∧

i=1

GF ri

)

for eah 1 ≤ j ≤ l and an appropriate hoie of assertions Θ1, . . . ,Θl andpartitions P1, . . . , Pl of F with Pj = (Uj , Dj).We now proeed as follows. In order to simplify the presentation, we �rstgeneralise our Rule E(
∧

G F) of Figure 5.1 to deal with properties of the form
F G q ∧

∧m

i=1 G F ri over saturated systems (Rule E(F G,
∧

G F)) and show itssoundness and relative ompleteness. Then we show how to extend this ruleto work with weak and unonditional fairness onstraints (with F 's of theform (P,W,∅, U)), yielding Rule E(F G,
∧

GF)wuf . Based on the redutionin Proposition 6.3.1, an auxiliary Rule E(F G,
∧

GF)fair is then introduedfor systems with the usual weak and strong fairness onstraints. Finally, wewill present variants of Rules E(F G,
∧

GF)wuf and E(F G,
∧

GF)fair dealingwith Π-fairness as required for ELL suess.Remark (history variables) Relative ompleteness results indiate thatprior to the appliation of any rule in this setion, it might be neessary toextend the system under study with a history variable.



6.3] Proving Suess under Fairness 1156.3.1 Rule E(F G,
∧

G F)In order to simplify the presentation, we will �rst introdue a rule for satu-rated systems and properties of the form
E

(
F G q ∧

m∧

i=1

G F ri

)This rule, alled E(F G,
∧

GF) and displayed in Figure 6.3, an then easilybe extended to deal with fairness as skethed in the previous paragraph anddetailed in the next setion.Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system. Let q and
r1, . . . , rm be assertions. In order to apply this rule, �nd for eah
0 ≤ i ≤ m:(a) a ranking funtion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αiand hek the validity of onditions R1-R5 below (where in R1:
α

def
=
∨m

j=0 αi and in R3,R5: 1 ≤ i ≤ m and i⊕ 1
def
= (imodm) + 1).R1. Θ → αR2. α0 → ¬qR3. αi → qR4. {

α0

∧ δ0 = u

}
〈Λ〉

{
(α1 ∧ δ0 �0 u)

∨ (α0 ∧ δ0 ≺0 u)

}R5. 



αi
∧ δ0 = u
∧ δi = w



 〈Λ〉





(αi⊕1 ∧ ri ∧ δ0 �0 u)
∨ (αi ∧ δi ≺i w ∧ δ0 �0 u)
∨ (α0 ∧ δ0 ≺0 u)





S ⊢ E(F G q ∧
∧m

i=1 GF ri)Figure 6.3: Rule E(F G,
∧

G F)The appliation of Rule E(F G,
∧

G F) requires that we �nd for eah 0 ≤
i ≤ m an auxiliary assertion αi and a ranking funtion δi : Σ → Wi mapping



116 ELL Suess under Fairness [6.3system states to elements of a well-founded domain (Wi,≻i). For 1 ≤ i ≤ mthese an be thought of as orresponding to assertion pi, while α0 and δ0 areassoiated with q.Before we disuss the premises in detail observe that setting q and α0to false and taking a trivial (onstant) ranking for δ0 yields exatly Rule
E(
∧

G F), whih is thus a speial ase of the present rule. Hene the assertions
αi and the rankings δi for 1 ≤ i ≤ m play a similar role as they do inRule E(

∧
G F). Intuitively speaking, for 1 ≤ i ≤ m, in an αi-segment theranking δi dereases unless the target ri is reahed. New is that these �αi-modes� are only ative while q holds and whenever q does not hold a fall-bakto the additional �α0-mode� ours and the ranking δ0 dereases. As δ0 doesnever inrease, there an be only a �nite number of fall-baks to ¬q-states.Now let us examine the premises more losely. Premise R1 requires thatany initial state also satis�es αi for some 0 ≤ i ≤ m. Aording to R2 andR3 the assertions α0 and αi (for 1 ≤ i ≤ m) imply ¬q and q, respetively.Premise R4 states that from an α0 state, it is possible to reah an α1-statewith δ0 not inreasing or again an α0-state with the ranking δ0 dereasing.The �nal premise R5 says that for the other modes αi (for 1 ≤ i ≤ m) thereare three possibilities: from an αi-state we may1. advane to an αi⊕1 ∧ ri-state, with δ0 not inreasing, or2. reah an αi-state, with δi dereasing and δ0 not inreasing, or3. fall bak to a α0-state with δ0 dereasing.Note that by premises R4 and R5 the ranking δ0 is not allowed to inrease.Soundness and Relative CompletenessTheorem 6.3.2. (Soundness and Relative Completeness of Rule

E(F G,
∧

G F)) Let S be a saturated system, and let q and r1, . . . , rm beassertions. Then S ⊢ E(F G q ∧
∧m

i=1 GF ri) if and only if S |= E(F G q ∧∧m
i=1 GF ri).Proof. Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ) be a saturated system and let q and

r1, . . . , rm be assertions.Soundness. Suppose we have found intermediate assertions αi and rank-ing funtions δi for 0 ≤ i ≤ m suh that premises R1-R5 are valid. We saythat a transition s λ
→ s′ is a witness for a possibility triple {p} 〈Λ0〉 {q}, if

s |= p, s′ |= q and λ ∈ Λ0. Furthermore, we say a run (pre�x) σ : s0s1 · · · sk · · ·



6.3] Proving Suess under Fairness 117is onstruted aording to some set T of possibility triples, if every transitionon σ is a witness for some triple in T .By inspeting the premises R1-R5, it is not hard to see that from anystate s |= Θ a s-run σ an be onstruted aording to R4 and R5 and that
α invariantly holds along these runs. Suppose σ : s0s1 · · · sk · · · is suh a run.We have to show that σ |= F G q ∧

∧m
i=1 G F ri.Suppose �rst that σ 6|= F G q. Sine σ was onstruted aording to R4and R5, the ranking δ0 never inreases along σ. By R4 and R5 it dereaseswhenever a transition is made to a state where q does not hold. Sine σ 6|=

F G q, there are in�nitely many positions on σ where q does not hold. Thisimplies that δ0 dereases in�nitely often, ontraditing the well-foundednessof ≻0. Hene, σ |= F G q.It remains to show that also σ |=
∧m

i=1 G F ri. Sine σ |= F G q, there is aposition k0 suh that sj |= q for all j ≥ k0. Sine α0 implies ¬q, we also knowthat sj 6|= α0 for all j ≥ k0. On the other hand, α holds invariantly along σby R1,R4 and R5, so sk0 |= αi for some 1 ≤ i ≤ m. We show that there isa k1 > k0 suh that sk1 |= αi⊕1 ∧ ri. This follows by well-foundedness of ≻ifrom the fat that all transitions sj λj
→ sj+1 for j ≥ k0 are witnesses for R5.Now we an repeat this argument to show that there is a k2 > k1 suh that

sk2 |= αi⊕2 ∧ ri⊕1 and so on, ad in�nitum. Hene, also σ |=
∧m

i=1 G F ri. Sineour initial state was arbitrary we have S |= E(F G q∧
∧m
i=1 GF ri) as required.Relative ompleteness. Suppose S |= E(F G q∧

∧m
i=1 G F ri) holds. We willde�ne auxiliary assertions αi and rankings δi for 0 ≤ i ≤ m and show thatpremises R1-R5 are valid.Before we do so, however, we have to extend our system S with a (naturalnumber) history variable H , yielding system Ŝ whih is de�ned as follows:

X̂
def
= X ∪ {H} H 6∈ X

Θ̂
def
= Θ ∧

(
H = 0 ∧ ¬q

∨ H = 1 ∧ q

)

ρ̂λ
def
= ρλ ∧

∨m

i=0


H = i ∧

H ′ = 0 ∧ ¬q′

∨ H ′ = 1 ∧ q′ ∧ i = 0
∨ H ′ = H ∧ q′ ∧ ¬r′ ∧ i > 0
∨ H ′ = H ⊕ 1 ∧ q′ ∧ r′ ∧ i > 0


The idea behind variable H is to reord the atual �mode�. Note that H isindeed a history variable as it does not a�et the original state omponents,neither by modifying enabledness nor by making other variables depend on
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H . Therefore, we also have Ŝ |= E(F G q ∧
∧m
i=1 GF ri). Now, let us de�nethe intermediate assertions αi:

α0
def
= χ0 ∧ ¬q ∧ H = 0

αi
def
= χ0 ∧ q ∧ H = i for 1 ≤ i ≤ mwhere

χ0
def
= χE Ψ0

with Ψ0
def
= F G q ∧

∧m

i=1 GF ri

χ1
def
= χE Ψ1

with Ψ1
def
= G q ∧

∧m

i=1 GF riObserve that eah αi implies χ0, re�eting the fat that eah state of a run σwitnessing Ψ0 satis�es χ0. However, this is not su�ient, as a run where χ0holds invariantly does not neessarily satisfy Ψ0. It is for this reason that weneed the ranking funtions δi. Intuitively speaking, they make sure that eah�target� ri an be reahed repeatedly while at the same time ¬q is met only�nitely often. The ranking funtions δi : Σ̂ → (N, >), whih all map extendedstates to the standard well-founded domain of natural numbers, are de�nedby
δ0(s)

def
=





min{|σ| | σ : s · · · s′ a χ0−segment, s′ |= χ1} if s |= χ0 ∧ ¬χ1

0 otherwise
δi(s)

def
=





min{|σ| | σ : s · · · s′ a χ1−segment, |σ| > 1, s′ |= ri} if s |= χ1

δ0(s) otherwisewhere 1 ≤ i ≤ m and a q-segment is a segment of a run suh that all statesappearing on it satisfy the assertion q. Note that the ranking funtions arewell-de�ned, sine all the sets of whih we take the minima are always non-empty. We say a segment σ realises ranking δj(s) for some 0 ≤ j ≤ m, if
δj(s) = |σ|.For a χ0 ∧¬χ1-state s the ranking δ0(s) gives the minimal length of a χ0-segment the last state of whih satis�es χ1, whereas it yields zero on any otherstates. In a similar way, for χ1-states the ranking funtions δi for 1 ≤ i ≤ mmeasure the least distane to a ri-state reahable on a χ1-segment. On theother hand, for a state s not satisfying χ1 the ranking δi(s) equals δ0(s). Theidea is that we are not interested in the ful�llment of the ri until we havereahed a χ1-state. Thus, from a (χ0∧)¬χ1-state our primary goal is to reah
χ1. Note the equivalene Ψ0 ≡ F Ψ1, underlining our idea of ignoring ri until
q has beome stable.



6.3] Proving Suess under Fairness 119We proeed to the veri�ation of premises R1-R5. Premises R2 and R3follow immediately from the de�nition of the αi. The remaining premisesare:R1. Sine Θ |= EΨ0 by hypothesis, any state s0 that satis�es Θ also satis�es
χ0. Hene, Θ̂ implies α0 ∨ α1.For premises R4 and R5, note that the �rst transition on the segmentrealising the respetive ranking provides the witnessing transition requiredby the premise. In other words, we always follow the shortest way to reahthe respetive goal.R4. Suppose s |= α0 and δ0(s) = u, realised by the χ0-segment σ : ss′ · · · s′′.Note that by the de�nition of δ0 we have always u > 1. It follows that
s |= χ0 ∧ ¬q and s(H) = 0, as well as s′ |= χ0. We distinguish twoases:(a) s′ 6|= q. This implies that s′(H) = 0 and s′ 6|= χ1. Therefore,

δ0(s
′) < u and s′ |= α0 as required.(b) s′ |= q. In this ase s′(H) = 1. For the ranking δ0 we have

δ0(s
′) = u − 1 if s 6|= χ1 and δ0(s′) = 0 otherwise. In both ases

δ0(s
′) ≤ u and also s′ |= α1.R5. Suppose s |= αi, δ0(s) = u and δi(s) = w for some 1 ≤ i ≤ m. Thereare two main ases:(a) s 6|= χ1. Let σ : ss′ · · · s′′ be a χ0-segment realising δ0(s) = u. Notethat u > 1. We have three sub-ases:(i) s′ 6|= q. It follows that s′ 6|= χ1, hene u > 2 and δ0(s

′) =
u − 1 < u. By the de�nition of ρ̂λ we have s′(H) = 0 (afall-bak). Therefore, s′ |= α0 ∧ (δ0 < u).(ii) s′ |= q ∧ ¬ri. Sine s′ is on a χ0-segment we have s′ |= χ0 ∧ qand by the de�nition of ρ̂λ we stay in s′(H) = i. Thus, s′ |= αi.We also have s′ 6|= χ1, otherwise we would also have s |= χ1,sine s |= q. Hene, u > 2 and δ0(s

′) = u − 1 < u. Butas neither s nor s′ satis�es χ1 we have δi(s) = w = δ0(s) =
u > δ0(s

′) = δi(s
′). Hene, s′ |= αi ∧ (δi < w) ∧ (δ0 < u) asrequired.(iii) s′ |= q∧ri. By the de�nition of ρ̂λ we have s′(H) = i⊕1, thus

s′ |= αi⊕1 ∧ ri. For the ranking the same argument as in (ii)above shows that δ0(s′) ≤ u. Therefore, s′ |= αi⊕1 ∧ ri ∧ (δ0 ≤
u) in this ase.



120 ELL Suess under Fairness [6.3(b) s |= χ1. Let σ : ss′ · · · s′′ be a χ1-segment realising δi(s) = u. Thenwe have s′ |= χ1 and therefore also s′ |= χ0∧q, sine χ1 implies χ0as well as q. As s and s′ both satisfy χ1 we get δ0(s) = δ0(s
′) = 0.(i) s′ 6|= ri. It follows that s(H) = i and w > 2, implying s′ |= αiand δi(s′) < w. Hene, s′ |= αi ∧ δi < w ∧ (δ0 ≤ u).(ii) s′ |= ri. Here the �mode� is swithed to s′(H) = i ⊕ 1 andtherefore s′ |= αi⊕1 ∧ ri ∧ (δ0 ≤ u).Proof. This ompletes the proof of semanti ompleteness. For synta-ti ompleteness it remains to show that the auxiliary assertions and therankings are expressible in our assertion language L over the (aeptable)struture A we are working in (see Setion 2.3.1). The assertions αi are al-ready formulated in L. It is not di�ult to see that the rankings δi an alsobe expressed in L using the oding sheme for �nite sequenes supported bythe struture A. We onlude that Rule E(F G,

∧
G F) is omplete relative tovalidity in L.6.3.2 Rules E(F G,

∧
G F)wuf and E(F G,

∧
G F)fairLet us now extend Rule E(F G,

∧
G F) to aount for fairness. Realling thedisussion at the beginning of this setion, showing that

S |= E

(
F G q ∧

m∧

i=1

G F ri

)holds for a system S with fairness onstraint F = (P,W, F ) an be reduedby Proposition 6.3.1 to proving
S;F [Uj ],Θj |= E

(
F G (q ∧ dis(Dj)) ∧

m∧

i=1

G F ri

)
(∗)for an appropriate hoie of assertions Θj and partitions (Uj , Dj) of F . Thesystem S;F [Uj ] is obtained from S by substituting the fairness onstraint Fwith F [Uj] = (P,W,∅, Uj), thus replaing the strong fairness onstraint Fof F by the unonditional fairness onstraint Uj .This redution is implemented in Rule E(F G,

∧
GF)fair (see Figure 6.4),whih invokes Rule E(F G,

∧
G F)wuf (displayed in Figure 6.5), to prove thestatements of the form (∗) above.Rule E(F G,

∧
G F)wuf is a modi�ed version of Rule E(F G,

∧
GF). In ad-dition to the latter rule this new rule requires that we also �nd pairs ofassertions αj and ranking funtions δj for m+1 ≤ j ≤ m+n, eah suh pair



6.3] Proving Suess under Fairness 121Let S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) be a system with fairness on-straints F = (P,W, F ). Let q and r1, . . . , rm be assertions. Find:(a) assertions Θ1, . . . ,Θl, and(b) partitions (Uj , Dj) of F for 1 ≤ j ≤ l,suh that ondition F1 below is valid and F2 an be establishedusing Rule E(FG,
∧

GF)wuf .F1. Θ →
∨l

j=1 ΘjF2. S;F [Uj ],Θj ⊢ E (F G (q ∧ dis(Dj)) ∧
∧m
i=1 G F ri) 1 ≤ j ≤ l

S ⊢ E(F G q ∧
∧m
i=1 G F ri)Figure 6.4: Rule E(F G,

∧
G F)fairorresponding to an element of the set {Λ1, . . . ,Λn} = W ∪U of weakly andunonditionally fair transition sets.Definition 6.3.3. Let α0, α1, . . . , αl be assertions and δ0, δ1, . . . , δl be rank-ing funtions as required for the appliation of Rule E(F G,

∧
G F)wuf of Fig-ure 6.5. De�ne assertions αu,wi , α≤u

i , α<wi and α<w,≤ui for 0 ≤ i ≤ l by
αu,wi

def
= αi ∧ δ0 = u ∧ δi = w

α≤u
i

def
= αi ∧ δ0 �0 u

α<wi
def
= αi ∧ δi ≺i w

α<w,≤ui

def
= αi ∧ δi ≺i w ∧ δ0 �0 u

♦Premises R1-R5 are the same as in Rule E(F G,
∧

G F). Using the notationintrodued in the de�nition above, R5 now reads:R5. {αu,wi } 〈Λ〉
{

(α≤u
i⊕1 ∧ ri) ∨ α

<w,≤u
i ∨ α<u0

}where 0 ≤ i ≤ m. Note that supersripting an αi with ≤ u expresses(independently of i) that δ0 does not inrease, while a supersript < w statesthe derease of δi.
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Given a system S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) with fairness on-straint F = (P,W,∅, U) and assertions q and r1, . . . , rm. Suppose
Λ1, . . . ,Λn enumerates W ∪ U .In order to apply this rule, �nd for eah 0 ≤ i ≤ m+ n:(a) a ranking funtion δi : Σ → Wi mapping states of S intoelements of a well-founded domain (Wi,≻i),(b) an assertion αi,and hek the validity of onditions R1-R7 below.R1. Θ → αR2. α0 → ¬qR3. ∨m+n

i=1 αi → qR4. {αu,u0 } 〈Λ〉
{
(α≤u

1 ∨ α<u0

}R5. {αu,wi } 〈Λ〉
{

(α≤u
i⊕1 ∧ ri) ∨ α

<w,≤u
i ∨ α<u0

}R6. {
αu,wj

}
〈Λj−m | Λ〉

{
α≤u
j⊕1 | (α≤u

j⊕1 ∧ dj) ∨ α
<w,≤u
j ∨ α<u0

}R7. {αu,wk } 〈Λk−m | Λ〉
{
α≤u
k⊕1 | α

<w,≤u
k ∨ α<u0

}

S ⊢ E(F G q ∧
∧m

i=1 G F ri)The side onditions are: 1 ≤ i ≤ m in R5, m+ 1 ≤ j ≤ m+ n and
Λj−m ∈W in R6, and m+ 1 ≤ k ≤ m+ n and Λk−m ∈ U in R7.The assertion α is de�ned by α

def
=
∨m+n
i=0 αi, assertions αu,wi , α≤u

i ,
α<wi and α<w,≤ui are as in De�nition 6.3.3, and dj def

= ¬en(Λj−m) andthe operation ⊕ is given by a⊕ b
def
= ((a+ b− 1) mod (m+ n)) + 1.Figure 6.5: Rule E(F G,

∧
GF)wuf



6.3] Proving Suess under Fairness 123The new premises dealing with weak and unonditional fairness are R6and R7, respetively. Note that, in a very similar way as the assertions riof R5, eah element W ∪ U is assoiated with a new �target� that is visitedin�nitely often on any run σ onstruted aording to R4-R7. Namely, eah
Λw ∈W must be taken or disabled in�nitely often, and eah Λu ∈ U must betaken in�nitely often on suh a run σ (thus making sure that σ, in addition towitnessing F G q∧

∧m

i=1 GF ri, is indeed a omputation of S). For this reason,premises R6 and R7 are very similar to R5. The di�erene is that the �target�now involves taking transition sets in W or U . In order to aount for thisnew type of target, we introdue a generalised form of possibility triple.Definition 6.3.4. (Generalised Possibility Triple) Let S be a sys-tem with variables X and set of transitions Λ. Let p, q1 and q2 be assertionsover X and let Λ1,Λ2 ⊆ Λ. De�ne
{p} 〈Λ1 | Λ2〉 {q1 | q2}

def
= p→ (〈Λ1〉 q1 ∨ 〈Λ2〉 q2)

♦A generalised possibility triple of the form {p} 〈Λ1 | Λ2〉 {q1 | q2} statesthat from a p-state there is a Λ1-transition leading to a q1-state or a Λ2-transition leading to a q2-state.Consider �rst the new premise R7 onerning unonditional fairness. For
m+ 1 ≤ k ≤ m+ n and Λk−m ∈ U , it readsR7. {αu,wk } 〈Λk−m | Λ〉

{
α≤u
k⊕1 | α

<w,≤u
k ∨ α<u0

}stating that in αk-mode, there is
• a Λk−m-transition leading to the suessor mode αk⊕1 with the ranking
δ0 not inreasing, or

• an arbitrary system transition either preserving αk-mode with δk de-reasing (and δ0 not inreasing) or ausing a fall-bak to α0 with δ0dereasing.In the former ase, taking an Λk−m-transition means reahing the target for
k. Premise R6 dealing with weak fairness ombines the forms of R5 and R7.For m+ 1 ≤ j ≤ m+ n and Λj−m ∈W , it is given byR6.

{
αu,wj

}
〈Λj−m | Λ〉

{
α≤u
j⊕1 | (α≤u

j⊕1 ∧ ¬en(Λj−m)) ∨ α<w,≤uj ∨ α<u0

}



124 ELL Suess under Fairness [6.3In addition to R7, there is a seond possibility to hit the target for j, namelyby taking any system transition leading to a state in the suessor mode αj⊕1where Λj−m is disabled.After this disussion it is not di�ult to see that, provided we an �nd therequired assertions αi and ranking funtions δi suh that all premises hold,any Θ-run σ onstruted aording to R4-R7 is weakly fair w.r.t. all Λw ∈Wand unonditionally fair w.r.t. all Λu ∈ U , that is, σ is a Θ-omputationof S (w.r.t. F). It is then a tedious, but not a di�ult a�air to adaptthe proof of soundness and relative ompleteness of Rule E(F G,
∧

G F) toRule E(F G,
∧

G F)wuf .Theorem 6.3.5. (Soundness and Relative Completeness of Rule
E(F G,

∧
G F)wuf) Let S be a system with fairness onstraintF = (P,W,∅, U)and let q and r1, . . . , rm be assertions. Then S ⊢ E (F G q ∧

∧m
i=1 GF ri) byRule E(F G,

∧
G F)wuf if and only if S |= E (F G q ∧

∧m
i=1 GF ri).The following result then follows diretly from the previous one andProposition 6.3.1:Theorem 6.3.6. (Soundness and Relative Completeness of Rule

E(F G,
∧

G F)fair) Let S be a system and let q and r1, . . . , rm be assertions.Then S ⊢ E (F G q ∧
∧m

i=1 GF ri) by Rule E(F G,
∧

GF)fair if and only if S |=
E (F G q ∧

∧m
i=1 GF ri).6.3.3 Rules E(S)fair and E(S)⊤wuf for ELL SuessIn order to derive rules for proving ELL suess from Rules E(F G,

∧
G F)fairand E(F G,

∧
GF)wuf , we will instantiate the system S with the system SΠ as-soiated with a proof struture Π and the assertions p1, . . . , pm with {¬Kψ |

ψ ∈ ΨE}. Additionally, we will need to make two modi�ations, one on-erning Π-fairness and the other onerning the speial role of the ontrolloation ⊤ in the assoiated system SΠ. The resulting Rules E(S)fair and
E(S)⊤wuf are displayed in Figures 6.6 and 6.7, respetively.We now examine the mentioned modi�ations in more detail. First, wehave to deal with Π-fairness instead of the usual type fairness onstraints.This modi�ation onerns the enabledness assertions only. More preisely,in Rule E(S)⊤wuf

• assertion disΠ(DΠ) instantiates q of Rule E(F G,
∧

GF)wuf , where
disΠ(DΠ)

def
=

∧

ΛΠ
0
∈DΠ

¬enΠ(ΛΠ
0 )



6.3] Proving Suess under Fairness 125Let Π be an ELL proof struture for system S and let ΩE =∧
ψ∈ΨE

G F¬Kψ as de�ned in Setion 5.2. Find:(a) assertions Θ1, . . . ,Θl, and(b) partitions (UΠ
j , D

Π
j ) of FΠ for 1 ≤ j ≤ l,suh that ondition C1 below is valid and C2 an be established byRule E(S)⊤wuf .C1. ΘΠ →
∨l
j=1 ΘjC2. SΠ,Θj ⊢(UΠ

j ,D
Π
j ) EΠ ΩE 1 ≤ j ≤ l

SΠ ⊢ EΠ ΩEFigure 6.6: Rule E(S)fair

• assertion dj def
= ¬enΠ(ΛΠ

j−m) in E6 of E(S)⊤wuf replaes ¬en(Λj−m) in R6of E(F G,
∧

G F)wuf .The seond modi�ation is based on the fat that any trail pre�x t0 · · · tmwith tm(K) = ⌈⊤⌉ an be extended to a (suessful) Π-fair trail, so it is notneessary to prove this every time we apply the ELL suess rules. For thisreason we have added a disjunt K⊤ on the right hand side of eah possibilitytriple in E4-E7, saving us from proving anything about modes and rankingswhenever K⊤ an be reahed by a ΛΠ-transition (see also Setion 5.3.2).Beause of this seond modi�ation the onlusion of Rule E(S)⊤wuf reads
SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩErather than

SΠ;FΠ[UΠ],Ξ ⊢ EΠ(F G disΠ(DΠ) ∧ ΩE)and premise C2 of Rule E(S)fair aordingly reads SΠ,Θj ⊢(UΠ
j ,D

Π
j ) EΠ ΩE.Note that, in ontrast to the �rst modi�ation, this one is not neessary butonvenient.



126 ELL Suess under Fairness [6.3Let Π be an ELL proof struture for system S and let SΠ withfairness onstraint FΠ = (PΠ,WΠ, FΠ) be the system assoiatedwith Π. Let (UΠ, DΠ) be a partition of FΠ and suppose that
ΛΠ

1 , . . . ,Λ
Π
m enumerates WΠ ∪ UΠ. Let Ξ be an assertion and

ΩE =
∧
ψ∈ΨE

G F¬Kψ as de�ned in Setion 5.2. Suppose K1, . . . , Knenumerates {Kψ | ψ ∈ ΨE}. In order to apply this rule, �nd(a) a ranking funtion δi : ΣΠ → Wi mapping states of SΠ intoelements of a well-founded domain (Wi,≻i), and(b) an assertion αi,for eah 0 ≤ i ≤ m+ n and hek the validity of onditions E1-E7:E1. Ξ → αE2. α0 → ¬disΠ(DΠ)E3. ∨m+n
i=1 αi → disΠ(DΠ)E4. {αu,u0 }

〈
ΛΠ
〉 {

K⊤ ∨ α≤u
1 ∨ α<u0

}E5. {αu,wi }
〈
ΛΠ
〉 {

K⊤ ∨
(
α≤u
i⊕1 ∧ ¬Ki

)
∨ α≤u,<w

i ∨ α<u0

}E6. {
αu,wj

} 〈
ΛΠ
j−m | ΛΠ

〉 {
α≤u
j⊕1 | K⊤ ∨

(
α≤u
j⊕1 ∧ dj

)
∨ α≤u,<w

j ∨ α<u0

}E7. {αu,wk }
〈
ΛΠ
k−m | ΛΠ

〉 {
α≤u
k⊕1 | K⊤ ∨ α≤u,<w

k ∨ α<u0

}

SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩEThe side onditions are: 1 ≤ i ≤ m in E5, m+ 1 ≤ j ≤ m + n and
ΛΠ
j−m ∈WΠ in E6, and m+ 1 ≤ k ≤ m+ n and ΛΠ

k−m ∈ UΠ in E7.The assertion α is de�ned by α
def
=
∨m+n
i=0 αi, assertions αu,wi , α≤u

i ,
α<wi and α<w,≤ui are as in De�nition 6.3.3; disΠ(DΠ) and dj arede�ned by disΠ(D)

def
=
∧

ΛΠ
0
∈DΠ ¬enΠ(ΛΠ

0 ) and dj
def
= ¬enΠ(ΛΠ

j−m)with enΠ(·) as in De�nition 6.2.2; the operation⊕ is given by a⊕b def
=

((a+ b− 1) mod (m+ n)) + 1.Figure 6.7: Rule E(S)⊤wuf



6.3] Proving Suess under Fairness 127A Speial Case: no Strong Fairness. If the strong fairness onstraint Fof the system (and hene FΠ) is empty, the only partition of FΠ is (∅,∅), sowe an diretly apply Rule E(S)⊤wuf by instantiating Ξ with ΘΠ and both UΠand DΠ with ∅. We an also replae disΠ(∅), being an empty onjuntion,by true and �turn o�� α0 by setting it to false, making E2 and E4 holdtrivially. The help of α0 to ensure the persistene of disΠ(∅) is not needed,sine F G true is a tautology.Soundness and Relative CompletenessLemma 6.3.7. Let Π be a ELL proof struture for a system S, let Ξ be anassertion and (UΠ, DΠ) a partition of FΠ, the strong fairness onstraint ofthe assoiated system SΠ. Then(i) SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩE by Rule E(S)⊤wuf implies SΠ,Ξ |= EΠ ΩE, and(ii) SΠ;FΠ[UΠ],Ξ |= EΠ

(
F G disΠ(DΠ) ∧ ΩE

) implies SΠ,Ξ ⊢(UΠ,DΠ) EΠ ΩEby Rule E(S)⊤wuf .Proof. Let us all E(S)wuf the rule obtained from Rule E(S)⊤wuf by sub-stituting false for K⊤ (hene ignoring the seond modi�ation above). It isstraightforward to adapt the proof of soundness and relative ompletenessof Rule E(F G,
∧

GF)wuf (Theorem 6.3.5) to Rule E(S)wuf , showing that thelatter rule it is sound and relatively omplete for proving
SΠ;F [UΠ],Ξ |= EΠ

(
F G disΠ(DΠ) ∧ ΩE

)Then (ii) follows immediately from relative ompleteness of Rule E(S)wuf .For (i) suppose that all premises of Rule E(S)⊤wuf are valid and onsider astate t0 of SΠ satisfying Ξ. Then in the proess of onstruting a trail startingin t0 aording to E4-E7, we will either reah point where we have alreadyonstruted t0 · · · tk and tk |= K⊤, in whih ase this pre�x an ertainlyby extended to a suessful Π-fair trail ϑ, or we will never reah a statesatisfying K⊤, in whih ase it follows from the soundness of Rule E(S)wufthat the onstruted trail ϑ is Π-fair and suessful. In any ase there is asuessful Π-fair trail starting in t0, so point (i) holds.We modify the notions of S-proof and S-provability (De�nition 5.3.3) torest on the appliability of Rule E(S)fair instead of Rule E(S).Theorem 6.3.8. (Soundness and Relative Completeness of Rule
E(S)fair for ELL Suess) Let Π be a ELL proof struture for a system
S and sequent Ξ ⊢ E(φ). Then S,Ξ  Eφ if and only S,Ξ ⊢ Eφ.



128 ELL Suess under Fairness [6.3Proof. Note that Proposition 6.3.1 is easily adapted to assoiated systems
SΠ under Π-fairness. The result then follows by this modi�ed propositiontogether with Lemma 6.3.7.



Chapter 7Appliation: The Bakery Protool
In this hapter we will illustrate the use of our proof system by provingsome properties of Leslie Lamport's Bakery Algorithm for mutual exlu-sion [Lam74℄. The algorithm is based on the idea of a tiket mahine, wherepeople entering a (big) bakery draw a tiket with a number on it that indi-ates their turn to buy their Sunday morning roissants.We will state and prove the properties of mutual exlusion (mutuallyexlusive aess of the lients to the roissants), aessibility (eventual a-ess, one having a tiket) and possible unboundedness (the possibility ofunbounded growth of the tiket numbers) of this algorithm.7.1 Program Spei�ationWe will onsider here a version of the algorithmwith two proesses ompetingfor aess to their respetive ritial setions. The programs for the twoproesses P1 and P2 are given in graphial form in Figure 7.1.Eah proess i has two variables: a ontrol variable πi, ranging over threeontrol loations, alled Ni (non-ritial setion), Ti (trying setion) and
Ci (ritial setion), and a natural number data variable yi, indiating thetiket number. There are basially three possible ations in eah proess,one orresponding to eah ontrol loation. Transition ti draws a tiket bysetting its own number yi to the number of the other proess inrementedby one, while moving from the non-ritial to the trying setion. Transition
ei enters the ritial setion of proess i, if allowed to do so by the tiketnumber yi, that is, the other proess' number is zero or greater than yi.Finally, transition li leaves the ritial setion by resetting the tiket number129



130 Program Speifiation [7.1to zero. An additional transition i (not shown in the �gure) allows idlingsteps at any point of a omputation. These are mainly to model the ativityof the proesses in their respetive ritial and non-ritial setions.
N1 T1

C1

N2 T2

C2

P1 :

P2 :
y2 := 0

y1 := 0

t1 : y1 := y2 + 1

e1 : y2 = 0 ∨ y1 ≤ y2l1 : y1 := 0

t2 : y2 := y1 + 1

e2 : y1 = 0 ∨ y2 < y1l2 : y2 := 0

Figure 7.1: Graphial spei�ation of the bakery protool transitionsThe formal spei�ation of the algorithm, system Sbak, is displayed inFigure 7.2. For the sake of brevity we identify ontrol loations Li with theassertion πi = Li in formulas and just write Li for πi = Li and L′
i for π′

i = Li,where Li ∈ {Ni, Ti, Ci}. The program starts in a state, where both proessesare in their respetive non-ritial setions Ni and the initial tiket numbersare zero. The fairness onstraint W delares the two sets {e1, l1} and {e2, l2}as weakly fair. This means that eah proess an neither inde�nitely delayentering its ritial setion, if it is ontinually possible to do so, nor stay inits ritial setion forever (ti is always enabled in proess i's ritial setion).
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X
def
= {π1, π2, y1, y2}

Λ
def
= {i, t1, e1, l1, t2, e2, l2}

ρi
def
= pres(π1, π2, y1, y2)

ρt1
def
= N1 ∧ T ′

1 ∧ y
′
1 = y2 + 1 ∧ pres(π2, y2)

ρe1
def
= T1 ∧ C ′

1 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ pres(π2, y1, y2)

ρl1
def
= C1 ∧N ′

1 ∧ y
′
1 = 0 ∧ pres(π2, y2)

ρt2
def
= N2 ∧ T ′

2 ∧ y
′
2 = y1 + 1 ∧ pres(π1, y1)

ρe2
def
= T2 ∧ C ′

2 ∧ (y1 = 0 ∨ y2 < y1) ∧ pres(π1, y1, y2)

ρl2
def
= C2 ∧N ′

2 ∧ y
′
2 = 0 ∧ pres(π1, y1)

Θ
def
= N1 ∧N2 ∧ y1 = 0 ∧ y2 = 0

F
def
= (P,W,∅)

P
def
= {{i, t1, t2}, {e1, l1}, {e2, l2}}

W
def
= {{e1, l1}, {e2, l2}}Figure 7.2: The system spei�ation Sbak = (X,Σ, {ρλ | λ ∈ Λ},Θ,F), wherethe assertion pres(x)

def
= x′ = x desribes the variables that are preserved.



132 Property Speifiation [7.37.2 Property Spei�ationWe show that the bakery algorithm satis�es the following properties:MUX φmux
def
= A G(¬C1 ∨ ¬C2)mutual exlusion; the two proesses are never in their respetiveritial setions at the same timeACC φiacc

def
= A G(Ti → FCi)aessibility; whenever a proess tries to aess its ritial se-tion then it will eventually sueedUNB φiunb
def
= A G EF(yi ≥ B)unboundedness; from any point in a omputation there is a on-tinuation suh that variable yi grows beyond bound B; the pa-rameter B is a �xed, but arbitrary natural number, so this meansthat yi may grow without boundWhile the �rst two are essential properties that should be satis�ed by anymutual exlusion algorithm, the third property is a partiularity of the bakeryalgorithm. It is the possibility of unbounded growth of the tiket variablesmakes it an in�nite state system.7.3 Veri�ation of Mutual ExlusionFor the veri�ation of the mutual exlusion property

φmux = A G(¬C1 ∨ ¬C2)we propose two di�erent approahes, the �rst based on a generi proof stru-ture for invariane and the seond on a more re�ned style of proof struturetaking the struture of the system into aount.7.3.1 A Generi Proof of InvarianeFigure 7.3 shows the generi proof struture ΠINV for some given system
S = (X,Σ, {ρλ | λ ∈ Λ},Θ,F) and invariane property A G p (with p an



7.3] Appliation: The Bakery Protool 133assertion). The veri�ation onditions generated by this proof struture are:I1. Θ → ψ from A(sp)at γ0I2. ψ → p from A(ax) at γ3I3. {ψ}Λ {ψ} from A(X) at γ2The instantiation of this proof struture requires that we �nd an indutiveassertion ψ (I3), strengthening p (I2) and implied by the initial ondition Θ(I1). As there is no U-subformula in A G p and no anti-axiom in the proofstruture, it is suessful (Proposition 4.2.21).
γ1 : ψ ⊢ A(G p)

γ3 : ψ ⊢ A(p) γ2 : ψ ⊢ A(X G p)

γ0 : Θ ⊢ A(G p)

✓Figure 7.3: Generi LTL proof struture ΠINV for invariane properties.Note that I1-I3 are exatly the premises of the general invariane rule INVof [MP91, MP95℄. Rule INV is shown to be sound and relatively omplete in[MP91℄. This means that any invariane an be proved using proof struture
ΠINV . The generi proof struture ΠINV is neessarily very oarse in thesense that it does not re�et the struture of the system at hand. For ouronrete example, we hoose a di�erent style of proof struture exhibitingsome of the (abstrat) struture of a system.7.3.2 A Re�ned Style of Invariane ProofsA more detailed proof struture for Sbak ⊢ φmux is shown in Figures 7.4 and7.5, where the intermediate assertions ψ1,ψ2 and ψ3 are de�ned by

ψ1
def
= N1 ∧N2

ψ2
def
= ¬N1 ∧ ¬C2 ∧ (y2 = 0 ∨ y1 ≤ y2)

ψ3
def
= ¬C1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1)The onstrution starts as with proof struture ΠINV above by an appliationof Rule A(wk) at the root sequent γ5, yielding sequent γ4 generalising the



134 Verifiation of Mutual Exlusion [7.3statement to be proven. This rule appliation generates the side ondition
Θ → ψ1 ∨ ψ2 ∨ ψ3that is, I1 above where ψ def

= ψ1 ∨ ψ2 ∨ ψ3. As the initial ondition Θ implies
N1 and N2 this is learly a valid assertion.At γ4 we apply Rule A(sp) in order to split the ases, one for eah ψi. Eahof these ases is represented in Figure 7.4 by a �maro node� labeled ψi. Theinternal struture of maro node ψi is displayed in Figure 7.5. All inomingedges of node ψi in Figure 7.4 in fat point to sequent γi0 in Figure 7.5. Atthis sequent Rule A(G) is applied, yielding sequents γi1 and γi2. In order toshow that the latter is an axiom, the validity of the assertion

ψi → ¬C1 ∨ ¬C2has to be shown. Clearly, these assertions are valid for all 1 ≤ i ≤ 3. Edgesleaving the maro node ψi in Figure 7.4 are in fat leaving sequent γi1 inFigure 7.5, where the derived Rule A(X)′ (reating multiple suessor nodes)is applied, leaving us with the Hoare triple
{ψi} Λ {ψ1 ∨ ψ2 ∨ ψ2}to be disharged. This assertion is not valid for all 1 ≤ i ≤ 3 as it stands.We need the help of an additional (indutive) invariant J0, de�ned by

J0
def
= (N1 ↔ y1 = 0) ∧ (N2 ↔ y2 = 0)It is easy to see (and prove) that J0 is indeed an invariant of Sbak. We use

J0 to strengthen the left-hand side of our Hoare triples, turning them into
{J0 ∧ ψi} Λ {ψ1 ∨ ψ2 ∨ ψ2}for 1 ≤ i ≤ 3. Reall from Setion 5.7 that it is safe to use previously proveninvariants to strengthen the premise of a Hoare triple in this way. A littlealulation shows that all of these triples are indeed valid assertions.Comparing with Invariane DiagramsIt is interesting to observe that the omplete graph G onsisting of the maronodes ψ1,ψ2 and ψ3 (here onsidered as �blak boxes�) and the edges onnet-ing them is an invariane veri�ation diagram as presented by Manna andPnueli in [MP94℄ (see Setion 2.6.4).It is easy to see that any invariane diagram D for S and p an be astinto a (partial) proof struture by interpreting eah node ψi of D as the
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∨n
i=1 ψi ⊢ A(G(¬C1 ∨ ¬C2))

Θ ⊢ A(G(¬C1 ∨ ¬C2))

ψ3

ψ1

ψ2

Figure 7.4: Proof struture Πmux for Sbak ⊢ φmux
γi0 : ψi ⊢ A(G(¬C1 ∨ ¬C2))

γi2 : ψi ⊢ A(¬C1 ∨ ¬C2) γi1 : ψi ⊢ A(XG(¬C1 ∨ ¬C2))

ψi ,

✓Figure 7.5: �Maro nodes� ψi for proof struture Πmux



136 Verifiation of Aessibility [7.4�maro node� displayed in Figure 7.5 and ompleted to a full proof struture
ΠD for S ⊢ A(G p) by adding two additional sequents in the way indiatedby our example in Figure 7.4. The veri�ation onditions generated by ΠDare exatly the Hoare triples generated by D plus the additional impliations(1) Θ →

∨n

i=1 ψi, and (2) ψi → p for 1 ≤ i ≤ n, whih are also part of theinvariane diagram rule (tough not represented in D).Finally note that the veri�ation onditions to be disharged for suh aproof struture ΠD (or, equivalently the onditions assoiated with diagram
D) are essentially the same as the ones generated by ΠINV with ψ def

=
∨n

i=1 ψi.However, as the graph D need not be omplete (as it is aidentally the asein our example), it represents generally a more preise abstrat view of thesystem S under study than it is the ase for ΠINV .7.4 Veri�ation of AessibilityWe prove the aessibility property for Proess 1, that is,
φ1
acc = A G(T1 → FC1).For this purpose we propose proof struture Πacc for Sbak ⊢ φ1

acc, displayed inFigure 7.6. Edges leaving A(X)-sequents are drawn with double lines. Someof these are labeled to emphasise a partiular underlying system transition.The upper half of the proof struture (sequents γ0, . . . , γ6) is rather unin-teresting: we �rst generalise the root sequent yielding γ1 and then split asesat γ4. All veri�ation onditions for this part hold trivially. Its primarypurpose is to transform the root sequent γ0 : Θ ⊢ A(G(¬T1 ∨ FC1)) into thesequent γ7 : T1 ⊢ A(FC1)
1. Here the proof starts to beome interesting.The key step in the onstrution of Πacc is the appliation of Rule A(sp)at sequent γ7 with the following hoie of left-hand side assertions for thethree suessor sequents (writing pi for pγi

):
p8

def
= T1 ∧ ¬en(e1) ∧ T2

p11
def
= T1 ∧ ¬en(e1) ∧ C2

p14
def
= en(e1)The veri�ation ondition to disharge is T1 → p8 ∨ p11 ∨ p14. This does nothold as it stands, but we an again safely all on the help of invariant J0 and1Of ourse, we ould have started from the (root) sequent T1 ⊢ A(FC1) right away,sine T1 |= A(FC1) implies Θ |= A(G(¬T1 ∨ FC1)), but we have hosen to present here aomplete example without �shortuts�.
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γ7 : T1 ⊢ A(FC1)

γ8 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(FC1)

γ9 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(C1,XFC1)

γ10 : T1 ∧ ¬en(e1) ∧ T2 ⊢ A(XFC1)

γ11 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(FC1)

γ12 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(C1,X FC1)

γ13 : T1 ∧ ¬en(e1) ∧ C2 ⊢ A(X FC1)

γ14 : en(e1) ⊢ A(FC1)

γ15 : en(e1) ⊢ A(C1,XFC1)

γ16 : en(e1) ⊢ A(XFC1)

γ18 : C1 ⊢ A(C1,XFC1)

γ17 : C1 ⊢ A(FC1)

✓

γ0 : Θ ⊢ A(G(¬T1 ∨ FC1))

γ1 : true ⊢ A(G(¬T1 ∨ FC1))

γ4 : true ⊢ A(¬T1,FC1)

γ2 : true ⊢ A(XG(¬T1 ∨ FC1))

γ6 : T1 ⊢ A(¬T1,FC1) γ5 : ¬T1 ⊢ A(¬T1,FC1)

γ3 : true ⊢ A(¬T1 ∨ FC1)

✓

l2

h=8

h=8

h=8h=8

h=7

h=6 h=0

h=4

h=4

h=4

h=3

h=3

h=3

h=2

h=2

h=2

h=5

h=1

h=0

e2 e1

Figure 7.6: Proof struture Πacc for Sbak ⊢ φ1
acc



138 Verifiation of Aessibility [7.4show that
J0 ∧ T1 → p8 ∨ p11 ∨ p14is valid. This is indeed the ase, sine T1 implies (T1 ∨¬en(e1))∨ en(e1) and

¬en(T1) implies y2 > 0, hene T2 ∨ C2 using J0.Note that at sequents γ10,γ13 and γ16 we have in fat applied the de-rived Rule A(X)′ to reate two suessor nodes in eah ase. At γ10 the sideondition is
{T1 ∧ ¬en(e1) ∧ T2} Λ {(T1 ∧ ¬en(e1) ∧ T2) ∨ (T1 ∧ ¬en(e1) ∧ C2)}that is {p8} Λ {p8 ∨ p11}, whih is easily seen to be valid by observing thatthe idle transition i obviously preserves p8 and that transition e2 is enabledin p8-states and leads to a p11-state. All other transitions are disabled in p8-states. A similar argument shows that the side ondition for the appliationof Rule A(X)′ at γ13, namely {p11} Λ {p11 ∨ p14} holds, this time with l2leading from p11 to p14. For sequent γ16 the side ondition is

{en(e1)} Λ {en(e1) ∨ C1}It is lear that transition e1 leads to C1. Transitions i, t2 and l2 preserve theenabledness of e1. All other transitions are disabled if e1 is enabled and thuslead trivially to en(e1) ∨ C1. In partiular, onsider transition e2. We haveto show that en(e1)∧ρe2 → en(e1)∨C1. But en(e1)∧ρe2 implies that y1 = 0or y2 = 0, but also that neither N1 nor N1 holds, ontraditing invariant J0.7.4.1 Proving Suess for ΠaccPreparing the appliation of Rule A(S)fair to prove Πacc suessful, we namethe weakly fair sets by Λw1

def
= {e1, l1} and Λw2

def
= {e2, l2} and note that theonly V-subformula in φ1

acc is the G-subformla, so we refer to it as G for short.As there is no strong fairness onstraint, we an take I def
= {•,G, w1, w2} forthe set indexing the required auxiliary assertions. We set γ19

def
= ⊤ and thende�ne the oding ⌈·⌉ as usual by ⌈γi⌉ = i for 0 ≤ i ≤ 19.Choosing the auxiliary quantities.We divide the (pseudo-) sequents into three groups

ΓG

def
= {γ0, . . . , γ7} ∪ {γ17, γ18,⊤}

Γw1

def
= {γ14, γ15, γ16}

Γw2

def
= {γ8, . . . , γ13}



7.4] Appliation: The Bakery Protool 139and then de�ne the auxiliary assertions by β• def
= false and, for ♯ ∈ {G, w1, w2},

β♯
def
=
∨

γ∈Γ♯

p̂γWe also need a ranking, whih we de�ne on extended states by
δ(π1, π2, y1, y2, K)

def
= h(K)where h(⌈⊤⌉) = 0 and h(⌈γ⌉) is de�ned for sequents γ ∈ Γ as indiated inFigure 7.6.What is the intuition leading to this hoie? Note that there are fournon-trivial strongly onneted subgraphs in Πacc, namely S1 = {γ1, γ2}, S2 =

{γ8, γ9, γ10}, S3 = {γ11, γ12, γ13} and S4 = {γ14, γ15, γ16}. Consider the threeases, where on some trail ϑ ontrol K remains from some point on aughtin
• ⌈S1⌉: Then ϑ is suessful (sine t(K) ∈ ⌈S1⌉ implies t |= KG for all
t ∈ ΣΠacc),

• ⌈S2 ∪ S3⌉: Then ϑ is Π-unfair w.r.t. ΛΠacc
w2

(sine the only transitionsthat an be taken along edges (γ10, γ8) and (γ13, γ11) are (γ10, i, γ8) and
(γ13, i, γ11), respetively, while for γ ∈ S2 ∪ S3, pγ implies that Λw2

isenabled, hene enΠ(ΛΠacc
w2

), and
• ⌈S4⌉: Then ϑ is Π-unfair w.r.t. ΛΠacc

w1
(sine neither (γ16, e1, γ14) nor

(γ16, l1, γ14) an be taken along the edge (γ16, γ14), but, for γ ∈ S4, pγimplies enabledness of Λw1
, hene enΠ(ΛΠacc

w1
).This means that there are no �harmful� yles in the proof struture Πacc (forwhih we would have to show that no omputation an follow them).Reall from the disussion of �mehanis� of Rule A(S)fair that if itspremises hold then some auxiliary assertion β♯ will eventually beome stableon a trail unless K⊤ is reahed. If this assertion is βG then by premise A3the trail is suessful and if it is βw1

or βw2
then by A4 and A5 the trail is

Π-unfair w.r.t. ΛΠacc
w1

or ΛΠacc
w2

, respetively. These roles of the β♯ perfetlymathes our observations above and suggests that we hoose
• βG suh that it is implied by p̂γ1 and by p̂γ2 ,
• βw2

suh that it is implied by eah p̂γ for γ ∈ S2 ∪ S3, and
• βw1

suh that it is implied by eah p̂γ for γ ∈ S4.



140 Verifiation of Aessibility [7.4Sine β = βG∨βw1
∨βw2

has to be invariant along trails unless K⊤ is reahed,we have to make a hoie as where to put the remaining ontrol points of
SΠacc , namely γi for i ∈ {0, 3, . . . , 7, , 17, 18} and ⊤. We add them to ΓGyielding the de�nition of βG given above. For βw1

and βw2
note that Γw1

= S4and Γw2
= S2 ∪ S3. We have set β• to false, sine it is not needed.Finding the right ranking is then easy, as with our hoie of the auxiliaryassertions β♯ it an remain onstant within eah of the strongly onnetedsubgraphs S1, . . . , S4. This is beause for a state t ∈ ΣΠacc we have

• t(K) ∈ S1 implies t |= KG,
• ΛΠacc

w2
is not taken along an edge in S2 or S3, and

• ΛΠacc
w2

is not taken along an edge in S4.Transitions along the remaining edges bring us loser to an axiom and theranking an be easily de�ned in a way as to derease along these, if neessary.Veri�ation of premises A1-A6 of Rule A(S)fair.The initial ondition ΘΠacc = p̂γ0 ertainly implies βG, hene β, so onditionA1 holds. Also, as already indiated above, βw1
implies enΠ(ΛΠacc

w1
) and

βw2
implies enΠ(ΛΠacc

w2
), so ondition A5 holds as well. Premise A6 holdstrivially as the strong fairness onstraint is empty. It remains to show A2-A4.Note that by our partiular hoie of the auxiliary assertions, β is triviallypreserved aross ΛΠ-transitions, as ρΠacc

(γ,λ,γ′) → p̂γ
′ for any (γ, λ, γ′) ∈ ΛΠacc.So in heking A2-A4, we are primarily onerned with the ranking.A2 A look at Figure 7.6 on�rms that the ranking never inreases alongan edge in the proof struture and hene along a ΛΠacc-transition. Theranking dereases as required along edges where the β♯-mode hangesand that are not leading to ⊤. Namely, these are the edges leaving γ7and γ16 as well as edge (γ13, γ14).A3 We have to show that the ranking δ dereases along all ΛΠacc-transitionsfrom βG-states not satisfying KG and not reahing K⊤. The onernedsequents are γ3, . . . , γ7 in the upper part and γ17 in the lower part ofthe proof struture. Clearly, δ dereases along all edges leaving thesesequents.A4 From a βw1

-state (γ16, e1, γ17) is the only ΛΠacc
w1

-transition that an betaken and it dereases δ from 2 to 1. There are two ΛΠacc
w1

-transitionsthat an be taken from βw2
-states, namely (γ10, e2, γ11) and (γ13, l2, γ14).These both derease δ as a glane at Figure 7.6 shows.



7.5] Appliation: The Bakery Protool 141This ompletes the veri�ation of aessibility for Proess 1.7.5 Veri�ation of UnboundednessIn this setion, we show the property of unboundedness for Proess 1:
φ1
unb

def
= A GE F(y1 ≥ B)A CTL* proof struture for Sbak and this property is omposed of the LTLproof struture Πunb1 shown in Figures 7.7 and the ELL proof struture Πunb2of 7.8.

γ0 : Θ ⊢ A(GE F(y1 ≥ B))

γ1 : true ⊢ A(GE F(y1 ≥ B))

γ3 : true ⊢ A(E F(y1 ≥ B)) γ2 : true ⊢ A(XGE F(y1 ≥ B))

✓Figure 7.7: Proof struture Πunb1 for Sbak ⊢ φ1
unbThe LTL proof struture Πunb1 redues the root sequent Θ ⊢ A(G EF(y1 ≥

B)) to the axiom true ⊢ A(E F(y1 ≥ B)). The justi�ation of the latterrequires the onstrution of a proof for Sbak, true |= E(F(y1 ≥ B))). Theother side onditions of Πunb1 are trivially satis�ed.Proof struture Πunb2 for Sbak and true ⊢ E(F(y1 ≥ B)) is to show thatfrom any state there is a omputation where y1 grows beyond bound B.7.5.1 Cheking the Side Conditions for Πunb2We use the three disjunts of invariant ψ = ψ1 ∨ ψ2 ∨ ψ3 from Setion 7.3 tosplit ases at the root sequent γ0 of Πunb2. The orresponding side ondition,the left-hand side of whih is strengthened with ψ, reads
ψ → (ψ1 ∧ y1 < B) ∨ (ψ2 ∧ y1 < B) ∨ (ψ2 ∧ y1 < B) ∨ y1 ≥ Bwhih is learly valid. Note that at sequents γ1,γ3 and γ5 the derived Rule E(Fr)is applied and at γ7 its ompanion, Rule E(Fl), is applied. Sequent γ8 is anELL axiom.
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γ2 : ψ1 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ0 : true ⊢ E(F(y1 ≥ B))

γ3 : ψ2 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ1 : ψ1 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ4 : ψ2 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ5 : ψ3 ∧ y1 < B ⊢ E(F(y1 ≥ B))

γ6 : ψ3 ∧ y1 < B ⊢ E(XF(y1 ≥ B))

γ7 : y1 ≥ B ⊢ E(F(y1 ≥ B))

γ8 : y1 ≥ B ⊢ E(y1 ≥ B)

✓

l2

t2,

t1

t1,

e1

e2

t1

l1

t1

Figure 7.8: Proof struture Πunb2 for Sbak, true ⊢ E(F(y1 ≥ B))



7.5] Appliation: The Bakery Protool 143At the remaining sequents γ2, γ4 and γ6 derived Rule E(X)′ is applied toreate two or three suessor sequents in eah ase. We pik γ6 and take aloser look at its side ondition
ψ3 ∧ y1 < B → 〈Λ〉 ((ψ2 ∧ (y1 < B)) ∨ (ψ3 ∧ (y1 < B)) ∨ (y1 ≥ B))Reall that ψ3 was de�ned by ¬C1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1). Its �rst part,the assertion ¬C1 ∧ ¬N2, is equivalent to

(N1 ∧ ¬N2) ∨ (T1 ∧ T2) ∨ (T1 ∧ C2).We proeed by ase analysis aording to the latter assertion to show that1. N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈t1〉ψ32. T1 ∧ T2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈e2〉 (ψ3 ∧ (y1 < B))3. T1 ∧ C2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) → 〈l2〉 (ψ2 ∧ (y1 < B))All of these an easily shown to be valid with a little alulation. As aninformal justi�ation note that the transition to be taken is enabled in eahase. The fat that t1 and e2 preserve ψ3 in (1,2) and that l1 leads from ψ3to ψ2 has already been established in Setion 7.3. Furthermore, observe that
e2 and l2 do not modify y1, so its value ertainly stays below B if this wasthe ase before the respetive transition. For (1) note that 〈t1〉ψ3 implies
〈t1〉 ((ψ3 ∧ y1 < B) ∨ (y1 ≥ B)).7.5.2 Proving Suess for Πunb1 and Πunb2To show that proof struture Πunb1 is suessful, all we need to do is to provethat its sequent γ3 is indeed an axiom, in other words, that proof struture
Πunb2 is suessful. To this end, we an diretly apply Rule E(S)wuf with Ξinstantiated to ΘΠunb2 and partition (∅,∅), as there are no strong fairnessonstraints. The assertion disΠ(∅), being an empty onjuntion, then boilsdown to true.We set γ9

def
= ⊤ and de�ne as usual ⌈γi⌉ = i. The formula F(y1 ≥ B) isthe only U-subformula appearing in this proof struture, so we refer to it as

F for short. We then have ΨE = {⊥, F} and WΠunb2 = {ΛΠunb2
w1

,ΛΠunb2
w2

}. Weassoiate index 1 with ⊥, 2 with F, 3 with ΛΠunb2
w1

and 4 with ΛΠunb2
w2

. Then
K1

def
= K⊥ ≡ false and K2

def
= KF ≡ K ∈ {0, . . . , 7}, so

¬K1 ≡ ¬K⊥ ≡ true

¬K2 ≡ ¬KF ≡ K ∈ {8, 9}



144 Verifiation of Unboundedness [7.5Auxiliary assertions and rankingsWe hoose the auxiliary assertions α0, . . . , α4 as follows:
α0

def
= false α1

def
=

∨
i∈[0,6] p̂γi

α2
def
= p̂γ7 α3

def
= p̂γ8

α4
def
= falseThe only non-trivial ranking funtion is δ1, whih we de�ne by

δ1(π1, π2, y1, y2, K)
def
= (B−̇max(y1, y2), (π1, π2), h(K))ordered lexiographially, where −̇ is natural number subtration (with b−̇a def

=
0 for b < a) and

h(K)
def
=





2 if K = 0
1 if K is odd
0 otherwiseThe ordering relation on loations is de�ned for i = 1, 2 by Ni < Ci < Ti,and the pairs (π1, π2) ordered point-wise. Denote the lexiographi orderingon the range of δ1 by ≺. Clearly, its inverse ≻ is well-founded. The otherranking funtions δ0,δ2,δ3 and δ4 are trivial, de�ned, e.g., by δi def

= 0.The idea is that any witnessing trail that an be onstruted aordingto E4-E7 reahes ⊤ at some point. This is the reason why we an �a�ord� toset α4 to false.Veri�ation of premises E1-E7 of Rule E(S)wuf .Premise E1 is equivalent to p̂γ0 →
∨
i∈[0,8] p̂γi

and is ertainly satis�ed.Premises E2, E3 and E4 of Rule E(S)wuf are trivially valid. This is alsothe ase for E7, sine there is no strong fairness onstraint. It remains toshow premises E5 and E6. The latter is trivial for j = 4. For j = 3, it is
{α3}

〈
ΛΠunb2

〉
{K⊤ ∨ . . . }

≡ {K = 8 ∧ y1 ≥ B}
〈
ΛΠunb2

〉
{K = 9 ∨ . . . }whih is valid. It is for instane implied by {K = 8} 〈(γ8, i, γ9)〉 {K = 9}.Premise E5 for i = 2 follows from the validity of the following assertion:

{α2}
〈
ΛΠunb2

〉
{α3 ∧ ¬K2}

≡ {K = 7 ∧ y1 ≥ B} 〈(γ7,=, γ8)〉 {K = 8 ∧ y1 ≥ B}



7.5] Appliation: The Bakery Protool 145Most of the work is in establishing premise E5 for i = 1. After somesimpli�ation, it boils down to
{α1 ∧ δ1 = (u, v, w)}

〈
ΛΠunb2

〉
{K⊤ ∨ (α1 ∧ δ1 ≺ (u, v, w)) ∨ α2}or, equivalently, for all 0 ≤ k ≤ 6:

{p̂γk
∧ δ1 = (u, v, w)}

〈
ΛΠunb2

〉
{(
∨

i∈[0,6]

p̂γi
∧ δ1 ≺ (u, v, w)) ∨ p̂γ7}sine K⊤ an not be reahed from K ∈ [0, 6]. The results of the veri�ationof these onditions are summarised in Table 7.1.

ΛΠunb2- departing B−̇transition from p̂γk
∧ . . . max(y1, y2) (π1, π2) h(K) δ1

(γ0,=, γ1) ψ1 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ3) ψ2 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ5) ψ3 ∧ (y1 < B) = = ↓ ↓
(γ0,=, γ7) y1 ≥ B n n n n
(γ1,=, γ2) true = = ↓ ↓

(γ2, t1, γ7) y2 + 1 ≥ B n n n n
(γ2, t1, γ3) y2 + 1 < B ↓ n n ↓

(γ3,=, γ4) true = = ↓ ↓

(γ4, t2, γ3) N2 ↓ n n ↓
(γ4, e1, γ3) T1 ∧ T2 = ↓ n ↓
(γ4, l1, γ5) C1 ∧ T2 = ↓ n ↓

(γ5,=, γ6) true = = ↓ ↓

(γ6, t1, γ7) N1 ∧ (y2 + 1 ≥ B) n n n n
(γ6, t1, γ5) N1 ∧ (y2 + 1 < B) ↓ n n ↓
(γ6, e2, γ5) T1 ∧ T2 = ↓ n ↓
(γ6, l2, γ3) T1 ∧ C2 = ↓ n ↓Table 7.1: Behaviour of ranking δ1 along ΛΠunb2-transitions from α1-states �

↓ means strit derease, = remaining onstant, and 'n' �don't are�In this table an entry for ΛΠunb2-transition (γk, λ, γj) (where λ ∈ Λ∪{=})with formula θ in the seond olumn should be read for j 6= 7 as
{p̂γk

∧ θ ∧ δ1 = (u, v, w)} 〈(γk, λ, γj)〉 {δ1 ≺ (u, v, w)}



146 Verifiation of Unboundedness [7.5and for j = 7 as
{p̂γk

∧ θ} 〈(γk, λ, γ7)〉 {true}Note that adding p̂γj
on the right-hand side of these possibility triples isredundant, as these assertions are already part of ρΠunb2

(γk ,λ,γj)
.Additionally, the table indiates how the individual omponents of theranking δ1 behave along this transition. Observe that

• we need not are about the ranking for transitions leading to p̂γ7 ,
• for transitions of the form (γ,=, γ′) the �rst two omponents of theranking obviously do not hange, while the third, h(K), dereases,
• for transitions of the form (γ, ei, γ

′) and (γ, li, γ
′) the �rst omponentremains onstant, while the seond dereases (moving πi from Ti to Ciand from Ci to Ni, respetively), and

• for transitions of the form (γ, ti, γ
′) with γ′ 6= γ7 the �rst omponentof the ranking dereases.We pik two ases and take a loser look at them.1. (γ4, l1, γ5): The possibility triple for this ase is equivalent to

{K = 4 ∧ C1 ∧ T2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ y1 < B ∧ δ1 ≺ (u, v, w)}
〈(γ4, l1, γ5)〉
{δ1 ≺ (u, v, w)}This follows from the valid assertion
J0 ∧K = 4 ∧ C1 ∧ T2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ y1 < B
→ ∃π′

1, π
′
2, y

′
1, y

′
2, K

′.
K = 4 ∧ ψ2 ∧ y1 < B

∧ C1 ∧N ′
1 ∧ y

′
1 = 0 ∧ pres(π2, y2)

∧ K ′ = 5 ∧ ¬C ′
1 ∧ ¬N ′

2 ∧ (y′1 = 0 ∧ y′2 < y′1) ∧ y
′
1 < B

∧ max(y′1, y
′
2) = max(y1, y2) ∧ (π′

1, π
′
2) < (C1, T2)The obvious witnessing instantiation for the primed variables is π′

1 =
N1, π′

2 = T2, y′1 = 0, y′2 = y2 and K ′ = 5. Note in partiular thatby the use of invariant J0 we an dedue that y1 ≤ y2 (sine T2), so
max(y′1, y

′
2) = y′2 = y2 = max(y1, y2). For the seond omponent ofthe ranking we have (π′

1, π
′
2) = (N1, T1) < (C1, T2). Thus, the overallranking does indeed derease along (γ4, l1, γ5).



7.5] Appliation: The Bakery Protool 1472. (γ6, t1, γ5): Here, the assertion to show valid is
{

K = 6 ∧N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1)
∧ (y1 < B) ∧ (y2 + 1 < B) ∧ δ1 = (u, v, w)

}

〈(γ6, t1, γ5)〉
{δ1 ≺ (u, v, w)}This one follows from

J0 ∧K = 6 ∧N1 ∧ ¬N2 ∧ (y1 = 0 ∨ y2 < y1) ∧ (y1 < B) ∧ (y2 + 1 < B)
→ ∃π′

1, π
′
2, y

′
1, y

′
2, K

′.
K = 5 ∧ ψ3 ∧ y1 < B

∧ N1 ∧ T ′
1 ∧ y

′
1 = y2 + 1 ∧ pres(π2, y2)

∧ K ′ = 5 ∧ ¬C ′
1 ∧ ¬N ′

2 ∧ (y′1 = 0 ∧ y′2 < y′1) ∧ y
′
1 < B

∧ max(y1, y2) < max(y′1, y
′
2) < Bwhih is easily seen to be valid by instantiating the primed variablesin the only possible way by π′

1 = T1, π′
2 = π2, y′1 = y2 + 1, y′2 = y2and K ′ = 5. Using invariant J0 we dedue y1 = 0 from N1, so we have

max(y1, y2) = y2 while max(y′1, y
′
2) = y2 +1 < B. Thus, there is a stritderease in the �rst omponent of the ranking.This onludes our (sketh of) the proof that Πunb2 and hene Πunb1 aresuessful. We onlude that Sbak |= φ1
unb.
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Chapter 8Conlusions and Related Work
8.1 Summary and DisussionThe aim of this thesis was to design a tableau-based proof system for themodel heking of CTL* properties of in�nite state fair reative systems andto explain its soundness and ompleteness in terms of model heking games.In this setion, we will �rst reapitulate how this goal was ahieved and thendisuss some seleted issues.Proof StruturesThe present work generalises the �nite state loal model heking teh-nique for CTL* proposed by Bhat, Cleaveland and Grumberg in [BCG95℄to in�nite-state systems equipped with a quite general type of fairness on-straints. The sequent format is extended to deal with in�nite sets of statesdesribed by assertions and the LTL proof rules of [BCG95℄ are generalisedaordingly. In their work, proving s |= Eψ is redued to showing s 6|= A¬ψby onstruting an unsuessful LTL proof struture. While this redutionis appropriate from an algorithmi point of view, dedutive proofs all for amore diret approah and we therefore introdue a separate set of rules forELL. Eah rule system inludes a Split rule implementing ase analysis. Asimple loal ondition imposes a mild restrition on its appliation that en-sures the temporal onsisteny of proof strutures. A proof system for CTL*is obtained from the ombined rule systems by extending the terminal andprediate rules to aount for path-quanti�ed subformulas. The side ondi-tions for path-quanti�ed formulas involve the onstrution of a new LTL orELL proof struture. 149



150 Summary and Disussion [8.1Suess CriteriaAs in the �nite state ase, the loal rules serving the onstrution of proofstrutures are omplemented with a global suess riterion, identifying theproof strutures that are aeptable as proper proofs. The suess riteriafor our two types of proof strutures are ompliated by the fat that apath in a proof struture is no longer followed by exatly one run as inthe �nite state ase. In partiular, there may be paths that are followedby no run at all. In order to aount for this situation, we have de�nedthe suess riteria for LTL and ELL proof strutures on a derived system,alled the assoiated system, obtained as a ombination of the original systemand the proof struture at hand. A run of the assoiated system, alled atrail of the proof struture, ombines a system run with a path throughthe proof struture. The notions of suess and fairness are then lifted totrails and suess of LTL and ELL proof strutures is then de�ned w.r.t.suessful Π-fair trails. A syntati haraterisation of the two suess riteriaas temporal properties of the assoiated system exhibits the duality of LTLand ELL suess and provides the starting point for the design of proof rulesfor suess.Suess RulesA suess rule for LTL ould be derived from a proof rule for future responseproperties as desribed in [MP91℄. On the other hand, the ELL suess ruleis new. Both of these rules rely on a well-foundedness argument, although ina di�erent way. First introdued in a basi version for saturated systems, thesuess rules are extended in Chapter 6 to aount for fairness onstraints.While weak fairness is relatively easy to deal with in eah ase, it is strongfairness that makes up most of the omplexity of these rules. The LTLsuess rule A(S)fair invokes itself reursively to prove a similar propertyof a modi�ed (assoiated) system with a smaller strong fairness onstraint,while Rule E(S)fair requires a hoie to be made, splitting the proof intoseveral ases aording to the way witnesses are supposed to satisfy the strongfairness onstraint. The individual ases are proved using Rule E(S)⊤wuf .Soundness and Completeness via GamesA novel approah is followed in the proof of soundness and ompleteness ofour proof system. Due to the expressiveness of our assertion language the bestwe an expet is to show ompleteness relative to the validity of assertions.The novelty is that we use a game-theoreti argument for the main parts ofthe proof, whih proeeds in three stages. First, we have haraterised the



8.1] Conlusions and Related Work 151CTL* satisfation relation in terms of the existene of winning strategies inCTL* model heking games. This haraterisation is not a priori relatedto proof strutures and has an interest of its own. In a seond step, wehave identi�ed a lose onnetion between LTL (ELL) trails and ∀-strategies(∃-strategies) and subsequently between non-winningness (winningness) andLTL (ELL) admissibility. Admissibility is then ompared to suess and asuessful proof struture for a system S and sequent Ξ ⊢ Qφ is shown toexist preisely if Player ∃ wins the game GS(Ξ,Qφ). The �nal step onsists inshowing that the suess rules are sound and relatively omplete. We thinkthat a game-theoreti analysis an provide interesting insights into the innerworkings of tableau proof systems suh as the one presented here.DisussionDedutive loal model heking applies to any ground-quanti�ed CTL* for-mula and any reative system that an be desribed as a fair transitionsystem. As with algorithmi loal methods only the part of the state spaethat is relevant to the property to be proved needs to be represented in aproof struture. In�nite-state systems are not the only domain of appliationof our proof system. It is equally useful for �nite state systems that are toolarge to be model heked automatially.As the modal µ-alulus subsumes CTL* in expressive power and severalproof systems have been proposed for it (e.g., [BS92, And93, RH96, GBK97℄),the question may arise why we need a speialised proof system for CTL*.One problem with translating CTL* into the modal µ-alulus is that thetranslation is double exponential [Dam94℄, indiating that CTL* an be alot more onise than the µ-alulus (this is espeially true for ertain pathformulas). Another di�ulty is that µ-alulus formulas are generally harderto understand than CTL* formulas. The ombined e�et of these two prob-lems is that the translation might ompletely obsure the meaning of theoriginal formula, thus making it hard to prove using a proof system that wasdesigned for the modal µ-alulus. CTL* is undoubtedly the temporal logiwith the best trade-o� between expressiveness and readability, and this fatalone justi�es the design of a proof system for this logi.Unlike with the dedutive approah of [MP91℄, there is no need to trans-form the property formula into some anonial form prior to starting a proof.Similar to the translation into another logi, the problem with anonisationis that the original property may be obsured and a proof more di�ult to�nd as a onsequene. One ould argue that anonisation has merely beenreplaed by a redution of the original formula to the (uniform) suess for-mula that has to be shown to hold for eah proof struture. However, the



152 Summary and Disussion [8.1proof struture itself is onstruted from the original property formula andthe presene of its subformulas and their unfolding forms in the sequents anprovide a ertain guidane for its onstrution. Moreover, the graphial rep-resentation of a proof struture often provides onsiderable help in guessingthe auxiliary quantities required for the appliation of the suess rule, giventhat the suess riterion is formulated in terms of fairness onstraints on(essentially) the original system and suessful paths in the proof struture.Nonetheless, the appliation of the suess rules is probably the most di�ultpart of a proof. But it should also be kept in mind that for a quite large lassof LTL formulas, namely for all those with no ourrenes of Until operators,any proof struture without anti-axioms is suessful by onstrution, thusmaking the appliation of Rule A(S)fair needless.The prie to be paid for the generality of our approah is that it is nolonger possible to onstrut proofs in a fully automati way. Human insightinto the system and property to be proved is required to suessfully ompletea proof. This insight is brought into a proof in the form of hoies that haveto be made at spei� points. For instane, the appliation of the Next rulesrequires hoosing a new assertion for the suessor sequent. Choosing theseassertions as general as possible inreases the hane of being able to loopbak to that sequent later in the proof. Using the suess rules also involveshoosing the intermediate assertions and ranking funtions. Making the righthoies an lead to very ompat proofs. It is not a question of whether itis good or bad that suh hoies need to be made, but whether the insightof the designer (and insight an be expeted!) an be transformed naturallyinto a suessful1 proof. More substantial ase studies are needed to obtainonlusive answers to this question.Strong fairness is a di�ult issue, whih is often ignored altogether.Nonetheless, in many situations weak fairness alone is not su�ient to guar-antee the required progress of individual system omponents for essentialliveness properties to hold. Although we have proposed suess rules dealingwith weak as well as strong fairness, we feel that the treatment of strongfairness in the ELL suess rule E(S)fair is not ompletely satisfatory. It re-quires a hoie to be made prior to the appliation of Rule E(S)⊤wuf as to howtrails witnessing the ELL suess formula ΩE should satisfy the strong fair-ness onstraint FΠ of SΠ. We would prefer if this hoie ould be eliminatedor made in a more �dynami� way as part of the appliation of Rule E(S)⊤wuf .An important issue that is only marginally overed in this thesis is thepossibility that a property fails to hold and the extration of ounterexam-ples. An inherent problem of all dedutive systems is the distintion between1here in a non-tehnial sense



8.2] Conlusions and Related Work 153our inability to �nd a proof and the ase where the statement we try to proveis wrong. One possibility to follow in ase we are unable to prove S,Θ ⊢ φis to try proving S,Ξ ⊢ ¬φ for some Ξ suh that Ξ → Θ, that is, proving theontrary of the original property for a subset of the initial states. A betterapproah would try to use the already (possibly only partially) onstrutedproof struture for S and Θ ⊢ φ for suh an e�ort and show that it is un-suessful. A possible solution starts from the observation that a LTL orELL proof struture Π for S and Ξ ⊢ Qφ is unsuessful i� SΠ 6|= QΠ ΩQ(where Q stands for A or E) i� there is an assertion ζ implying ΘΠ suh that
SΠ, ζ |= QΠ¬ΩQ (where Q is the dual of Q). As the negation of ΩQ has thesame form as ΩQ, it is then not di�ult to adapt Rule A(S)fair for provingthat a ELL proof struture is unsuessful and likewise Rules E(S)fair and
E(S)⊤wuf for proving that a LTL proof struture is unsuessful. The ase ismore involved for CTL*, sine a linear ounterexample does not always exist.This topi ertainly deserves further attention.8.2 Related Work8.2.1 Finite-State Model ChekingWe have already disussed the paper [BCG95℄ whih provided the startingpoint for the development of our dedutive loal model heking tehnique.In reent work by Biere, Clarke and Zhu [BCZ99℄, developed in paral-lel with ours but independently, they propose an interesting tableau-basedmethod for ELL that ombines loal and global model heking tehniquesfor �nite-state systems. Their sequents have the form S ⊢ E(Φ), where S isa �nite set of states and their rules are similar to our ELL rules. They alsohave a Split rule, although not needed for ompleteness in their ase:

S ⊢ E(Φ)

S1 ⊢ E(Φ) S2 ⊢ E(Φ)
S1 ∪ S2 = SThe side ondition requires that the two ases S1 and S2 exatly over theoriginal set S. This rule an therefore not be used for weakening. Their Nextrule is also a restrited version of ours:

S ⊢ E(X Φ)

img(S) ⊢ E(Φ)where img(S)
def
= {s′ | ∃s ∈ S. s→ s′} with transition relation →. This is theset-theoreti equivalent of the strongest post-ondition. For total transitionrelations, this is a partiular way to satisfy (the set-theoretial equivalent of)



154 Related Work [8.2the possibility triple appearing as the side ondition of our rule E(X). Using
img(S) in the suessor sequent is ertainly more suitable for algorithmipurposes than using a subset of img(S) (orresponding to a hoie of suessorstates). As a onsequene of these restritions (w.r.t. to our system) and the�niteness of the sets S, any state appearing in a sequent of a proof struture isreahable from an initial state and any path in the proof struture is followedby at least one run of the system. Therefore, a witnessing run an always beextrated from a suessful path (they do not onsider fairness). The interestof this method lies in the ability to represent the �nite sets appearing in thesequents by BDDs and to have e�ient algorithms manipulating them. BDDtehniques have hitherto been used only for global model heking. Thistehnique thus ombines advantages of loal and global model heking.8.2.2 Dedutive and Semi-Algorithmi MethodsManna and Pnueli's Proof SystemThe proof system desribed in [MP91, MP95℄ has already been skethed inSetion 2.6.3. The advantage of this system is the small number (three)of basi rules, whih are shown to be relatively omplete. The prie to bepaid is that formulas have to be brought into anonial form by a omplextranslation [LPZ85, MP90℄ prior to the proof. The drawbaks of anonisationhave already been disussed above.Diagram-Based MethodsSome of the diagram-based methods have been skethed in Setion 2.6.4. Theveri�ation diagrams of [MP94℄ are a diagrammati form of some of the proofrules in [MP91℄. We have already ompared them with our approah in theprevious hapter (Setion 7.3.2), where we showed that invariane diagramsan be onsidered as a ondensed form of proof strutures. Other types ofveri�ation diagrams an be translated to proof strutures in a similar way.Generalised veri�ation diagrams (GVDs) [BMS95, MBSU98℄ (and thetheses [Uri98, Sip99℄) are a diret proof method as is ours (in ontrast tomethods that are driven by the searh for a ounterexample suh as DMC).It onsists of �rst onstruting an abstration of the system (the GVD) whihis then model heked algorithmially. An advantage of separating thesetwo steps is that an abstration an possibly be used for the veri�ation ofseveral properties. As with all abstration methods, if the model hekingphase fails to establish the property then this result is not onlusive and theabstration needs to be re�ned until the model heker sueeds (provided the



8.2] Conlusions and Related Work 155property holds). On the other hand, in the onstrution of a proof struturethe system and its property are explored hand-in-hand and the presene ofthe temporal formulas in the sequents may provide some guidane for itsonstrution. Moreover, at least for LTL properties, any proof struture issuessful, provided the property holds. If we are unable to omplete theonstrution of an LTL proof struture then we an still try to extrat aounterexample (a run following an unsuessful path) from the pre-proofstruture onstruted so far. The onstrution of an ELL proof struturemight however fail due to badly hosen assertions, even if the property holds.Dedutive model heking (DMC) [SUM99℄ (and the theses [Uri98, Sip99℄)di�ers from our method in that it is indiret, that is, driven by the searh fora ounterexample. Whereas the GVD method starts on the system side (bybuilding an abstration), the DMC method starts on the side of the formula,that is, from the tableau of the negation of the LTL formula ϕ to be veri�ed(alled the initial falsi�ation diagram). It then proeeds by re�nement offalsi�ation diagrams, while maintaining the invariant that all ounterexam-ples to ϕ present in the system (if any) are represented in eah falsi�ationdiagram. The proess is stopped if the language aepted by a falsi�ationdiagram an be seen to be empty.As an early diagram-based method ∀-automata were proposed in [MP89℄as an alternative to temporal logi veri�ation. These are �nite-state ω-automata that aept an in�nite sequene σ if all runs of the automaton on
σ are aepting. This is reminisent of the suess riterion of LTL proofstrutures, where all Π-fair trails are required to be suessful, that is, forany omputation σ all trails projeting to σ have to be suessful.It should be noted that ∀-automata, GVDs and DMC (the latter two be-ing based on a form of Müller automaton) have all the expressive powerof ω-regular languages [Tho90℄ or, equivalently, extended temporal logi(ETL) [Wol83℄.Fix and Grumberg's Proof System for CTLThe �rst proof system for CTL is proposed by Fix and Grumberg in [FG96℄.They use transitions systems with weak fairness onstraints as their ompu-tational model. Sequents are of the form P Sat p→ φ, where P is a program,
p is an assertional pre-ondition and φ is a CTL formula (where path quan-ti�ation is over weakly fair runs). A sequent is valid if the initial state ofevery omputation tree of P satis�es the impliation p → φ. They presenta set of rules for proving the validity of sequents. The rule to be appliedto a sequent is determined by the top-level onnetive of the CTL formula(negated forms are also inluded). Eah rule redues its onlusion to a set



156 Related Work [8.2of assertions and/or simpler temporal properties. The proof system is shownto be relatively omplete.Their rule for P Sat p → ¬A(φ1 Uφ2) redues this sequent to proving
P Sat p → EG(¬φ2) or P Sat p → ¬E(¬φ2 U(¬φ1 ∧ ¬φ2)). It is interestingto see how their rule for P Sat p → E Gφ ensures that a (weakly) fair runsatisfying Gφ exists. Their rule mehanism to ahieve this is based in theobservation that a fair run is omposed of fair segments. On a fair segmenteah fair transition is either disabled in some state or taken somewhere (seealso the proof of ompleteness of Rule F-RESP in [MP91℄). They introdue afuntion g : Σ → {0, 1}n mapping states to a bit vetor with one bit for eahfair transition of the system. The premises are designed in suh a way that greords the transitions that have been granted (that is, disabled or taken) ona segment. The end points of segments are indiated by an auxiliary assertion
I that is required to hold in�nitely often on a run witnessing Gφ. Assertion
I is required to imply g = 0 (n zeros), indiating that all fair transitionshave been granted. In this way, g implements a partiular form of rankingfuntion.It is interesting to ompare this mehanism with the modes and rank-ings of our Rule E(F G,

∧
G F)wuf for proving properties of the form E(F G q∧∧m

i=1 GF ri) (Setion 6.3.2). Suppose that we have no assertions ri and anempty unonditional fairness onstraint. By setting α0
def
= false we an atu-ally �turn o�� the fall-baks and thus obtain a rule for properties of the form

EG q, albeit only for assertions q. Only premises R1, R3 and R6 remain non-trivial for this variant of Rule E(F G,
∧

GF)wuf . The existene of a (weakly)fair run witnessing G q is ensured by the modes αi and rankings δi, one suhpair for eah Λi ∈W . Whereas their ranking g measures the distane to theend of a fair interval, our mode αi �remembers� the Λi to be granted nextand δi measures the distane to the point where Λi is granted. Premise R6requires that the mode is swithed from αi to αi⊕1 upon granting Λi, therebyensuring that all elements of W are granted in a yli manner.Considering the apability required of their funtion g to reord the grant-ing of transitions, it is not surprising that they also need a history variablein the proof of relative ompleteness of their rule.Other Proof SystemsIn [HGD95, BDG+98℄ a proof system for �rst-order ACTL is proposed.ACTL is the sublogi of CTL, where only universal path quanti�ers areallowed. They generate a �rst-order suess formula, the validity of whihis su�ient to onlude that the property holds. Their system is not rel-atively omplete, sine it does not inlude a well-foundedness argument to



8.2] Conlusions and Related Work 157show that U-formulas ful�ll their promises. However, their primary goal isnot ompleteness, but to obtain a high degree of automation by separatingontrol from data aspets.Several proof systems the modal µ-alulus have been proposed. Brad-�eld and Stirling [BS92, Bra91℄ desribe a tableau system for the proposi-tional µ-alulus that was obtained by generalisation from the �nite-statesystem in [SW91℄. Andersen has extended the Winskel's rewriting versionof the latter system [Win91℄ to the in�nite-state ase [And93℄. Rathke andHennessy desribe a proof system for a �rst-order version of the modal µ-alulus [RH96, Rat97℄.A ompositional proof systems for sequential value-passing CCS proessesand the �rst-order µ-alulus is presented by Gurov, Berezin and Kapron[GBK97℄ and a separate system handling parallel omposition is introduedin [BG97℄ (see also Gurov's thesis [Gur98℄, where both systems are desribed).Mads Dam [Dam98℄ also desribed a ompositional proof system for the �rst-order µ-alulus.8.2.3 Model Cheking GamesModel heking games were introdued by Stirling in a series of papers [Sti95,Sti96a, Sti97℄. It turns out that a suessful tableau onstruted aordingto the rules in [SW91, Sti96b℄ an be seen as a winning strategy for suha game2. This is in ontrast to our system, where a trail (path) of a proofstruture orresponds to a strategy (pre-strategy) for CTL* games.A e�ient loal model heking algorithm for the µ-alulus based ongames is presented in [SS98℄. It onstruts a winning strategy for the modelheking game orresponding to the property to be veri�ed. By playingagainst the mahine (and loosing eah play) these games an help the userunderstand why a property hold or fails. This algorithm has been inorpo-rated in to the Edinburgh Conurreny Workbenh [MS℄.Model heking games for CTL* have been proposed only very reently in(as yet) unpublished work by Lange and Stirling [LS00℄. The di�erene withour CTL* games is that while our games are played along runs of the system,their games are state-based with on�gurations of the form p, s ⊢ [ϕ],Φ,where p is the urrent pathplayer (either ∃ or ∀), s is a state, ϕ is theformula in fous and Φ is a set of formulas. They give a set of rules thatde�ne the legal moves and the player who possibly needs to make a hoie (ofa subformula or suessor state) in that move. Disregarding the fous, these2This view of tableau as strategies leads to a spetaular simpli�ation of the originalproof of soundness and ompleteness in [SW91℄.



158 Related Work [8.2rules are very similar to our rules for LTL and ELL, but they are ombinedinto one system with the pathplayer in the on�guration indiating whihpart of the system is urrently being used. The pathplayer is reset whena path-quanti�ed formula appears in the fous. The formulas in fous in aon�guration and its suessor are usually related by a generation relation(in our terminology), but there is a speial rule allowing the pathplayer'sopponent to hange the fous. This is neessary, beause plays move fromstate to state and not along a run as in our ase, and gives the opponenta hane to redo previous moves. Their work is too reent to give a morein-depth omparison, but the preise relationship of their games with oursand espeially with proof strutures will provide a nie topi for furtherinvestigation.It is interesting to onsider our CTL* games and strategies in the light ofthe work on abstrat games presented by Perdita Stevens [Ste98a, Ste98b℄.An abstrat version of our CTL* games ould have on�gurations (R, φ),where R is a set of runs and φ a CTL* formula. The rules remain essentiallythe same exept that the games are now played along all the runs in R simul-taneously. A Next move would thus proeed from a on�guration (R,Xψ)to (R′, ψ), where R′ = {σ1 | σ ∈ R}. Unlike onrete plays, �nite abstratplays may end in a draw.Consider the abstrat game GS(R0,Aφ) where Aφ is a LTL formula and
R0 is the set of Ξ-omputations following a path π in a LTL proof struturefor S and Ξ ⊢ Aφ. Then the path π an be transformed into an abstrat
∀-strategy τπ for that game by de�ning

Tπ
def
= {Rπ ∗ ι | ι ∈ I∗(π)} τπ

def
= ♮Tπwhere

Rπ(i)
def
= {σ̃ϑ(i) | ∃ Π−fair trail ϑ. πϑ = π}Note that Rπ(0) = R0. This strategy treats all omputation following π ina uniform way, suh that no (abstrat) plays end in a draw. In summary,paths in proof strutures seem to orrespond to strategies in abstrat games,while trails orrespond to strategies of onrete games. The details remainto be heked.



8.3] Conlusions and Related Work 1598.3 Diretions for Future WorkSome possible traks for future work that ome to mind are listed below.Tool supportFor the pratial appliation of our method tool support is essential. Thenumber of veri�ation onditions alone makes proofs by hand error-prone. Asuitable tool would onsist of a graphial front-end based on a graph editorfor the onstrution of proof strutures and a theorem prover to dishargethe veri�ation onditions at the bak-end. The front-end an be based on agraph editor with appliation of proof rules driven by the syntax of formulas.Cliking on a formula on the right-hand side of a sequent ould apply therule orresponding to its top-level onnetive. Cliking on the left-hand sidewould invoke the Split rule. The front-end would also manage the veri�ationonditions generated by the rules and provide an interfae to the theoremprover. High-level tatis and tehniques for the automati generation ofinvariants (see e.g., [BBM97℄) ould assist the user in the onstrution ofproof strutures. For proving suess, auxiliary assertions ould be assignedto eah sequent in the proof struture and the Hoare or possibility triplesto be disharged ould be assoiated to edges with the proof tool trying toidentify and eliminate the trivial onditions. We plan to implement suha tool with system spei�ations based on the high-level onurrent objetlanguage SOL and its twisted system semantis as desribed in the thesis ofKrzysztof Worytkiewiz [Wor00℄.Re�nement of Proof Strutures and SCS-Based Suess RulesAfter the partial onstrution of a proof struture it may happen that wewould like to make it more ��ne-grained�, in order to simplify the subsequentappliation of a suess rule, for example. Therefore, it ould be helpful tobe able to re�ne an already or partially onstruted proof struture, insteadof starting the onstrution from srath. The design of re�nement rulessimilar to the ones used in DMC [SUM99℄ ould be onsidered.Another point of investigation is in alternative suess rules based onan examination of eah unsuessful strongly onneted subgraph (SCS),similar to the ones used in DMC [SUM99℄ and GVDs [BMS95, MBSU98℄.These ould in some situations provide a more �user-friendly� way of provingsuess. A possible problem is that the number of SCS grows exponentiallywith the size of a proof struture. However, for many pratial appliationsthe number of SCS might be small enough to make suh an approah a



160 Diretions for Future Work [8.3suitable alternative.Real-time systemsReal-time systems (see [AH92℄ for a survey) are intrinsily in�nite statedue to the unbounded progress of time. In the loked transition system(CTS) model of [KMP98℄, there are several lok variables one of whih isthe (global) master lok T . Time is advaned by a speial tick transition,while system transitions do not modify the lok variables. Progress (oftime) is guaranteed by the so-alled non-zenoness ondition, whih replaesthe fairness onstraints found in disrete systems. A CTS run is zeno if timestops at some point or onverges to an upper bound. Only non-zeno runs(with time diverging) are onsidered as omputations. A CTS is non-zeno ifevery omputation pre�x an be extended to a omputation. This onditionan be expressed as the CTL formula
∀ǫ > 0. ∀t. A G(T = t→ E F(T ≥ t+ ǫ))where path quanti�ation is to be understood over all runs [Sip99℄. Thisformula an be veri�ed using our proof system.However, for the proper veri�ation of properties of real-time systemspath-quanti�ation ranges over omputations only (that is, the non-zenoruns). The loal rules for the onstrution of proof strutures an be usedfor this purpose as they stand, but the suess rules need to be reviewed andadapted for non-zenoness.Model Cheking Games and CounterexamplesThe preise onnetion between our CTL* games and the version presentedin [LS00℄ should be investigated. Our own CTL* games are played along runsand, while appropriate for proving soundness and ompleteness of our proofsystem, seem not very suitable for the extration of winning strategies thatan help the users understand why a property holds or not. The onnetion ofthe CTL* games of [LS00℄ to proof strutures should be arefully examined.In partiular, it should be heked whether winning strategies for their CTL*games are represented in some form in our proof strutures.
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