Deductive Local Model Checking

On the Verification of CTL* Properties of
Infinite-State Reactive Systems

Christoph Sprenger

Ph.D. Thesis

Swiss Federal Institute of Technology
Lausanne, Switzerland

May 2000

Contents

Version Abregée

Abstract

Acknowledgements

1 Introduction

1.1 Scope of the Thesis

1.2 Contributions

1.3 Chapter Outline

2 Background

2.1 Words and Languages

2.2 Transition Systems
2.2.1 Basic Transition Systems
2.2.2 Fair Transition Systems

2.3 Syntactic Representation
2.3.1 Assertion language
2.3.2 System Specifications

2.4 Temporal Logic
241 Syntax
2.4.2 Semantics
2.4.3 Ground-quantified CTL*, ...
2.4.4 The Model Checking Problem

2.5 Algorithmic Model Checking
2.5.1 The Automata-theoretic Approach
2.5.2 Local Model Checking
2.5.3 Symbolic Model Checking
2.5.4 Reduction Techniques

2.6 Deductive Approaches to Model Checking

2.6.1 Verification Conditions

iii

vii

ix

xi

iv

CONTENTS

2.6.2 Well-founded Relations and Rankings
2.6.3 Manna and Pnueli’s System
2.6.4 Diagram-Based Verification
2.7 Trees, Games and Strategies

LTL Proof Structures

3.1 Definition of LTL Proof Structures
3.1.1 Discussion of the Rules
3.1.2 The Split Condition (A-SPL)
3.1.3 Derived Rules

3.2 The Success Criterion
3.2.1 Successful Paths
3.2.2 A Tentative Success Criterion for Proof Structures . . .
3.2.3 Trails and Success for Proof Structures

3.3 A Rule for Proving Success
3.3.1 Rule A(F,\VVFG)
3.32 Rule A(S) L

3.4 Some Examples
3.4.1 A Guarantee Property
3.4.2 A Safety Property
3.4.3 A Persistence Property

Soundness and Completeness via Games

41 CTL* Games i et
4.1.1 Game Definitiono
4.1.2 Characterisation of CTL* satisfaction

4.2 Trails and Strategies L.
4.2.1 Generative Paths and Admissibility
4.2.2 Internal Strategies of Trails
4.2.3 Winning and Losing Strategies.
4.2.4 Represented Strategies
4.2.5 Winningness and Admissibility
4.2.6 Admissibility vs. Success

4.3 Existence of a Proof Structure

4.4 Soundness and Completeness of Rule A(S)

45 Main Result oo

ELL and CTL* Proof Structures

5.1 ELL Proof Structures
5.1.1 Some Remarks on the Rules
5.1.2 Derived Rules

29
30
34
35
37
39
39
40
43
48
48
50
53
53
54
%)

59
61
61
63
66
66
67
69
70
73
74
76
79
79

CONTENTS

5.2 Definition of ELL Success
5.3 A Proof Rule for ELL Success
5.3.1 Rule E(AGF)
532 RuleE(S)
5.4 Exampleo
5.5 Soundness and Completeness
5.5.1 Admissible Trails and Winning Strategies
5.5.2 Existence of an Admissible ELL Proof Structure
5.5.3 Winningness and Successful Proof Structures
5.5.4 Soundness and Completeness of Rule E(S)
55,5 MainResult o000
5.6 A Proof System for Full CTL*
5.6.1 Soundness and Completeness for CTL*
5.7 Using Invariants in Proofs

Proving Success under Fairness

6.1 Expressing Fairness in CTL*

6.2 LTL Success under Fairness
6.2.1 Rule A(F,\VFG)fair - - - - o o o oo oo oo
6.2.2 Rule A(S) g for LTL Success

6.3 ELL Success under Fairness
6.3.1 Rule E(FG,AGF)
6.3.2 Rules E(FG,AGF)yur and E(FG,AGF)pair
6.3.3 Rules E(S) 4 and E(S),,; for ELL Success

wuf

Application: The Bakery Protocol

7.1 Program Specification Lo

7.2 Property Specification

7.3 Verification of Mutual Exclusion
7.3.1 A Generic Proof of Invariance
7.3.2 A Refined Style of Invariance Proofs

7.4 Verification of Accessibility
7.4.1 Proving Success for

7.5 Verification of Unboundedness
7.5.1 Checking the Side Conditions for 1L,
7.5.2 Proving Success for IL,,;; and [0

Conclusions and Related Work

8.1 Summary and Discussion

8.2 Related Work
8.2.1 Finite-State Model Checking

86
88
88
90
91
94
94
96
99
100
100
100
102
102

105
106
108
108
110
112
115
120
124

129
129
132
132
132
133
136
138
141
141
143

vi CONTENTS

8.2.2 Deductive and Semi-Algorithmic Methods 154
8.2.3 Model Checking Games. 157
8.3 Directions for Future Work 159
Bibliography 161

Curriculum Vitae 171

Version Abregée

Cette thése traite de la vérification formelle de propriétés temporelles des
systémes réactifs & états infinis. Nous proposons un systéme de preuve basé
sur des tableaux et permettant la vérification, par model checking, de pro-
priétés exprimées dans la logique arborescente CTL* construite sur un lan-
gage d’assertions L. Le systéme de preuve est capable de traiter des formules
CTL* arbitraires sans avoir besoin de les transformer dans une forme cano-
nique.

Notre méthode repose sur la construction de structures de preuve aussi
connues sous le nom de tableaux. 1l existe deux types de structures de preuve
(LTL et ELL), chacun correspondant a une sous-logique de CTL*, et deux
ensembles de régles locales pour les construire. L’application de quelques
unes de ces régles exige la démonstration de la validité de certains assertions
de L. Chaque type de structure de preuve est lié a son propre critére de
succes. Ce dernier assure que les sous-formules exprimant des promesses
sont, satisfaites d’'une maniére appropriée: seuls les tableaux satisfaisant ce
critére sont des démonstrations légales d’une propriété.

Chaque critére de succés est exprimé sous la forme d’une propriété tem-
porelle particuliére. Cette derniére doit étre satisfaite par le systéme de tran-
sition associé a4 un tableau donné et au systéme que 1’on vérifie. Un parcours
dans ce systéme associé, appelé un trail du tableau, combine un parcours du
systéme avec un chemin du tableau. Une régle de preuve supplémentaire est
introduite pour chaque critére de succés. Ces régles utilisent un argument
de bonne-fondation pour établir le succés d’une structure de preuve. Une
preuve d'une propriété CTL* est alors une collection finie de structures de
preuve LTL et ELL, dont le succés a été démontré par 'application de la régle
appropriée. Du fait que les régles de succés sont aussi exclusivement basées
sur le raisonnement dans le langage d’assertions £, notre méthode réduit
tout raisonnement temporel & la démonstration de la validité d’assertions
tirées de £. En conséquence, il n’y a pas besoin de prouver de theorémes
de la logique temporelle elle-méme. Nous appelons notre méthode de preuve
model checking local deductive, car elle généralise en méme temps des tech-

vii

viii VERSION ABREGEE

niques de model checking pour des systémes a états finis et des systémes de
preuve pour LTL et CTL qui ont été proposés dans la litérature.

Nous démontrons que notre systéme de preuve est correct et complet
relatif & la validité d’assertions tirée de £. Une partie majeure de cette preuve
est basée sur la théorie des jeux. Dans une premiére étape la notion d'un
jeux CTL* infini pour deux joueurs est introduite. Selon ce jeu ’objectif
du premier joueur (appelé 3) est de montrer qu'une propriété CTL* est
satisfaite, alors que l'autre (appelé V) essaie de montrer le contraire. Nous
donnons une charactérisation de la satisfaction d’une propriété CTL* en
fonction de I'existence d’une stratégie gagnante pour le joueur 4. Dans un
deuxiéme temps, nous analysons la structure interne des chemins et trails
d’une structure de preuve et nous mettons cette structure en relation avec
I’idée des jeux dévelopée auparavant. En particulier, & chaque trail d’une
structure de preuve LTL (ELL) correspond une stratégie du joueur V (3) pour
un jeu LTL (ELL). Nous montrons qu'une preuve d’une propriété LTL ou
ELL par notre systéme existe précisement si le joueur 3 posséde une stratégie
gagnante pour le jeu correspondant. Pour ce faire, on doit comparer la notion
de succeés a celle d’admissibilité, qui est une notion alternative de succés
proposée dans la literature. Les résultats pour LTL et ELL sont ensuite
généralisés & CTL* entier. La derniére étape consiste en la démonstration de
la correction et de la complétude des régles de succes.

Différents types d’équité sont ensuite étudiés et nos régles de succés sont
étendues pour les prendre en compte. Finalement, ’application du systéme
de preuve est illustrée sur un exemple non banal.

Abstract

The present thesis is about the formal verification of temporal properties of
infinite-state reactive systems. We propose a tableau proof system for the
model-checking of properties expressed in the full branching time temporal
logic CTL* over an assertion language £. The proof system applies to an
arbitrary CTL* formula. There is no need to transform formulas into some
canonical form.

The basic proof object in our method is a proof structure (a.k.a. tableau).
There are two types of proof structures (LTL and ELL), each corresponding
to a sublogic of CTL*. Accordingly, there are two dual sets of proof rules.
Some of these rules require the validity of an assertion from £ to be proven
as part of their application. Each type of proof structure has its own success
criterion, which ensures that eventuality subformulas of the original formula
are satisfied as appropriate. Only successful tableaux qualify as legal proofs
of a property.

Each success criterion is formulated as a temporal property of some spe-
cific form. The latter has to be satisfied by a certain transition system
associated with a given tableau and the reactive system to be verified. A
run of this associated transition system, called a trail of the proof structure,
combines a run of the system with a path in the proof structure. We intro-
duce one additional proof rule for each success criterion. These rules employ
a well-foundedness argument to establish that a proof structure of the re-
spective type is successful. A proof of a CTL* property of a given system
is then a finite collection of LTL and ELL proof structures the success of
which has been established using the respective rules. As the success rules
also exclusively rely on reasoning in £ our method reduces all temporal rea-
soning to proving the validity of formulas from L. Therefore, no theorem
proving in the temporal logic itself is required. We call our method deductive
local model checking, as it generalises both local model checking techniques
for finite-state systems as well as proof systems for LTL and CTL that have
been described in the literature.

We show that our proof system for model checking is sound and complete

ix

X ABSTRACT

relative to validity of formulas from the assertion language £. The major
part of the proof relies on a game-theoretic argument. As a first and quite
independent step we introduce the notion of a CTL* game, an infinite two-
player game, where one player (3) tries to show that a property holds of the
system, while the other player (V) tries to refute it. We give a characterisation
of the satisfaction of a CTL* property in terms of the existence of a winning
strategy for Player 3. In a second step, we analyse the internal structure of
paths and trails in proof structures and link it up with the game-theoretic
ideas developed in the previous step. In particular, to each trail of a LTL
(ELL) proof structure corresponds a V-strategy (I-strategy) of a LTL (ELL)
game. We show that a successful proof structure for a given LTL or ELL
formula and system exists precisely if Player 3 has a winning strategy for
the corresponding game. In doing so, we compare our notion of success with
admissibility, an alternative notion of success proposed in the literature. The
results for LTL and ELL are then lifted to full CTL*. As a final step we show
that the success rules are sound and relatively complete.

We then study different types of fairness and extend our success rules to
account for them. Finally, the application of the proof system is illustrated
on a non-trivial example.

Acknowledgements

First of all T would like to thank my thesis supervisor Claude Petitpierre for
his confidence and for all that liberty he gave me in discovering and following
my research interests.

Many thanks to Krzysztof Worytkiewicz for careful proof-reading of parts
of this thesis and for all the interesting discussions we had on the topic.
Thanks also to Antonio Restrepo and David Barth for reading and com-
menting on the third chapter.

Antonio and Céline have invited me to their wedding party in a marvellous
place in the middle of the vineyards above Lake Geneva, offering a truly
pleasant break at a time when the week-ends started to fill with work. By
our regular jogging along the lakeside, Claude Amendola has contributed a
great deal to prevent my transformation into a pale laboratory mummy in
the last two month of the writing. The bakery Boulaz in Lausanne supplied
me with their marvellous vegetable cakes, which made up a good share of
my stress diet in the last phases of the writing.

Special thanks to the development team of the IyX text (and formula!)
processor for providing an excellent tool that makes writing a scientific text
as comfortable as it can possibly be and that saved me from the headaches
of continuously extracting the sense of my writing from heaps of TEX code.

I am particularly grateful for the continuous support from my parents,
my brother and all my friends.

Last but not least, my thanks go to Armin Biere, Dilian Gurov, Yonit
Kesten and Martin Odersky for serving as members of my examination com-
mittee and for their helpful comments on the submitted version of this thesis.

xi

xii

To my parents, Robert and Silvia

Chapter 1

Introduction

Modern society depends more and more on its own technological achieve-
ments. Powerful computer systems constitute the backbone of almost any
conceivable technology today, be it in its development or in its implementa-
tion. The complexity of these systems is growing ceaselessly. Most of today’s
computing systems are characterised by an ongoing interaction with their en-
vironment. This interaction occurs in various forms such as the transmission
of data over a communication network to another machine, interaction with
a human user, or the exchange of information with the sensors and actuators
of an embedded control system. Such systems are called reactive, in contrast
to transformational systems which compute an output from a given input.
Considering our dependency on these systems, it is clear that they should
be correct. The development of correct reactive systems represents a serious
challenge for hardware and software engineering. Reactive systems are most
often composed of several communicating concurrent processes. The inherent
complexity of concurrency and communication makes the discovery of design
errors a difficult task. Not only may there be mistakes in the calculations
such systems perform (as in transformational systems), but there is also
the possibility of synchronisation failures (such as as deadlocks, starvation,
unexpected message reception etc.). The behaviour of reactive systems is
best described in terms of their ongoing interaction with the environment
rather than a relation between input and output data as for transformational
systems. In fact, while termination is most often a required property of
transformational programs, it is often undesirable for reactive systems.
Traditional software engineering methods for error detection such as sim-
ulation and testing can quickly become insufficient in this context. This does
not mean that they should be abandoned. Simulation, for example, is a very
valuable and efficient method for error detection in the initial phase of de-
sign validation. However, due to the sheer number of possible evolutions of

2 1.0

concurrent systems, simulation and testing are unable to reach a satisfying
coverage, leaving the more subtle errors buried in the depths of the state
space. As the cost for the elimination of errors increase the later they are
detected, there is also an immediate economical interest to eliminate errors
as early as possible in the development cycle.

Formal Specification and Verification

Researchers in the field of formal methods tackle this problem with math-
ematical methods that allow the rigorous verification of designs. A formal
framework for the specification and verification of reactive systems should
include at least the following parts:

e a mathematical model of reactive systems
e a requirement specification language, and

e a verification method

Models The large majority of frameworks (and this thesis is no exception)
that include a verification method use transition systems as their computa-
tional model of reactive systems. This is certainly due to the simplicity of this
model. A transition system is essentially a graph, where the nodes represent
system states and the edges atomic transitions between these states. Concur-
rency is modeled by non-deterministic interleaving of atomic actions. Many
other models of reactive computation have been proposed in the literature
(see [SNWO6| for an overview), some of which like Petri Nets [Rei85] explic-
itly represent the concept of concurrency as distinct from non-determinism,
but many of them lack verification frameworks.

Specification Two different classes of requirement specification can be
distinguished. The first class could be called relational. In this approach the
desired behaviour of a system design is formulated as another, more abstract
system. Here the system description language and requirement specification
language coincide. Systems are compared w.r.t. some behavioural preorder or
equivalence relation. As there is no general agreement on what aspects of the
behaviour of a process should be visible to an outside observer, a plethora
of different behavioural relations has been proposed in the literature (see
[AN87, vGG90, v(GI3] for overviews). This type of requirement specification is
complete in the sense that all constraints on the behaviour of an implemen-
tation are represented in the abstract system.

1.0] INTRODUCTION 3

The method of specification refinement is an example of this approach to
specification. Starting from an initial abstract system a series of more and
more concrete specifications is produced by the process of refinement until the
desired level of detail of the implementation is obtained. Each specification
is related to the previous one by a behavioural preorder relation such as
simulation. Frameworks based on set theory (see e.g., [Sta88, AL91]|) as well
as on temporal logic (see e.g., [Pnu92, KMP93, Lam94]|) have been proposed.
Process algebras are another instance of this class (see e.g., [Mil89, Hoa85,
BW90, Mil99|), where algebraic theories of process terms and behavioural
relations between them are developed.

The second type of requirement specification follows a logical approach:
the specification language is a modal or temporal logic that is interpreted over
the states or computations of a transition system. The behaviour of a design
is specified in terms of a collection of desired properties expressed as formulas
of the logic. Depending on the particular logic a system satisfies a property
if all its initial states or all its computations do. Many useful properties of
reactive systems can be expressed in these logics, including safety properties
(“nothing bad happens”) and liveness properties (“something good happens”).
The approach followed in this thesis falls into this category. The logic we
use as our specification language is CTL* [EH86], a full branching-time logic
that allows quantification over computations to be freely mixed with linear-
time operators. As such it is more expressive than linear-time temporal logic
(LTL) or computation tree logic (CTL), but less expressive than the modal
p-calculus. For a survey of temporal and modal logics see [Eme90, Sti92].

Verification In this thesis we concentrate on the verification of logical
specifications, also called model checking. For finite-state systems model
checking is decidable and efficient algorithms exist for various logics (see
[CGLI3, CGPI9| for a survey). An obvious advantage of algorithmic model
checking is that it is fully automatic. In case a property fails to hold, the
algorithm can also produce a counterexample, which is of invaluable help
in understanding the reason for the failure. The main drawback of algo-
rithmic model checking is the so-called state space explosion problem: the
exponential growth of the state space in the number of component processes.
Although many sophisticated heuristics have been developed to alleviate this
fundamental problem, memory shortage is still the main limiting factor for
the application of algorithmic model checking.

Model checking methods based on deductive reasoning on the other hand
are applicable to arbitrary infinite-state systems. Their strength lies in their
generality. As in general the model checking problem is undecidable, it can-

4 SCOPE OF THE THESIS 1.1

not be fully automatic and therefore requires a certain expertise from the
user, which is the main drawback of this method.

More recently, there has been a trend in combining the good sides of
both approaches, for example, by constructing a finite-state abstraction of

the system by deductive means which is then model-checked algorithmically
[DF95, DGGI7, GS97, RSS95, MBSU9S|.

1.1 Scope of the Thesis

In this thesis we address the problem of model checking CTL* properties of
systems with possibly infinite state spaces.

Systems are specified by a syntactical representation of transition systems
formulated in an assertion language £. In order to compensate for the mod-
eling of concurrency by non-determinism in the transition system model, our
system specifications include fairness constraints to model the fair scheduling
of system components. Only runs of the system where all these components
receive fair treatment are considered as computations.

We present a tableau-based proof system for ground-quantified CTL*,
which is obtained from pure propositional CTL* by replacing atomic propo-
sitions by assertions of £ over the system variables. These assertions may
contain first-order quantifiers, but no first-order quantification is allowed in
the scope of temporal operators. The proof system is composed of two dual
sets of local rules, one dealing with the universal path quantifiers and the
other with the existential path quantifiers of CTL*. These rules are used to
construct the basic proof objects of our method, called LTL and ELL proof
structures. A CTL* proof structure is in turn essentially a collection of LTL
and ELL proof structures.

In order to be accepted as a proof of a property, a proof structure has to
satisfy a success criterion formulated in terms of the runs of an associated
system (called trails) derived from the original system and the proof struc-
ture. An additional (global) rule for proving success is introduced for each
type of proof structure. Our proof system reduces all temporal reasoning to
showing the validity of wverification conditions formulated in £ and arising
either as side conditions of the local rules used in the construction of proof
structures or as premises of the success rules.

We show that our proof system is sound and complete. Soundness means
that every provable statement is true and completeness means that every true
statement is provable in our system. By the expressiveness of our assertion
language we cannot expect that every verification condition is provable in
some formal system, so completeness is proved relative to the validity of

1.3] INTRODUCTION 5

assertions (verification conditions). Soundness and completeness is shown
to hold for LTL and ELL proof structures and is then lifted to CTL* proof
structures. A large part of the soundness and completeness proof is based on
a game-theoretic argument. We characterise satisfaction of CTL* formulas
in terms of the existence of a winning strategy for one player in an infinite
two-player game and then proceed by a fine-grained game-theoretic analysis
of paths and trails in proof structures, discovering that trails correspond to
strategies in CTL* games.

1.2 Contributions

The main contribution of this thesis is the presentation of a sound and rel-
atively complete proof system for the model checking of CTL* properties
of infinite-state reactive systems. The system specifications include a quite
general type of fairness constraints. To the best of our knowledge no such
proof system for CTL* has been proposed before in the literature. Our proof
system generalises existing methods for finite-state model checking as well as
several existing deductive proof systems.

Another contribution is our novel approach of using a game-theoretic
argument to establish soundness and completeness of the proof system. In
fact, our game-theoretic analysis of the fine structure of paths and trails in
proof structures has an interest of its own as it offers interesting insights into
the inner working of proof structures. Games and strategies are particularly
attractive in this context as they provide a very intuitive point of view of
otherwise rather abstract structures.

1.3 Chapter Outline

In Chapter 2 we introduce the transition system model, the temporal logic
CTL* and some background on model checking. An abstract notion of games
and strategies is also defined.

LTL proof structures are the topic of Chapter 3. We introduce a suitable
sequent format and a set of local rules for the construction LTL proof struc-
tures. A success criterion is then presented that qualifies a proof structure
as a legal proof. This criterion is defined in terms of trails which are runs of
a system derived from a proof structure and the original system. Intuitively,
a trail combines a run of the system with a path in the proof structure. We
then introduce a global proof rule that allows us to establish success. The
application of the proof system for LTL is illustrated by a series of examples.

6 CHAPTER OUTLINE 1.3

In the following Chapter 4 we establish the soundness and relative com-
pleteness of the proof system for LTL. The proof is largely based on a game-
theoretic argument. The first step consists in a characterisation of the sat-
isfaction of a CTL* formula in terms of the existence of a winning strategy
for one player in an infinite two-player game, where Player 3 tries to estab-
lish the truth of the formula, while his opponent, Player V, tries to refute it.
By observing that to each trail corresponds a strategy of Player V we can
show that a successful proof structure for a system S with initial condition
© and property ¢ exists precisely if Player 3 has a winning strategy for the
game Gs(0, ¢) (and hence S, 0 = ¢). The final step of the proof consists in
showing that the LTL success rule is sound and relatively complete.

In Chapter 5 we extend our proof system to full CTL*. To this end, we
first introduce the duals of LTL proof structures called ELL proof structures
to handle existentially path-quantified formulas. The ELL success criterion is
dual to the one for LTL. A rule is introduced to prove ELL success. Soundness
and relative completeness are then shown along the lines of Chapter 4. Some
results transfer directly by duality, while others need to be reviewed.

Chapter 6 addresses the problem of proving success for proof structures
for systems with fairness constraints. The LTL as well as the ELL success
rules are extended to cope with both weak and strong fairness constraints.
The new rules are shown to be sound and complete. By this result we can
lift the restriction to saturated systems (without fairness constraints) in the
soundness and completeness theorem for CTL* proof structures, which was
necessary for the only reason that the previous success rules did not account
for fairness

The application of our proof system is illustrated on a non-trivial example
in Chapter 7, where we verify some properties of the bakery protocol for
mutual exclusion. In particular, we prove that the properties of mutual
exclusion, accessibility and unboundedness hold for the bakery protocol. The
latter shows that there is possibility of unbounded growth of some system
variables, which makes the system infinite-state.

The final chapter concludes the thesis by a review of its goals and their
achievement, a comparison with related work as well as an outlook on future
research.

Chapter 2

Background

In this chapter we introduce transition systems, our computational model of
reactive systems, and the temporal logic CTL*, our requirement specification
language. We then survey some existing techniques for model checking, that
is, for the verification of temporal properties of reactive systems. Algorithmic
as well as deductive approaches are considered. Finally, we define the notions
of games and strategies. We start with some basics on words and languages.

2.1 Words and Languages

Let A be an alphabet. We denote by A* the set of finite words (sequences)
and by A“ the set of infinite words over A. Let A*® = A* U A“. A subset
of A* (A% A>) is called a language (w-,00-language). We denote the empty
word by € and the concatenation of a finite word u € A* with a word v € A®
by w - v (or just uv). Define the (finite) prefiz ordering on A* by u < w if
u € A* and there is a v € A such that uv = w. In this case v is called the
residuum and is denoted by w/u.

For a finite word u, let |u| denote its length, that is, the number of
letters appearing on w. For an infinite word v, we define |v| = w. Let
w = apay - - - a; - - - be a finite or infinite word. Define for 0 < i < |w]:

e w(i) = a;, the ith letter,
e wli] = a,ay ---a;_, its prefix of length ¢
o w' = q;a;4, - be its ith suffix.

We use the quantifier 3 and its dual V* as shorthands for “there are infinitely
many” and “for all but finitely many”, respectively. Define the set of letters

8 TRANSITION SYSTEMS (2.2

appearing infinitely many times in w by
inf(w) = {a | 3%i. w(i) = a}.
The stuttering removal operator fj: AY — A“ is inductively defined by

ne = €
w ifa=>0and w=a"
1(abw) = g(bw) ifa=band w # a”
afj(bw) otherwise

It replaces any finite repetition of a letter in an infinite word by a single
occurrence of that letter.

Given two alphabets A and B, a map f: A — B U {¢} is extended to
words in the following way: for w € A* we define f>*: A>* — B> by

[(w) = F(w(0) - fw() - fw(j)- -

Note that f* may map some infinite words to finite ones. We write f“ and
f* for the restriction of f*° to the domains A“ and A*, respectively.

2.2 'Transition Systems

We use transition systems as our computational model of reactive systems.

2.2.1 Basic Transition Systems

DEFINITION 2.2.1. A labeled transition system (LTS) is a structure
T=(5{>I €A},

where S is a non-empty set of states, A is a non-empty set of transition labels

(or transitions, for short) and A C 8§ x S is a transition relation for each

label A € A. O

We write s 2 s’ for (s,s) €2 and say that there is an A-transition
leading from state s to state s’. An A-transition is said to be enabled in a
state s if there exists a state s’ such that s = s'. For a set of transitions
AN C A, we say that A’ is enabled in state s if some transition A € A’ is
enabled in s. A transition or set of transitions that is not enabled is called
disabled. Let — denote the unlabeled global transition relation (J,., EN

2.2] BACKGROUND 9

ASSUMPTION 2.2.2. For convenience, we will only consider LTS with a total
global transition relations, where some A-transition is always enabled in each
state. We call such LTS total.

In case some transition system 7 is not total, there is a simple “trick” to

transform it into a total one: add an idle transition A\; to A with s 2 s for
any state s with A disabled.

Runs

A run of an LTS 7 = (S, {i| A € A}) is an infinite sequence of states
05081 -85+ such that for all ¢ € w there is an A € A such that s, 2 Sit1-

We say that a A-transition is taken at s, on o if s, A Spi1- Foraset A C A
of transitions, we say that A’ is taken at s, on o if some A € A’ is taken at
Sk

For U C S we define a U-run to be a run starting in some state s € U.
States appearing on a U-run are called U-reachable. For singleton sets we
will write s-run instead of {s}-run. We write R+ (U) for the set of U-runs
and R 7 for the set of all runs of 7.

2.2.2 Fair Transition Systems

Intuitively, fairness [Fra86, Kwi89, AFK88| is a property of runs expressing
that if some component of the system is sufficiently often ready to proceed,
then its progress will not be delayed indefinitely. An unfair run is then a run
along which the execution of some component is unduly delayed, though is
is sufficiently often ready for execution. Of course, one has to specify more
precisely what is meant by “sufficiently often” and “component”.

Fairness is a way to compensate for the modeling of concurrency by non-
determinism (interleaving of concurrent transitions) in the transition system
model. When it comes to specifying and proving properties of a transition
system, one typically only requires that the fair runs of a system satisfy it
and generally ignore the unfair ones. Fair runs will be called computations.
In practice, fairness is realised by a scheduler.

The most common notions of fairness are unconditional, weak and strong
fairness (also called impartiality, justice and compassion [LPS81, MP92|)
corresponding to different interpretations of “sufficiently often”. Consider a

transition system 7 = (.S, {A| A € A}), subset A C A of its transitions. We
call arun o of 7

e unconditionally fair w.r.t. A’ C A if A’ is taken infinitely many times
on o,

10 TRANSITION SYSTEMS (2.2

e strongly fair w.r.t. A C A if whenever A’ is enabled infinitely often,
then A’ is taken infinitely many times on o, and

e weakly fair w.r.t. A" C A if whenever A’ is enabled continuously from
some point on, then A’ is taken infinitely many times on o.

Note the decreasing strength: an unconditionally fair run is also strongly fair
and a strongly fair is also weakly fair (w.r.t. some A’ C A).

For our purpose, we define a fairness constraint w.r.t. a set of transitions
A to be a triple F = (P, W, F'), where P C P(A) is a finite partition of A,
W C P is aset of weakly fair sets of transitions and F' C P is a set of strongly
fair sets of transitions. The elements of P can be seen as an abstract form of
processes. They are the “components” referred to in the informal definition
of fairness above. A run o is called fair if it is weakly fair w.r.t. all A, € W
and strongly fair w.r.t. all Ay € F. We informally write o = F to mean that
o is fair.

By varying the type of partition P of a fairness requirement F = (P, W, F")
we can change the granularity of the “components” that the fairness require-
ments apply to. For example:

weak process fairness [LT87]:
F = (P,W, @) with W = P for any partition P,

strong process fairness [CS87]:
F = (P,2, F) with F = P for any partition P, and

transition fairness [MP92]:
F = (P, W, F) with the partition P;; induced by the identity relation
on A and W and F arbitrary subsets of P.

There are other notions of fairness, which do not fit this scheme. We refer
the reader to [Kwi89| for a survey and to Francez’ book [Fra86] for more
detailed information.

DEFINITION 2.2.3. A fair transition system (FTS) is a structure
T=(5{>\eA}LF)

with (.S, {A\ A € A}) a LTS and F a fairness constraint for A. A fair run of
T is called a computation. %

For a set U C S, a U-computations is a computation starting in a state
s € U. We write Cr(U) for the set of U-computations and Cr for the set of
all computations of 7.

2.3 BACKGROUND 11

Initial states

It is sometimes useful to add a non-empty set of initial states I+ C St to a
(fair) transition system 7. Such a transition system is called initialised. One
is then generally interested in the I7-computations only.

What Type of Transition System now?

Any type of transition system introduced above can be seen as an instance
of an initialised fair transition system

T = (S, {3 e A} 1, F),

henceforth just called transition system for brevity. Putting [= S is equiv-
alent to dropping /. Setting F = (P, &, @) for any partition P of A has the
same effect as dropping F. We will call a transition system with trivial or
no fairness constraints saturated, as all of its runs are computations.

2.3 Syntactic Representation

For the purpose of specification and deductive verification, a more syntactic
representation of transition systems is desirable.

2.3.1 Assertion language

Let £ be an assertion language including at least the predicate calculus over
the countable set of variables V' and some fixed first-order structure A con-
taining symbols for all the usual operations over integers and booleans that
may occur in a system specification. Formulas of £ are called assertions. For
X C V we write L[X] for the set of assertions with all free variables in X.

Further Assumptions on L

For the purpose of showing relative completeness of our proof system a pure
first-order language is not sufficiently expressive (see, e.g., [SARG89|) and
we have to extend L to include least and greatest fixed point operators (u
and v, respectively). We denote this extension of £ by L, (see also Park’s
p-calculus [Par76] and [Mos74, SARG89]).

Furthermore, we will assume that the first-order structure A we are work-
ing with supports an elementary (first-order definable in the structure) coding
scheme, allowing us to code finite sequences of elements of the domain D of

12 SYNTACTIC REPRESENTATION 2.3

the structure A as single elements of D. Structures with this property are
called acceptable in [Mos74, SARG89).

2.3.2 System Specifications

DEFINITION 2.3.1. A (transition) system specification (or system for short)
is a structure

S=(X,Z{pr| A€ A},0,F)
where

o X ={z1,...,x,} €V isa finite set of typed program variables. Often
these are subdivided into control variables indicating the locations in
the program where control currently resides and data variables. We
often use vector notation ¥ for the ordered set z1,... ,z, of program
variables.

e X is the state space, the set of type-consistent interpretations of the
program variables. An element s € ¥ is called a state.

e p\(T, @) is the transition relation for transition label A € A, an as-
sertion which may refer to two copies of the program variables, an
unprimed copy T representing the current state and a primed copy
T =1a),...,x) representing a successor state,

e O(T) is the initial condition, a satisfiable assertion describing the set
of starting states, and

e F is a fairness constraint over A

A state assertion (over X) is an assertion all of whose free variables are
program variables. Let p be a state assertion. We write s = p and say that s
satisfies p if p is true when interpreting the free variables of p by s. If s = p
we also say that s is a p-state. We say that p is satisfiable if there is a state
s such that s = p. An assertion is called state valid (w.r.t. structure A),
written |= p, if s = p for all states s € X1, A state assertion p describes the
set of states ||p|| satisfying it, that is, ||p|| = {s € ¥ | s = p}. For the sake of
brevity, we will henceforth just say assertion for state assertion and validity

!Note that state validity is not to be confused with general validity of a first-order
formula, which states that a formula is true in all first-order structures over the given
signature and all interpretations of its free variables.

2.4] BACKGROUND 13

for state validity. To avoid confusion, we will explicitly indicate the set of
free variables of an assertion in case not all of them are program variables.

A pair of states (s, s’) satisfies a transition relation p,(Z,7’), denoted by
(s,8") = pa(®, @), if the assertion p,(Z,T’') is true when interpreting each
unprimed variable z € X by s(z) and each primed variable 2’ € X’ by §'(x).
For A" C A we write pp/(7,7') to abbreviate \/ ., pA(Z,@'). Hence, px(Z,7')
denotes the global transition relation.

Using the transition relation p,, we are now able to express enabledness
of a set of transitions A’ C A by the assertion

enn (T) £ 37 . pp (T, T)

and write eny(Z) instead of eng\ (7).

A system specification S as above induces the obvious transition system
Ts = (E,{A| A€ A}, I, F), with transitions A= {(s,8) | (s,5") E pa} for
each A € A, initial states I = {s € ¥ | s = ©}. Given a system S, we will
write Rs for Rz, and Cs for Cz,. For a state assertion = let Rs(Z) and
Cs(Z) denote Rs(||Z]]) and Cs(||Z]|), respectively.

2.4 Temporal Logic

In this section, we present the syntax and semantics of our requirement spec-
ification language, the temporal logic CTL* [EH86] and its sublogics.

2.4.1 Syntax

Let Prop be a set of atomic propositions and define the set of literals by
Lit = PropU{—p | p € Prop}.

DEFINITION 2.4.1. The syntax of the logic CTL* is defined by

pu=ploNgloVe | XeleVe|pUp|Ap|Ep

where p € Litis a literal. The connectives Next (X), Release (V) and Until (U)
are called temporal operators. The operators A and E are called universal
and existential path quantifiers, respectively. We will often call a formula
with top-level connective V € {A,V,X,V,U A E} a V-formula and use Z as
a placeholder for either U or V. So a Z-formula is either a U- or a V-formula.
We write ¢ < ¢’ to mean that ¢ is a subformula of ¢’. The relation < induces
a partial order on CTL* formulas. Let V(¢) denote the set of V-subformulas

14 TEMPORAL LOGIC (2.4

of ¢ and similarly for U(¢). The (path-)quantifier depth of a CTL* formula
is inductively defined by:

qd(p) =0

qd(X 6) = ad(©)

qd(¢1 © ¢2) = max(qd(¢1),qd(¢2)) for o € {A,V,V, U}

qd(A¢) = qd(E¢) = 1 + qd(¢)
We say that a formula ¢ is of level £ > 0 if qd(¢) = k. We now define three
sublogics of CTL*:

e the logic LTL consists of the path-quantifier free (depth 0) formulas of
CTL*.

e the logic ALL (ELL) consists of the CTL* formulas of the form Ay
(E), where ¢ is a LTL formula.

e the logic CTL consists of those CTL* formulas, where every temporal
operator is immediately preceded by a path quantifier. In other words,
the syntax of CTL is defined by

pu=pleAeleVe | QXe | QleVe) | QlpUyp),
where p € Lit and Q € {A, E} is a path quantifier. &

In our presentation of these logics, negation on formulas other than as-
sertions is a meta-level notion inductively defined by

(PrAd2) = 1 A=y (P1Vd2) = =1V g
ﬁ(i/h \ 1/12) = Uy _‘(1/11 v 1?2) = Vi
-Ay = E- -Ey = A9

In this definition the duality of operators is exploited thereby avoiding an
exponential blow-up in the size of the formula.

The propositions true and false as well as the connectives for implication
(—) and equivalence («+) are defined in the usual way using the boolean
connectives. Some other frequently used temporal operators are ’always’
(G), ’eventually’ (F) and ’unless’ (W) which can be defined from the basic
ones by

Gy & falseV
Fyy € trueUy
Wby =y V (Xeha Vi)
In order to save us some parenthesis, we adopt the convention that unary

operators have higher precedence than binary operators and binary temporal
connectives have precedence over binary boolean connectives.

2.4] BACKGROUND 15

2.4.2 Semantics

A model M for a CTL* formula is a pair (7,V), where 7 is a transition
system and V : Lit — 257 is a valuation map assigning to each atomic
proposition p the states V(p) C Sz where p holds. We require that V(—p) =

St —V(p).

DEFINITION 2.4.2. For a CTL* model M = (7,V), arun o € Ry and CTL*
formulas ¢, 1, p2, the satisfaction relation |= is inductively defined by

M,ok=p iff p e Lit and o(0) € V(p)

Mo =1 Ny iff M o= o and M, o = @9

Mo E @iV it Mok pror Mo =g,

M, o =Xy iff M,olkEop

M,o0 =01V, iff Vkew: M,o* |= g if M, ot [o) for all i <k
Mo Upy iff Fkew: M, 0" = @y and M, 0! |= ¢ for all i < k
M,oc=Ap iff M,o’ = forall o' € Cr(0(0))

M,oc=Egp iff M, o’ = ¢ for some o’ € Cr(c(0))

¢

Our presentation of CTL* follows the non-standard approach of Stir-
ling [Sti89], in which all formulas are interpreted over paths (i.e., computa-
tions of a transition system), thus eliminating the distinction between state
and path formulas (interpreted over states and computations, respectively)
made in the standard presentation [EH86].

We define a posteriori a state formula to be a boolean combination of
literals and path-quantified formulas. A formula that is not state formula is
called a path formula®. For any state formula v and two runs 0,0’ € Rz (s)
we have

M,O'):w iff M7O-/):1/}

Thus, satisfaction of a state formula depends only on the first state of a run
and we can write M, s = ¢ in this case®. We extend the notion of satisfaction
to arbitrary CTL* formulas and sets of states. Let U C Sz and define

MUy iff M,okE=¢foralloeCr(U).

ZNote that this definition of path formulas does not coincide with the one in [EHS86],
where all state formulas are also path formulas.
3The converse does not hold; consider for example the path formula Xp Vv X —p.

16 TEMPORAL LOGIC (2.4

For s € Sy we write M, s |= ¢ instead of M, {s} & ¢. When there is no
risk of confusion we will drop the indication of the model M and write, for
instance, just o |= ¢ instead of M, o |= ¢ and U | ¢ for M, U |= ¢.

We say that a model M = (7,V) satisfies a CTL* formula ¢, written
M @, it M, I = . A CTL* formula is valid, written = ¢, if M = ¢ for
all models M.

Classification of Properties

There are two main classifications of (linear-time) temporal logic properties.
The most common classification distinguishes safety properties (“nothing bad
happens”) from liveness properties (“something good happens”, possibly re-
peatedly) [AS85]. Examples of safety properties are deadlock freedom, par-
tial correctness and any form of invariant. Examples of liveness properties
are freedom from starvation, total correctness and fairness. Topologically, a
safety property is a closed set, while a liveness property is a dense set in the
Cantor topology on ¢ for a set of states X [AS85, CMP93].

The alternative safety-progress classification [CMP93| is tailored to prop-
erties describable in LTL. This classification of properties is hierarchical,
according to the alternation of G and F operators. The classes are: safety
(Gp), guarantee (Fp), obligation (\;_, Gp; V Fq;), response (GFp), persis-
tence (F Gp) and reactivity (A, GFp; VFGg;). A property of a class other
than safety is called a progress property. It is shown in [LPZ85| that every
LTL formula with past operators is equivalent to a reactivity formula. Topo-
logically, this classification corresponds to the lower two and a half levels of
the Borel hierarchy (see also [TL94|).

Equivalences

We introduce two equivalences on CTL* formulas, one based on states and
the other based on computations. Let M = (7,V) be a model. Then we
define:

01 =MU P2 if M, o | ¢ if and only if M, o |= ¢, for all o € C1(U)
01 =M P2 if o1 =m1 2 for I the set of initial states of 7
01 = o if o1 =aq o for all models M

01 MU P2 if M, s = ¢y if and only if M, s |= s for all s € U
01 R P2 if 1 =1 2 for I the set of initial states of 7
V1 = Py if 1 =~ 2 for all models M

Some properties of these equivalences are summarised in

2.4] BACKGROUND 17

PROPOSITION 2.4.3. (CTL* EQUIVALENCES) We have:
(i) =c~,
(i) p1 ~ @y if Apr = A po,
(iii) p ~ A ¢ for all CTL* formulas ¢;
(iv) ¢ = Ay for CTL* state formulas 1), and

(v) = is a congruence on CTL*, while ~ is not.

PROOF. (i) The inclusion follows from the definition. It is also easy to see
that Gp =~ AGp, while Gp Z AGp. (ii),(iii),(iv) Easy. (v) A routine induc-
tion on contexts shows that = is a congruence. On the other hand, =~ is not
a congruence as Gp~ AGp, but AFGp £ AFAGDp. O

It follows from (ii) and (iii) that the two equivalences coincide on state
formulas. As another consequence of (iii) the distinction of the logics LTL
and ALL appears rather artificial when talking about satisfaction of formulas
w.r.t. a set of states or a model. Therefore, we will take the freedom of
identifying the two logics in that context.

The reason for introducing the two equivalences is that = is a congruence,
whereas the weaker ~ is useful in comparing the expressive power of CTL*
with logics interpreted over states.

Expressiveness

Let L; and Ly be two temporal (or modal) logic languages interpreted over
states of a transition system. We say that L; is no more expressive than
Ly and write Ly < Lo, if for all ¢; € L; there is some @5 € Lo such that
Y1 ~ 9. We say that L is strictly less expressive than Ly, written L; < Lo,
if Ly < Lo, but not Ly £ L.

Denote by uK the modal p-calculus [Koz83]. Then the following relations
hold:

PROPOSITION 2.4.4. (RELATIVE EXPRESSIVENESS) We have:
(i) L <CTL* for L € {ELL,LTL,CTL},
(ii) CTL* < uK, and
(iii) ELL, LTL and CTL are mutually incomparable w.r.t. <. O

In lieu of proving this proposition we just remark that an effective (but
double exponential) translation from CTL* to pK was given by Dam in
[Dam94] (see also [Refo6]).

18 ALGORITHMIC MODEL CHECKING 2.5

2.4.3 Ground-quantified CTL*

Let S = (X, X, {pr | A € A},©,F) be a system. If we take as the set of
propositions of CTL* the set of state assertions over X, we move from a
pure propositional setting to what we call ground-quantified CTL* (over X),
written CTL*X]. This is a restricted form of first-order CTL*, where no
path-quantifier or temporal operator may occur in the scope of a first-order
quantifier.

The system S induces a model Mg = (7Zs, Vs), where 7s is the transition
system induced by S as above and Vs: L[X] — 2% is defined by Vs(p) = ||p|| .
We then write S, Z = ¢ for Mg, ||Z]| E ¢ and S = ¢ for §,0 = .

For surveys on temporal and modal logics we refer the reader to [Eme90,
Sti92, Sti96b, MP92].

2.4.4 The Model Checking Problem

Given formula ¢ of a modal or temporal logic L and model M for L, the
model checking problem consists in verifying whether or not

MEp

holds. There are algorithmic as well as deductive approaches to model check-
ing*. In the last decade, model checking has developed into a vast field of
research, so the following short overview of the existing work on algorithmic
and deductive approaches must necessarily remain incomplete.

2.5 Algorithmic Model Checking

The method of algorithmic model checking of finite state systems was pio-
neered in the early eighties independently by Clarke and Emerson [CE81] and
by Queille and Sifakis [QS82] for the logic CTL. A tableau-based algorithm
for LTL model checking was developed a few years later by Lichtenstein and
Pnueli in [LP85]. Emerson and Lei [EL85] published at the same time the
first model checker for CTL*. CTL model checking is more efficient than
LTL and CTL* model checking. Its time complexity is linear both in the
size of the model and the formula, while for LTL as well as CTL* it is also
linear in the size of the model but exponential in the size of the formula. This

4The term 'model checking’ has traditionally been used for algorithmic methods only.
In this thesis, we understand model checking in this broader sense, independently of the
method used.

2.5 BACKGROUND 19

advantage of CTL over LTL and CTL* is contrasted by the fact that fairness
is not expressible in CTL. This situation is partially remedied in [CES86],
where their CTL model checker is extended to handle fairness constraints.
On the other hand, the size of formulas in typical requirement specifications
is usually small enough to make LTL or CTL* model checking applicable in
practice.

2.5.1 The Automata-theoretic Approach

A uniform theoretical framework for the design of model checking algorithms
is provided by the theory of automata on infinite objects [Tho90|. Vardi
and Wolper [VW86| were the first to reformulate LTL model checking in
terms of automata on infinite words (w-automata). In this approach, the
verification of M |= ¢ is reduced to checking whether the product of the two
w-automata A and A-, accepts the empty language. The w-automaton
A accepts exactly the computations of M, while the A, accepts exactly
the sequences of states that satisfy —¢. Any computation accepted by the
product automaton is thus a computation that does not satisfy ¢, that is,
a counterexample for M = ¢ (see also [Kur94|). More recently, branching
time model checking has also been formulated in the automata-theoretic
framework using alternating tree automata [BVW].

2.5.2 Local Model Checking

The principal drawback of algorithmic model checking is that it suffers from
the so-called state space explosion problem, which is due to the state space
growing exponentially in the number of concurrent processes.

Local (a.k.a. on-the-fly) algorithms have been developed to potentially
reduce the number of states that have to be explored in order to establish
or refute a property. Whereas global algorithms compute all states satisfying
a given formula and hence need to explore the whole reachable state space,
local algorithms answer the question whether a given set of states (typically
the initial states) satisfy the formula. In this way, counterexamples can be
found faster and even in case the property holds it is not always necessary
to visit the whole state space. A local algorithm for LTL was presented
by Gerth et al. in [GPVW95] and an efficient local CTL* model checker is
described by Bhat, Cleaveland and Grumberg in [BCG95|.

20 ALGORITHMIC MODEL CHECKING 2.5

2.5.3 Symbolic Model Checking

In the early nineties, the advent of symbolic model checking [BCM92| has
dramatically pushed the limits of automatic verification. This technique,
originally developed for Park’s p-calculus [Par76], is based on computing
fixed points of functions 7 : P(S) — P(S) on sets of states and the sym-
bolic representation of these sets ordered binary decision diagrams (OBBDs)
[Bry86]. OBDDs provide a canonical representation of boolean functions
and relations, therefore enabling model checking algorithms to operate on
entire sets of states without enumerating the individual states or transitions.
Symbolic model checking algorithms for CTL and the modal p-calculus are
immediately obtained by the straightforward embedding of these logics into
Park’s p-calculus, but symbolic model checkers have also been developed for
LTL [KRP95, CGH97|.

Symbolic model checking has been particularly successful in circuit ver-
ification, where state spaces often exhibit considerable regularity and thus
allow for compact BDD representations.

2.5.4 Reduction Techniques

State spaces of software systems are usually not as regular as those found
in circuit designs. Therefore, alternative methods have been developed to
combat the state space explosion problem. These reduction techniques may
be grouped into three classes:

Quotienting Techniques construct the quotient of the state space w.r.t.
some equivalence relation; examples are partial order reduction, sym-
metry reduction and partition refinement; these methods are charac-
terised by a strong preservation of properties, that is, a property holds
of the reduced model precisely if it holds on the complete model

Abstraction Techniques construct an abstract model by collecting many
concrete states into a single abstract state; the relation between con-
crete and abstract system can be described by a simulation or a Galois
connection between their state spaces; the technique of network invari-
ants for verification of infinite families of systems falls is also a form
of abstraction (of a whole family of systems); abstraction techniques
usually only guarantee weak preservation of properties, that is, only
the truth but not the falsity of properties carries over to the concrete
system

Compositional Techniques try to infer a property of a system from prop-
erties of its components; properties of components are often established

2.6] BACKGROUND 21

by making assumptions about its environment (assumption-guarantee
style of specifications)

For bibliographic references and examples of most of these reduction tech-
niques we refer the interested reader to [CGP99].

General surveys of algorithmic model checking can be found in [CGL93,
Sti96b, MP95] and in the recently published book [CGP99].

2.6 Deductive Approaches to Model Checking

The model checking problem is decidable only for finite-state systems and
special cases of infinite-state systems, so the applicability of algorithmic
methods is restricted to these classes of systems. Limited computing re-
sources even make the automatic verification of many finite-state state sys-
tems impossible despite the sophisticated reduction techniques available to-
day. These cases as well as general infinite-state systems can only be tackled
by deductive methods.

Deductive approaches to model checking use a set of proof rules to reduce
the global temporal properties to local first-order verification conditions. The
proof rules may reduce temporal properties to simpler temporal properties,
but ultimately all reasoning is reduced to showing the validity of assertions,
thus avoiding reasoning in the temporal logic itself. In the rest of this section,
we first introduce some of the ingredients of proof rules and then give a brief
overview of some existing deductive approaches to model checking.

2.6.1 Verification Conditions

Hoare triples and possibility triples are (besides implications) the most cur-
rent verification conditions appearing in proof rules. They abstractly describe
properties of (sets of) transitions in terms of two assertions, called pre- and
post-conditions. These triples are presented below, along with their relation
to some standard predicate transformers.

Let A C Ag be a subset of the transitions of some system S. We use the
standard Hoare triple notation

{r} A{q}

for the assertion p(Z)Apx(T,T') — ¢(T'), meaning that a A-transition starting
in a p-state always leads to a ¢-state. The assertion p is called the pre-
condition and q is called the post-condition of the Hoare triple.

22 DEDUCTIVE APPROACHES TO MODEL CHECKING 2.6

Two well-known predicate transformers are the weakest pre-condition and
the strongest post-condition of an assertion p relative to A, which are defined
as follows:

wpey (p)(T) = VT pu(T, T) — p(T)

spea(p)(T) = 3. p(To) A pa(To, T)
The weakest pre-condition wpc, (p) describes the set of states from which all
A-transitions lead to a state satisfying p. On the other hand, the strongest
post-condition spc,(p) denotes the set of states which are reachable from
states satisfying p. Their relation to Hoare triples is characterised by the
following chain of equivalences

{pyA{q} = spca(p) = q = p — wpcy(q).

The dual notion of Hoare triples, called possibility triples in [Sip99]|, and
written

{p} (A) {q}

stands for the predicate p(Z) — J7".pA(Z,7’') A ¢(T'), meaning that from any
p-state there is some A-transition leading to a g-state. The dual wpc, of the
predicate transformer wpc, is defined by

wpc, (p) = —~wpc, (—p),

yielding

wpe, (p)(@) = 37 pa (@, 7) A p(T).

Hence we can characterise {p} (A) {¢} as follows:

{p} (A) {q} = p— wpc,(q).

NOTATION. Borrowing some notation from modal logic, we sometimes write
[A] ¢ and (A) g for the assertions wpc,(q) and wpc,(q), respectively. For a
singleton set A = {\}, we write {p} A {q}, wpc,(p), ... instead of {p} {\} {q},
wpcy(p), - -

2.6.2 Well-founded Relations and Rankings

Roughly speaking, satisfaction of liveness properties involves reaching some
goal (once or repeatedly). Rules for proving this type of property rely on
an important auxiliary device for measuring progress towards a goal: well-
founded relations and ranking functions.

2.6] BACKGROUND 23

DEFINITION 2.6.1. (WELL-FOUNDED RELATION) Let W be some set. A
binary relation < C W x W is well-founded if there is no infinite descending
sequence

Wy ™= W1 > Wy > ++ -

of elements wy, wq, ws, ... of W. In this case the structure (W,) is called a
well-founded domain. We write v = w if u < w or u = w. &

DEFINITION 2.6.2. (RANKING FUNCTION) Let ¥ be the state space of a
system S and let (W, =) be a well-founded domain. A function §: ¥ — W
mapping states to elements of the well-founded domain W is called a ranking
function. &

2.6.3 Manna and Pnueli’s System

Manna and Pnueli present in [MP91] a deductive system for proving that a
reactive system S satisfies a LTL property . It is composed of a set of rules
for three classes of properties. These are safety properties (as expressed by
formulas of the form Gp), response properties (as expressed by formulas of
the form G(p — F ¢)) and reactivity properties (as expressed by a conjunction
of formulas of the form GFp V FGgq), where p and ¢ are formulas that may
include past, but no future temporal operators. As is shown in [LPZ85]
any property specifiable in LTL can be rewritten to an equivalent reactivity
property (possibly using past operators).

Let ¢ and p be assertions.

I1. ©—y¢p

2. ¢o—p

3. {o}A{e}
SEGp

Figure 2.1: General invariance rule INV

As an example, we consider rule INV (see also [MP95]) for invariance
properties of the form Gp, where p is an assertion (see Figure 2.1). The rule
has three premises. It requires that we find an assertion ¢ that is implied

24 DEDUCTIVE APPROACHES TO MODEL CHECKING 2.6

by the initial condition (premise I1), strengthens the assertion p (premise
[2) and is preserved by all system transitions (premise 13). An assertion
satisfying I3 is called inductive. Tt is easy to see that this rule is sound: as
¢ holds in all initial states (I1) and is preserved by all transitions (I3) ¢
(and hence p by I2) invariantly holds along any computation. Thus, p is an
invariant of S.

Rule INV is also complete relative to assertional validity. This is shown by
using for ¢ the strongest possible invariant, namely, an assertion describing
exactly the set of ©-reachable states (the assertion language is required to be
expressive enough to formulate such an assertion). Note that even if p holds
on all reachable states, it need not be inductive. In particular, it is possible
that a transition from some unreachable state leads to a state not satisfying
p. For this reason the auxiliary assertion ¢ is needed in this rule to obtain
completeness.

2.6.4 Diagram-Based Verification

Some of the proof rules mentioned above have been recast into the graph-
ical form of wverification diagrams in [MP94]. A verification diagram D =
(N, E,p) for a system S = (X, 3, {pr | A € A}, 0, F) is a graph (N, E) with
nodes N and edges E, where each node n € N is labeled by an assertion (n)
over X°. Depending on the rule some nodes may be terminal nodes with no
outgoing edges. We will below identify a node and its labeling.

Verification diagrams describe a set of Hoare triple verification conditions.
Suppose a non-terminal node ¢ has an outgoing edge to each of the successor
nodes 1, ... ,¢,. The Hoare triple associated with ¢ is

teradV e

No Hoare triple is associated with a terminal node. A verification diagram
can be seen as an abstract representation of the system to be verified: the
nodes are the abstract states that a system traverses during its execution.
Verification conditions other than Hoare triples needed in proof rules are
formulated externally to the diagrams.

As an example, invariance diagrams are verification diagrams with no
terminal nodes used to prove properties of the form Gp, for an assertion
p. Suppose {¢1,...,¢,} is the set of nodes of an invariance diagram for a

system § with initial condition © and let ¢] Vi, @i It easy to see that the

®We slightly simplify w.r.t. the presentation in [MP94].

2.6] BACKGROUND 25

validity of all Hoare triples associated with the nodes of the diagram implies
that S E=G(¢ — G) (“once @, always ¢”) holds. By proving the additional
conditions ©® — ¢ and ¢ — p (compare with I1 and 12 in rule INV) we can
conclude § = Gp.

Generalised Verification Diagrams

The idea of verification diagrams is further developed and generalised in
[BMS95, MBSU98| (see also the theses [Uri98, Sip99|). A generalised verifi-
cation diagram (GVD) ¥ = (N, Ny, E, u, v, A) for a system S and temporal
property ¢ extends a verification diagram as described above by

e designating a set of initial nodes Ny C N,

e adding a labeling function v that labels nodes with (boolean combina-
tions of) assertions appearing in the property formula ¢, and

e adding an acceptance condition A C P(N) in the form of a subset of
the strongly connected subgraphs® (SCS) of the underlying graph (a
Miiller-type acceptance condition as known from w-automata theory,
see [Tho90]).

An infinite sequence o: spsy - - - of states of S is accepted by the GVD WV, if
there is a path m: ngny - - - such that inf(r) € A and we have s; = pu(n;) for
all ¢ € w. The verification method proposed by GVDs is the following. In
order to verify S = ¢ a GVD V¥ for S and ¢ is constructed such that

L(S8) € L(¥) € L(9)

where £(S) = Cs(0), L(¥) is the language accepted by the the GVD ¥ and
L(¢) is the language described by the formula ¢ (that is, the set of state
sequences that satisfy ¢).

The first inclusion states that the diagram faithfully represents all com-
putations of the system. In contrast to the verification diagrams described
above, ¥ not only represents the finitary behaviour of S but also its infinitary
(limit) behaviour. In other words, ¥ is a sound abstraction of the system
S. This inclusion is proved deductively by discharging a set of verification
conditions for W. In addition to the Hoare triples associated with W, the
diagram initiation condition requires that © — p(Ny), where p(Ny) is the
disjunction of u(n) over all n € Ny and the diagram acceptance condition

6a subgraph S of a graph G is strongly connected if for every pair of nodes of S there
is a path in S connecting them

26 TREES, GAMES AND STRATEGIES 2.7

requires that any non-accepting SCS S is shown to have a fair exit (that is,
any run staying in S is unfair) or is well-founded (that is, there is no run and
hence no computation staying in S). The latter condition ensures that non-
accepting SCSs do not exclude any computation of S from being accepted
by W.

Proving the second inclusion involves showing that p(n) — v(n) for each
node n € N. Then the inclusion can be model checked algorithmically by
abstracting the assertions in v(n) and ¢ into atomic propositions.

Deductive Model Checking

The method of deductive model checking [SUM99] (see also the theses [Uri98,
Sip99]) also uses diagrams, but follows a different approach. It is based on the
successive transformation of diagrams, called falsification diagrams. Given
a system S the components of a falsification diagram” G = (N, Ny, E, u, A)
are the same as the corresponding components of a GVD.

The notion of a sequence of states accepted by G remains the same as
with GVDs. A proof of § |= ¢ starts from an initial falsification diagram
Go such that £(Gy) = L(—¢) and all edges are labeled by A, that is, G,
represents all sequences of states not satisfying ¢. The diagram Gy can be
constructed algorithmically. Falsification diagram G;, is obtained from G;
by the application of a transformation rule. These are designed in such a
way that the invariant

L(S)NL(=¢) € L(G:)

is preserved. Each diagram G; accepts all computations of S violating ¢. The
idea is to continue the transformations until it can be excluded that there is a
counterexample, that is, until a falsification diagram G,, with £(G,,) = @ has
been constructed. It then follows from the invariant above that £(S) C L(¢),
that is, S = ¢. The method is not guaranteed to terminate for infinite-state
systems, but is complete relative to assertional validity.

2.7 'Trees, Games and Strategies

Trees

An A-tree is a non-empty, prefix-closed subset of A*. Denote by Tr*>°(A) the
set of all trees and by Tr"(A) the set of finite trees over alphabet A. If T C T"
for two A-trees T and T”, we say that T is a tree-prefiz of T".

Tagain slightly simplifying w.r.t. the presentation in [Sip99]

2.7] BACKGROUND 27

Let T be an A-tree. Elements of T" are called nodes. Define ny = {n-a €
T | a € A}, the set of children of n in T. A node n is a leaf if nyp = @.
Otherwise, it is called an interior node. The subtree at node n is defined as
T/n={m/n|n<mandm € T}. A finite path in T is a leaf of T. An
infinite path in T is a sequence m € A“ such that all of its finite prefixes are
nodes of 7'. Call Pth(7T') the set of all paths in 7.

Games

Let B be a two-element set whose elements denote players. 2 denotes any
player,) his opponent. A game is a structure G = (A, T, A\, Q, W), where

e A is an alphabet whose elements are called configurations,

e T'is an A-tree whose nodes are called positions and the paths of which
are called plays (we write Play(G) for the set of all plays in T'),

e)\ : T — B is a function specifying whose turn it is in each position,
and

e W C Play(G) is the subset of plays won by player €, called the winning
condition for player 2.

Player Q wins a play u € Play(G) if u € W, otherwise Player Q wins. The
game G is equivalently specified as (A4, T, \,Q, W), where W = Play(G) — W
is the complement of W. Denote by Pos(2) = {p € T'| A(p) = Q} the set of
Q-positions, that is, positions where it is player €2’s turn to move.

Strategies
A (non-deterministic) Q-strategy for G = (A, T, \,Q, W) is a tree-prefix 7 C
T satisfying the condition

peT, ANp)=Q, p, #9 = p, = pr,

that is, whenever p is an interior node of 7 that is a Q-position then 7 contains
all the children of p in 7. We will write Strat(2) for the set of all {2-strategies.

For an Q-strategy 7 and an -strategy 7', we define the set of plays
resulting from playing these two strategies against each other as

(t | 7") = Pth(r N 7") N Play(G).

We now introduce a couple of properties of strategies. Let 7 be an (-
strategy. Then

28 TREES, GAMES AND STRATEGIES 2.7

T is deterministic if any 2-position in 7 has at most one child, that is,

pa,pb €1, A(p)=Q = a=0b>

T is history-free (or memory-less) if its choices depend only on the last
move, i.e.,

pa,qa € 7, AM(pa) = A(qa) = Q = (pa);/(pa) = (qa);/(qa).

T is complete, if ()-positions have some successor whenever possible and
()-positions have all successors, that is,

PET, Mp)=Q,pr#@ = p#0
qgeT, Mg) =9 = ¢ =qr

e 7 is non-losing, if all plays resulting from playing against opponent
strategies are won by Player Q, i.e., (7 | 7/) C W for all -strategies

T,

e 7 is a winning strategy, if it is complete and non-losing.

We say that player Q) wins G if there exists a winning ()-strategy. A game
G is determined if one of the players wins.

Useful characterisations of some of the properties of strategies are stated
in

PROPOSITION 2.7.1. Let 7 be an ()-strategy. Then

(i) 7 is complete if and only if all its paths are plays of G, that is, Pth(1) C
Play(G),

(ii) 7 is non-losing if and only if all its paths that are plays of G are won
by Player €, that is, Pth(7) N Play(G) C W, and

(iii) T is winning if and only if all its paths are plays of G won by Player (2,
that is, Pth(r) C W. O

From the second statement of the proposition we learn that in order to
determine whether a Q-strategy 7 is non-losing (losing) it is sufficient to play
it against the vacuous strategy T and check that each (some) resulting play

is won by Player Q ().
Note that any player has a simple (though rather cowardly) non-losing

strategy: leave the scene of the game before it is too late!

Chapter 3

LTL Proof Structures

Deductive local model checking is a generalisation of finite-state algorithmic
local model checking to infinite state systems. It is a tableau-based proof
method that allows us to establish arbitrary CTL* properties of (potentially)
infinite-state systems. There is no need to transform formulas into some
canonical form and all temporal reasoning is reduced to showing the validity
of formulas from the assertion language £. In this chapter we introduce the
subsystem for LTL, which will be extended to cover full CTL* in Chapter 5.

Our proof system for LTL consists of a set of proof rules that are used
to construct graphs, called LTL proof structures (a.k.a. tableaux), in a goal-
directed way starting from a root node. Some of the rules have side conditions
requiring that the validity of an assertion from L is proved. The construction
of a branch stops when we reach a terminal node (an axiom or anti-axiom)
or when a rule application generates a subgoal that is already present in the
graph constructed so far, in which case we can loop back to that node. As
some of the cycles introduced in this way are “bad” ones, a success criterion
identifies the proof structures that are legal proofs of the considered property.
Unlike with finite-state systems, where the success criterion can be verified
algorithmically by analysing the strongly connected subgraphs of a proof
structure and where (at least in the absence of fairness) any unsuccessful
cycle immediately produces a counter-example computation, the generality
of our approach requires a well-foundedness argument for proving that the
success criterion holds. We will present an additional proof rule (Rule A(S))
implementing this argument. In summary, the method of deductive local
model checking establishes in two steps that a system S satisfies a LTL

property A ¢:
1. construct a proof structure II for S and A ¢, and

2. use Rule A(S) to prove that II is successful.

29

30 DEFINITION OF LTL PROOF STRUCTURES 3.1

The second step can be omitted if there are no anti-axioms in Il and ¢ is
syntactically recognisable as describing a safety property, that is, if there
are no U-subformulas in ¢. The method is sound and complete relative to
validity of assertions from £ as will be demonstrated in the next chapter.

The outline of the present chapter is as follows. Section 3.1 defines proof
structures and the proof rules used to construct them. The rules are then
discussed in detail and some useful new rules are derived. The success crite-
rion is defined in Section 3.2 as a property of a system derived from the proof
structure and the original system, called the associated system. A syntactic
characterisation of the success criterion is formulated, serving as the basis
for the design of the proof rule A(S) for success in Section 3.3. Finally, in
section 3.4 we illustrate our proof method with some examples.

3.1 Definition of L'TL Proof Structures

Given a transition system specification S = (X, X, {p) | A € A},0,F), a
sequent in our proof system is of the form p = A(®) where p is a state
assertion over X from our assertion language £ (see Section 2.3) and ¢
is a finite, non-empty set of ground-quantified, path-quantifier-free CTL*
formulas. A sequent p F A(®) is called walid if all p-computations of S
satisfy the disjunction of the formulas in @, that is, p = A(V 4 ¢). Unlike
in the finite-state case, where a sequent would have a single state on its
left-hand side, the assertion p denotes a (possibly infinite) set of states of S.

NoTATION. We will write p F A(¢1,...,¢,) instead of p = A({¢1,...,dn})
and use p F A(®, ¢) to mean p = A(® U {¢}). With & = {¢y,...,¢0,}, we
also use X® and X(¢1,...,¢,) as a shorthand for the set {X ¢1,..., X, }.
Furthermore, for a given sequent v = p - A(®) we let p, and @, denote p
and &, respectively.

The proof rules (see Table 3.1) are stated and used in a goal-oriented
upside-down style with the conclusion above the line and the premises below,
with the intention that a rule is applied to a (sub-)goal to reduce it to other
subgoals (backwards reasoning). We can distinguish four different groups of
rules:

1. The terminal rules (A(ax), A(nz)) are not, strictly speaking, proper
rules. They define the sequents that do not have any successors. A
sequent to which rule A(azx) (A(nz)) is applied is called an aziom (anti-
aziom). The axioms and anti-axioms are also called terminal sequents.

3.1] LTL PROOF STRUCTURES 31

2. The propositional rules (A(bsf),A(V),A(A)) deal with assertions and
with the boolean operators. An assertion can be removed from the
sequent in case it does not contribute to its truth (Rule A(bsf)"). The
boolean rules eliminate the respective boolean connective.

3. The temporal rules (A(U),A(V),A(X)) deal with the temporal connec-
tives. The rules for Z-formulas exploit the fixed point characterisation
of these operators and simply unfold the respective formula. The Next
rule A(X) requires that all right-hand side formulas exhibit a Next op-
erator at the top-level and is applied to all of them at once to eliminate
all the Next operators. This is the only rule concerned with state tran-
sitions. It requires a Hoare triple to be discharged as part of its side
condition.

4. The Split rule (A(sp)) is used for case analysis and weakening. It affects
only the left-hand side of the sequent by dividing it up into several cases.

In order to prove that for a system S, an assertion = and an LTL formula
A ¢ the statement S,= = A¢ holds, a graph whose nodes are sequents,
called a proof structure for system S and sequent = A(¢), is built. The
construction is goal-directed, starting from the root sequent = F A(¢) and
proceeding by successively applying proof rules to the remaining subgoals.
The construction of a given branch can be terminated whenever we either
reach a terminal node (an axiom or anti-axiom) or a rule application creates
a subgoal that already exists in the graph constructed so far, in which case
we can loop back to that node. This looping back avoids the construction
of infinite branches due to successive unfolding of Z-formulas. Here is the
formal definition of a proof structure:

DEFINITION 3.1.1. Given a system S = (X, X,{p, | A € A},0,F), an as-
sertion = and a LTL formula A ¢, a LTL proof structure for system S and
sequent = A(¢) is a rooted graph

M={,ACT xT,y, €I,

where I' is a finite set of sequents, v, = = F A(¢) is the root sequent and for
each node v € T" we require that

(A-SAT) p, is satisfiable,

IThe abbreviation 'bsf’ means basic state formula, which is either an assertion or a
path-quantified formula. The rule applies only to assertions for the moment, but will be
extended in Chapter 5 to cover path-quantified formulas.

32 DEFINITION OF LTL PROOF STRUCTURES 3.1

(A-RCH) ~ is reachable from ~,,

(A-RUL) if v has n > 0 successors {v1,... 7%} =1{7 | (7,7) € A} then

R— 71
Mo M

is the correct application of some rule R from Table 3.1, that is,
the rules’ side condition C§ is satisfied, and

(A-SPL) if (v,7') € A then rule A(sp) is not applied to both ~ and +'.

If the assertion = is identical with the initial condition © of S then we say
that II is a proof structure for system S and property A ¢. &

Note that we write the side conditions of the proof rules in Table 3.1 in
the form p = r for the respective assertion r, which is in fact equivalent
to = p — r. Recall also that the side condition p |= [A]q of rule A(X) is
equivalent to the Hoare triple {p} A {q}. This notational style for the side
conditions was chosen, because it will more clearly exhibit the duality with
the side conditions of the ELL rules to be introduced in Chapter 5.

DEFINITION 3.1.2. Let II be a LTL proof structure. We define I'r to be
the set of sequents of II where rule R is applied. We also write Tjerm =
I'Ataz) U Lagna) for the set of terminal sequents.

A pseudo-proof structure 11 = (I A CT x I', 7, € ') for a system S and
sequent = F A ¢ is defined in the same way as a proof structure for S and

=+ A(¢), except that
e the set I' of sequents need not be finite, and

e condition (A-RUL) of Definition 3.1.1 is relaxed to apply to a sequent
~ only if it has at least one successor.

A finite pseudo-proof structure is called a pre-proof structure. &

Note that in a pseudo-proof structure there may be nodes other than
terminal sequents with no successors. Thus, a pre-proof structure can be
seen as a partially constructed proof structure.

DEFINITION 3.1.3. A path m: ~yy1---7; -+ in a pseudo-proof structure II is
a maximal sequence of nodes such that 7o = v, and (v;,vi11) € A for all
such that i +1 < |x|. o

3.1]

LTL PROOF STRUCTURES 33

A(az)

A(nz)

A(bsf)

pA(D,q) P g

pFA@) p e =g
pHA(P,q)

DA pPEq

pHA(D, 01V d)
pk A((I)a ¢17<Z52)

pE AP ¢1 A ¢2)
p + A((ba ¢1) p = A((I)v gb?)

p - A((I), gbl U ¢2)
pEA(D, 02V (01 AX(P1 U o))

p - A((I), gbl V¢2)
pHEA(P, d2 A (1 VX(P1V 2)))

pH AXD)
g A(®)

pE[Alq

pEA(D) .
g FA®@) - g FA®D) pPEVi @

Table 3.1: LTL proof rules

34 DEFINITION OF LTL PROOF STRUCTURES 3.1

3.1.1 Discussion of the Rules

The need to have a set of formulas on the right-hand side of a sequent instead
of just a single formula is imposed by the semantics of disjunction. Suppose
we want to prove p = A(¢y V ¢2). A hypothetic rule like

/ p l_ A(¢1 V ¢2)
AV TFAG) @F A

PEG Ve
2)

would be sound, but put a serious threat on the completeness of the proof
system. Supposing p |= A(d1 V ¢»), it is essential for completeness® that we
can find assertions ¢; and ¢» such that ¢y =A@y, o EAge and p — ¢ V ¢o
is valid, but this is not possible in general. Consider a state s = p. Then
s = A(¢1 V ¢2), but neither s = A ¢y nor s = A ¢y need to hold, since there
could be s-computations o; and o, with oy satisfying ¢; but not ¢, and o,
satisfying ¢o but not ¢;. In this case, the required assertions ¢; and ¢, do
not exist. This is the reason for making the right-hand side of a sequent
a finite set of formulas which is to be interpreted as a disjunction over all
set members. This naturally leads to rule A(V) in Table 3.1 which simply
discards the disjunction symbol.

The conjunction rule A(A) just splits the two conjuncts as expected. The
assertion rule A(bsf) eliminates an assertion ¢ in case it does not contribute
to the truth of the disjunction of the formulas on the right-hand side, that
is, if no state can at the same time satisfy the left-hand side predicate p and
assertion ¢ on the right-hand side. Note that, by the definition of a sequent,
the set of formulas ® must be non-empty. In general, an application of A(bsf)
will have to be preceded by an application of the Split rule A(sp) in order to
separate the states satisfying ¢ from those that do not (see also derived rule
A(bsf) below).

The rules A(U) and A(V) for Z-formulas exploit the fixpoint characteri-
sations of these operators. The following equivalences hold:

¢1U ¢
P1V o

G2 V (1 A X(¢1 U @)
P2 A (P V X(d1V ¢2))

The application of a Z-rule simply unfolds the respective Z-formula. We de-
note by unf(¢; Z ¢2) the respective unfolding (right-hand side formula above).

Case analysis is implemented in the Split rule A(sp). The n > 1 cases
need not be disjoint. It is the only rule not modifying the right-hand side
of sequents. We note the following special case of the Split rule, called

2Completeness proofs most often rely on the backwards preservation of satisfaction.

3.1] LTL PROOF STRUCTURES 35

weakening

Alwh) 0 v

Weakening can also be useful for replacing a left-hand side assertion by an
equivalent one.

The Next rule A(X) is the only one concerned with state transitions. It
reflects the fact that proving p = A(V e X¢) can be reduced to proving
q E A(\/¢€¢ ¢) provided that any system transition starting in a p-state
leads to a g-state as required by the side condition. The rule is not backward
sound in general. Choosing ¢ to be the strongest post-condition spc,(p)
w.r.t. all system transitions leads to the following special case of A(X) which
is forward and backward sound

pHAX®)
" spea(p) - A®)
Rule A(X)q would be sufficient for completeness and rule A(X) is derivable

from it with the help of weakening (rule A(wk) above). However, we have
decided to include the more general rule A(X) for convenience.

A(X)

3.1.2 The Split Condition (A-SPL)

Condition (A-SPL) in Definition 3.1.1 disallows two successive applications
of the Split rule and deserves some explanation. The Split rule A(sp) is quite
a powerful rule as it does not only allow us to reason by case analysis, but
also to generalise the sequent to which it is applied (the side condition being
an implication in contrast to an equivalence, the latter being sufficient for
pure case analysis). It turns out that when applied without the restriction
imposed by condition (A-SPL), this rule is even too powerful in the sense that
the proof system would become unsound, as is illustrated by the following

EXAMPLE 3.1.4. Consider the three node proof structure displayed below.

Here the Split rule has been applied to the root sequent = + A(¢) to
obtain two successor sequents ZAp F A(¢) and ZA—p - A(¢) which are then

36 DEFINITION OF LTL PROOF STRUCTURES 3.1

reconnected to the root sequent by weakening. Such circular propositional
reasoning is obviously unsound and leads to an inconsistent system. &

Note that condition (A-SPL) also precludes self-loops on nodes where the
Split rule is applied. More generally, soundness requires that every infinite
path through a proof structure must contain an infinite number of applica-
tions of the Next rule A(X), each application corresponding to a transition of
the system. The reason is that the Next rule is the only one making (qual-
itative) time advance, thus effectively introducing the temporal aspect into
the reasoning.

The following Lemma identifies the successive application of the Split
rule A(sp) as the malefactor and shows that condition (A-SPL) is sufficient
to avoid circular reasoning “on the spot”.

LEMMA 3.1.5. (TEMPORAL CONSISTENCY) Let IT be a pseudo-proof struc-
ture for system S and sequent = - A(¢) and let m be an infinite path in II.
Then rule A(X) is applied infinitely often on .

PROOF. Let 7: 7 ---; - - - be an infinite path in a pseudo-proof structure II.
Suppose for a contradiction that rule A(X) is applied only finitely many times
on 7. Define a ranking function r on sequents by r(p = A(®)) = >, 4 70(0),
where the function ry is inductively defined on formulas by

ro(q) = 10(X9) =
To(¢1 A o) =1 (¢1 V ¢2) = 10(¢1) + 10(P2) + 1
T0(¢1V ¢2) = ro(d1 U @) = 1ro(d1) + ro(¢h2) + 4

An inspection of the proof rules shows that all rules except A(sp) and A(X)
decrease the ranking . Rule A(sp) applied to some ; leaves the rank constant
from 7; to 7,41, but by condition (A-SPL) in Definition 3.1.1 it is always
followed by some rule other than A(sp) applied to 7;,1. By assumption, rule
A(X) is never applied on 7 from some point k£ on. It follows that the ranking
r decreases infinitely often along 7%, contradicting the well-foundedness of
the natural numbers. O

Translated to (pre-)proof structures this lemma says that there is no cycle
without at least one application of the Next rule A(X) appearing on it.

Finally, we note that condition (A-SPL) does not really restrict the sound
use of the Split rule, since successive applications not introducing cycles can
always be merged into a single application.

3.1] LTL PROOF STRUCTURES 37

3.1.3 Derived Rules

A number of interesting rules can be derived from the basic ones in Table 3.1.
Some of these are displayed in Table 3.2. The derived rule for weakening
(A(wk)) has already been discussed above.

FA(®
A(wk)]qjl—iAEq); PEq
) pHAQq) PAGDPA—Y
A(bsf) pA—q - A(D) both satisfiable
A(U)/ p - A((ba ¢1 U ¢2)
p - A((I)v ¢17 gb?) p - A((I)v gb?a X(¢1 U gb?))
A(V)/ p - A(©7¢1V¢2)
p - A((ba ¢2) p - A((ba ¢17X(¢1 ng?))
pEA(D,Fv)
A(F) pE A(P, 1, XF)
pHA(® GY)
AlG) pEA(®,) pEAP,XG)
pA(D, 01 Wen)
AW A, b1 62) b AL, 6, X(01 W 6s)
: pHAX?P) n

Table 3.2: Derived LTL rules

Rule A(bsf)" is derivable from rule A(bsf) and the Split rule A(sp). It
allows one to shift the assertion ¢ from the right to the left-hand side of the
sequent.

The unfolded formula in the two Z-rules A(U) and A(V) can be further
decomposed by applying rules A(V) and A(A), yielding their more economic
versions A(U)" and A(V)'. In rules A(F) and A(G) these are further specialised
for the derived operators ’eventually’ and ’always’. Rule A(W) is sound, but
— strictly speaking — not derivable in our system. However, the following

38 DEFINITION OF LTL PROOF STRUCTURES 3.2

rule is derivable:

p - A<(I)7 ¢27 (X (b?) V(bl)
pEA(®,¢1,02) pF AP, P, X(d2, (X2) V 1))

By a slight abuse of notation, writing ¢1 W ¢o for ¢, (X ¢2) V ¢1 in sequents
(which is semantically justified), we get exactly rule A(W).

Finally, rule A(X)’ is a variant of the next rule derivable from A(X) and
A(sp). We will use these derived rules freely in our examples.

A Simple Example

ExAMPLE 3.1.6. Consider the very simple system &y with a single natural
number variable z, initial condition ©y = 2 = M for some given parameter
M > 0 and with the only possible transition incrementing x by an arbitrary
positive number n:

def

Pine = In>0.2" =2 +n

The property we want to prove for this system is expressed by the invariance
formula 1)y = A G(x > M). Figure 3.1 shows a proof structure for Sy and).

o= MFAG(> M)

A(wk)

x>M|—A (x > M))

///MQ\\\\ A

(2> MEA@>M)| [2>MEAXGE > M)

O
Figure 3.1: Proof structure Il for Sy and 1)

Note the use of weakening in the first step, generalising the statement to
be proved. The verification conditions generated by this proof structure are

r=MkEx>M from weakening rule A(wk)
r>MEx>M from axiom rule A(ax)
x> M [[incle > M from Next rule A(X)

and are all easily discharged. As we will see later in this chapter, this proof
structure is indeed a valid proof for Sy |= 1. &

3.2] LTL PROOF STRUCTURES 39

3.2 The Success Criterion

Similarly to finite-state model checking, not every proof structure for system
S and sequent = F A ¢ can be considered as a valid proof of S, = = ¢. This
is because proof structures generally contain cycles. In this section, we first
define a notion of success for paths and then lift it to proof structures. Only
successful proof structures will be considered as legal proofs.

3.2.1 Successful Paths

Let IT be a proof structure for S and = F A ¢. The significance of successful
paths is best stated negatively as:

a path 7 of II is unsuccessful precisely if any computation follow-
ing it provides a counter-example to S,= = A ¢

Informally, a computation o follows a path « if ¢ can be laid along 7 such
that transitions on ¢ are matched with applications of rule A(X) and the
states on o satisfy the constraints imposed by the left-hand side assertions
of the sequents on .

For instance, any computation o of system &y of Example 3.1.6 follows
the (unique) infinite path in proof structure Iy of Figure 3.1, since it starts
in the initial state (where x = M) and all states of o satisfy © > M.

DEFINITION 3.2.1. For a Z-formula v define the set U, of unfolding forms
of ¥ by

Uy {0 | v <0< unf(y)}.
%

An unfolding form of a Z-formula v is thus any formula that is a subfor-
mula of the unfolding of) and contains at the same time 1) as a subformula.

DEFINITION 3.2.2. Let IT = (I, A,~,) be a proof structure for system S.
Define the set of sequents)y, for a Z-formula ¢ = ¢; Z ¢ by

Q¢g{7€r‘¢mew7A®A¢2¢¢W}a

that is, (), consists of those sequents of II the right-hand side of which
contains some unfolding form of ¢, but not its second subformula ¢,. &

For example, for 1) = ¢ V ¢ we get Uy, = {10, X, ¢1 VX1, pa A(1 VX)) }
and p = AXY, 01 A ¢2) € Qy, but ¢ F A(p1 V X, ¢2) & Qy as well as
g A(G1 AXY, 02 V) & Q.

40 THE SUCCESS CRITERION 3.2

DEFINITION 3.2.3. Let II be a proof structure II for S and = A(¢). A path
min I is successful if one of the following holds:

(a) = is finite and ends in an axiom, or

(b) = is infinite and there is a V-formula ¢ € V(¢) such that inf(7) C Q.

%

Recall from Section 2.4 that V(¢) is the set of V-subformulas of ¢ and
observe that, since proof structures are finite, inf(7) C @), means that from
some position in 7 on all sequents are in Q).

Let us try to give an intuitive motivation for this definition. Suppose II
is a proof structure for system S and sequent = - A(¢). The first part of
the definition is quite obvious: any path ending in an axiom should count
as successful, as it provides, by soundness of the proof rules, a definitive
contribution to the truth of the root sequent.

The second part states that an infinite path 7 is successful if, from some
point on, some unfolding form of a V-subformula ¢; V ¢, of the original prop-
erty ¢ appears in every sequent, but without ¢, ever occurring beyond that
point. The absence of ¢o implies that ¢; V ¢, infinitely often regenerates it-
self along the path 7 by unfolding and subsequent elimination of the boolean
and next connectives. Let us call w-regenerated (along 7) any Z-subformula
with this indefinite unfolding property. But why should such a path 7 count
as successful and not others?

Although the definitive answer of this question has to be deferred to the
next chapter, we can say at this point that the w-regeneration of a U-formula
11 U1y along a path 7 corresponds to indefinitely delaying the satisfaction
of 19, which is in contradiction to the semantics of the Until operator, while
w-regenerating a V-formula ¢;V ¢, on the other hand corresponds to the
possibility that ¢5 always holds, which is a possible way to satisfy ¢1 V ¢o. As
will be shown in the next chapter, some Z-formula is w-regenerated along any
infinite path. Since all propositions are eliminated on an infinite path 7 on
the basis of their falsity (see side condition of rule A(bsf)), there should better
be a V-formula that is w-regenerated along 7 if 7 is supposed to be successful.
Otherwise, any computation following 7 provides a counter-example.

3.2.2 A Tentative Success Criterion for Proof Struc-
tures

One could now be tempted to define a proof structure to be successful if all
its paths are successful. Let us examine this definition in this section. This

3.2 LTL PROOF STRUCTURES 41

notion of success is sound. Disregarding fairness issues, it is also complete
in the case of finite-state model checking [BCG95|: any unsuccessful path
produces a counter-example, namely, the computation that can be extracted
from it. However, in the infinite state case, it is insufficient and would make
the proof system incomplete as the following two examples illustrate.

EXAMPLE 3.2.4. Let the system S; have a single natural number variable x
with initial condition ©; & true and transition relations Pdecs Prero AN Pren

defined by

Picc = T>0NT =x—1
Pzero d:ef r=0N2 =2
Pten Y r=10A2 =z

A proof structure IT; for this system and property ¢; = A F(z = 0) is shown in
Figure 3.2 below. Clearly, ¢; does not hold for §;. As required for soundness,
proof structure II; is unsuccessful according to our tentative definition of
success, since the only infinite path induced by the cycle in II; is unsuccessful.

true - A(F(z =0)) |

’true FA(xr =0,XF(z = 0))‘

T~

’x>OFMx:QXHm:m” ’m:OFMm:QXHx:m”

2> 0F AXF(z =0))]

Figure 3.2: Proof structure IT; for S (S}) and ¢; & AF(z = 0)

O

Now consider the system S] obtained from S; by removing transition ten.
For this modified system property ¢; holds. Proof structure II; is still an
unsuccessful proof structure for system S] and property ¢;. The difference
between the two cases lies in the way that system computations can follow the
infinite path 7 arising from the cycle in the proof structure. Any computation
o of system S; ending in the cycle at x = 10 can follow 7 indefinitely (since
all states on o satisfy x > 0). On the other hand, every computation o’
of system S] leaves m towards the axiom when it eventually reaches a state
where x = 0, as required to fulfill the eventuality.

It is not difficult to see that when working with our tentative definition
of success there does not exist any successful proof structure for S and ¢,

42 THE SUCCESS CRITERION 3.2

at all. Since there is no V-subformula in ¢y, such a proof structure must not
include an infinite path. Since the property is to be proved for an infinite
set, of initial states, there is no hope to find a cycle-free, successful proof
structure. Nonetheless, for completeness, II; should count as successful. &

The second example shows that not even all anti-axioms need to be con-
sidered as harmful, as there might be no computation (prefix) following a
path leading to it.

EXAMPLE 3.2.5. Let system S; be the same as system & of the previous
example except that the initial condition is strengthened to O, &> M for
some parameter M > 0. Figure 3.3 shows proof structure II; for system Ss
and the simple one-step property ¢, & AX(z > M).

(2> MFAX(z > M))|

’trueFA(xZM)‘

RN

T<MFA@>M)| [2>MFA@>M)|

0 0
Figure 3.3: Proof structure I, for system S, and property ¢ = AX(z > M)

In this proof structure, the Next rule is applied to the root sequent thereby
weakening the left-hand side assertion to true. Then Split is applied yielding
an anti-axiom and an axiom. Thus, according to our preliminary defini-
tion, Il is unsuccessful due to the presence of the anti-axiom. However, the
property obviously holds for Sy, so II; should count as successful.?

Observe that, since the assertion x > M is the strongest post-condition
of x > M w.r.t. the transition relation, it is clear that there can be no
computation of S, following the path to the anti-axiom, that is, reaching a
state satisfying x < M after only one transition.)

As these examples clearly demonstrate, the infinite-state case requires a
refined, weaker notion of success. Of course, the intricacy stems from the
fact that the left-hand side assertion of each sequent describes (potentially)
infinite set of states. As a consequence, given a path in a proof structure,
it is not only possible that infinitely many computations follow it, but also

3 At least for the strong completeness result we are striving at, which states that any
proof structure for a system S and LTL property A is successful, provided S = A .

3.2 LTL PROOF STRUCTURES 43

that no computation at all follows the path. In the latter case, there is no
counter-example computation and the unsuccessful path is thus harmless.
Hence, a proof structure should be defined to be successful if

(A-SUC) every path that is followed by some computation is successful

This notion of success is now formalised in the next section.

3.2.3 Trails and Success for Proof Structures

In order to formally define the success criterion (A-SUC) for proof structures,
we have to make more precise what it means for a run or computation to
follow a path in a proof structure. To this end, we will define a system
derived from a given original system S and a proof structure II for S, called
the associated system, a run of which is called a trail of II and combines
a path of II with a run of S that satisfies the constraints imposed by the
assertions along II. The notion of II-fairness is then introduced for trails and
success of a proof structure defined in terms of Il-fair trails.

The System Associated with a Proof Structure

To this end, we first slightly extend proof structure II by adding an edge
from every axiom to the pseudo-sequent T = true F true and an edge from

every anti-axiom to the pseudo-sequent L = true I false plus self-loops on T
and L.

DEFINITION 3.2.6. Let IT = (I', A, v,) be a LTL proof structure. Define

It = TU{T |Ta@) # 2 U{L | Tapa) # 2}
AT € AUATUA,

AT d:ei {(Va T) € P+ X P+ | y € 1—‘A(ax) U {T}}
= {(7,L) €T X TF |y € Taguey U {L}}

>
}_

¢

A pseudo-sequent and the corresponding edges are added only in case that
the corresponding terminal sequent appears in the proof structure. Suppose
that we have a fixed enumeration of the (pseudo-)sequents in I'" and let in
the following [v] be the number assigned to . For a set Iy C I't we define

[Tol = {[¥]]~ € To}-

44 THE SUCCESS CRITERION 3.2

DEFINITION 3.2.7. Let IT = (I', A, 7,) be a proof structure for system S =
(X, 2, {pr | A € A},0,F) and sequent = F A ¢. The system
St = (X" 5" {pl o | (A7) € AT}, 0 F

(A

associated with 11 is defined by

X" = XU{K} where KecV—-X
S £ % extended by mapping K to elements of [T
e £ (K=T[y])AE

I def IT I
A = AsysUAlog

AlS_IyS dZEf {(77)\7 fY’) | (777’) e A+77 e FSyS7)\ e A}
def
Any = (=71 (1,7) € Aty & Ty}

where PSyS = 1—‘A(X) U Lyerm U {J—, T}, and
def o~ o~
Poryy = D@ K)Apy(@, K')
def o~ o~
Py = 5@ E) N py (@, K)

def

where p, = (K = [v]) A p,, and finally

Fio= (pUnwh pi

P = {mH(A) [N e PYU{AR}
wit = {my ' (Aw) | Aw € W}

F' < {m N (Ag) | Ay € F}

where 3 L(A) = {(7, A\, 7/) € A" | A € A} for A’ C A. &

The state space of S extends the state space of S with an additional
control variable K indicating the position in the proof structure. The label
set. A is divided into a set Al | of system-related transitions and a set A},
of “logical” transitions. Each transition (v, A7) € AL, departs from a I'y,-
sequent 7 (that is, v is an A(X)-sequent, a terminal or a pseudo-sequent) and
involves the underlying system transition A\. On the other hand, a transition
(v,=,7) € A}})g departs from a sequent other than a I'y,s-sequent and requires
that the values of system variables are preserved. All transitions, in addition
to moving control K along an edge in (v,v") € A", are constrained by the
left-hand side assertions p., and p, appearing in the (pseudo-)sequents v and

~'. Note that, as these assertions are true for the pseudo-sequents T and

3.2 LTL PROOF STRUCTURES 45

1L, once control variable K has reached a pseudo-sequent on a run of S, its
further behaviour is governed essentially by the underlying system transitions
only.

The partition P! of the fairness constraint F extends the original parti-
tion P to account for the modification of the transition labeling set: each set
Ay € P is turned into a set A}l € P containing all (v, \,7") € A such that
A € Ag. The transitions in A}l have no equivalent in S, so this set appears
as an additional element of P!, The fairness sets W and F'! are derived in
the same way from W and F'. Note that there is no fairness constraint on
Al e P

log

Trails and II-Fairness

For the rest of this section, unless otherwise stated, let IT = (I', A, 7,) be an
arbitrary but fixed proof structure for system S = (X, X, {p\ | A € A}, O, F)
and sequent = - A ¢. Furthermore, let S be the system associated with II,
the components of S being denoted as in Definition 3.2.7.

DEFINITION 3.2.8. A trail of the proof structure II is a ©'-run of its associ-
ated transition system S™. O

Loosely speaking, a trail of II knits together a =-run of the system and a
path in the proof structure. We can now define two projections on trails of
IT, one to the underlying run in & and the other to the underlying path in
II. Define the maps hy: X — J U {e} and hp: 3" — T U {e} by

ot {t|X if t(K) € [Ty

€ otherwise

hs(t)

he(t) & { v ift(K)=[y] andy & {L, T}

€ otherwise
These maps are now extended to trails.

DEFINITION 3.2.9. Let ¥ be a trail of II. Define

def

e the run oy of S induced by V: o9 = h(1), and

def

e the path my of Il induced by ¥: w9y = hE (V).

Furthermore, we say that a run o of S follows a path w of 11, if there is a
trail ¢ of Il inducing o and 7. &

In order to obtain a close match between system computations and fair
trails, we need to strengthen the notion of fairness for trails.

46 THE SUCCESS CRITERION 3.2

DEFINITION 3.2.10. (TI-FAIRNESS) Suppose that Ay, € W, A} € F™ and
Ay € W, Ay € F such that Al = 75'(Ay) and A = 7;'(Af), where
F = (P W F) and F = (P,W, F) are the fairness constraints of S
and S, respectively. A trail ¥ of II is called

o weakly 1-fair w.r.t. A, if in case A, is enabled on ¥ from some point
on, then Al is taken infinitely often on 9,

o strongly I-fair w.r.t. A¥, if in case A is infinitely often enabled on o,
then A% is taken infinitely often on ¢, and

o Il-fair if it is weakly II-fair w.r.t. each Al € W and strongly II-fair
w.r.t. each A]rc[c &

We remark that a IT-fair trail is also fair w.r.t. FX in the usual sense. We
note some basic properties of trails in

LEMMA 3.2.11. (TRAIL LEMMA) We have:
(i) all trails of 11 are infinite, and
(ii) any run o of S follows some path m of 11,
(iii) a trail O of Il is Il-fair iff oy is a computation of S.

PROOF. (i) and (ii): From the definitions by the totality of the (global)
transition relation py of S (Assumption 2.2.2) and the side condition of the
Split rule.

(iii) Let AY' € WU F" and Ag € WUF (where FIT = (P WU F!) and
F = (P,W, F) are the fairness constraints of S and S, respectively) such
that ALl = 75,1 (Ag). Tt is not difficult to see that All is taken infinitely often
on ¥ if and only if Ay is taken infinitely often on oy. Furthermore, since Ay
is enabled on an extended state t € X (of SU) precisely if it is enabled on
its projection t|x € 3 (of §) and oy differs from J|x only by a repetition of
states, we conclude that Ag is enabled on ¥ from some point on (infinitely
often) if and only if A is enabled on oy from some point on (infinitely often).
The result then follows immediately. O

The LTL Success Criterion

Now we are ready to formally define our success criterion, by lifting the
success condition for paths to trails and then to proof structures.

DEFINITION 3.2.12. (SUCCESSFUL TRAIL) A trail J of a LTL proof struc-
ture II is successful if the induced path 7y is successful. &

3.2 LTL PROOF STRUCTURES 47

DEFINITION 3.2.13. (LTL Succgss CRITERION) A LTL proof structure IT
is successful if all its II-fair trails are successful. &

Note that by the Trail Lemma (ii) and (iii), this definition captures ex-
actly the informal definition given in condition (A-SUC) above. On the other
hand, in any unsuccessful proof structure II for S and sequent =+ A ¢ there
is an unsuccessful Il-fair trail ¥ which projects to a Z-computation oy of S
and to an unsuccessful path my. The computation oy provides a counter-
example, that is, it does not satisfy A ¢, a fact that will be proved in the
next chapter.

EXAMPLE 3.2.14. Consider proof structure II; of Example 3.2.4 (depicted
in Figure 3.2). The (unique) infinite path 7 is unsuccessful and is followed
by exactly the (counter-example) computations o, of S; of the form

Om:{(x=m)(x=m—1)---(z = 11) ((z = 10))~

for all m > 10. Therefore, II; is unsuccessful when viewed as a proof structure
for S;. On the other hand, there is no computation of S} following 7. Thus,
I1; is successful for S. &

For the purpose of designing proof rules for success, we need a more
syntactic formulation of the success criterion.

DEFINITION 3.2.15. Let Wa = V(¢) U {T}* and let Qy be as in Defini-
tion 3.2.2. Define the assertions K for 1 € Ua by

K d:ef{ K € [Qy] for ¢ € V(¢)
v K=[T] fory =T

o

Note as the sets @), are finite, the assertions K, are definable in our
assertion language. It is now easy to lift the success condition for paths to
trails:

PROPOSITION 3.2.16. (LTL SUCCESS, SYNTACTICALLY)

(i) A trail of TI is successful iff it satisfies the success formula

0n = \/ FGK,

(ISP

4The index A in U and in Qa below is to distinguish these sets from their cousins Wg
and g, which will be defined in Chapter 5.

48 A RULE FOR PROVING SUCCESS 3.3

(ii)) A proof structure TI is successful iff all its TI-fair trails satisfy Qa, that
is,

ST E A Qa,
where A quantifies over all I1-fair trails.

PROOF. (i) Observe that ¢ = FG K+ if and only if my ends in an axiom.
Thus, the success formula 25 holds for a trail ¥ precisely if the induced path
7y is successful. (ii) Immediate. O

3.3 A Rule for Proving Success

The success criterion (Definition 3.2.13) lays down the condition for accepting
a proof structure for a system S and sequent = - A ¢ as a legal proof of
S,Z E A¢. What is missing for a full-blown proof system is a rule for
proving success.

We restrict ourselves, for the time being, to saturated systems (trivial
fairness constraint). Success rules including fairness are presented in Chap-
ter 6. Let & be such a system and suppose II is a proof structure for S and
some sequent 7,. By Proposition 3.2.16, success of II can be established by
proving that all trails satisfy Qa, that is, S™ = A(V ey, F G Ky).

3.3.1 Rule A(F,\/FG)

Let us first somewhat generalise the setting and present a rule (see Figure 3.4)
allowing us to prove the validity of a formula of the form A(FqV \/", F Gp;)
over an arbitrary saturated system S (but still with a total transition rela-
tion). The reason for adding the formula F ¢ will become clear in the next
section.

The application of Rule A(F,\/ F G) requires that we find an intermediate
assertion 3; for each p;, a well-founded domain (W, >) and a ranking function
0: % — W mapping system states to elements of W. Condition P1 states
that the initial condition implies ¢ or [, the latter being the disjunction of
all the 3;. The Hoare triple in premise P2 requires that from a [;-state all
transitions lead to a g¢-state, to a (-state with a lower rank or again to a
0;-state with a rank not higher than the source state. By the final premise
P3 transitions from a ;-state where p; does not hold lead to a g-state or to
a (J-state with a lower rank.

Rule A(F,\/FG) is derived from Rule F-RESP presented in [MP91] for
proving response properties of the form G(p — F¢) under weak and strong

3.3] LTL PROOF STRUCTURES 49

Let S = (X,X,{prn | A € A},0) be a saturated system and let
P1,---,Pm and g be assertions. In order to apply this rule, find:

(a) a ranking function ¢: ¥ — W mapping states of S into ele-
ments of a well-founded domain (W, >), and

(b) assertions {f1,...,08n} (setting g3 = Vit Bi),

and check the validity of conditions P1-P3.

Pl. ©—qVp
P2. {Bind=w} A{gV(BAI<w)V (BN =Sw)}
P3. {Bind=wA-p} A{gV(BAI<w)}

SHAFqVV. FGp)

Figure 3.4: Rule A(F,\/ FG)

(transition) fairness. Note the equivalences

FegvVI ,FGp, =s A, GF-p, — Fgq
(el)
=s A, GF-p, — GO — Fq)

for a system S with initial condition ©. The subformula A", GF —p; on the
right-hand side can be interpreted as a (generalised) unconditional fairness
constraint. Unconditional fairness being closely related to weak fairness, our
rule A(F,\/ F G) is very similar to Rule F-RESP under weak fairness only.

Let us now explain why this rule is sound. As a consequence of P1 and P2,
on any run of § the assertion (3 is invariant and the ranking never increases
unless ¢ becomes true. The idea behind this rule is then that by the decrease
in rank each time (3; A —p;-state is met, a run o is forced by well-foundedness
to either reach ¢ (hence o = Fq) or stabilise eventually in 3; A p;-states
(hence o = FGp;). In words corresponding to the second formula in (el),
each encounter of a [3; A —p;-state brings us closer to a g-state. With this in
mind, it is not difficult to see that

PROPOSITION 3.3.1. (SOUNDNESS OF RULE A(F,\/FG)) Let S be a satu-
rated system and let py,... ,p, (with m > 1) and q be assertions. Then

SEAFqVv V™ FGp;) impliesS =A(FqV V. FGp;). 0O

50 A RULE FOR PROVING SUCCESS 3.3

Note that the application of the rule requires that the set of assertions
{p1,-. .. ,pn} is non-empty. However, in order to apply the rule to prove AF ¢
(with an empty set of assertions p;) we can simply use the single dummy
assertion p; & false. Condition P3 then requires that the ranking decreases
on every transition until ¢ is reached.

3.3.2 Rule A(S)

In order to obtain a proof rule for LTL success, all we have to do is to
instantiate Rule A(F,\/F G) with the associated system S for S, assertions
{Ky | ¢ € Ua} for {p1,...,p,} and to set ¢ & false, thus yielding a rule for
proving 8" |= A(V ey, F G Ky). This is correct, since all trails are infinite
by Lemma 3.2.11. However, as we know that control K always stabilises at
T once it got there, there is no need to prove this every time. So a more
practical instantiation is based on the equivalence:

Q=) \/ FGK, =sn FK7Vv \/ FGK, (e2)
YEVA YEV(9)

The right-hand side formula more closely reflects the semantic definition of
success” (Definition 3.2.13).

In order to account for the case where there are no V-subformulas (that
is, V(¢) = @), we define

QnEFKrv \/ FGK,
IS

def

where U, & V(p) U {e}. Assertion K, could be set to false as suggested at
the end of the previous section. Again for practical reasons, we can do better
than that:

Ko d:ef _‘Ksys

def

Kgs = K € [Tyl
where K, is the syntactical counterpart of I'y,,. Observe that since in each
trail the control variable K either traverses infinitely many A(X)-sequents
(by Lemma 3.1.5), or eventually stabilises at | or T, we have FG K, =gn
F Gfalse =gn false and therefore 25 =gn 4. For later reference we state

5 At this point the reader may wonder why we did not use the right-hand side formula in
the syntactic characterisation of LTL success (Proposition 3.2.16) right from the beginning,.
This is because the formula Qa = \/weqjA F G Ky more cleanly exhibits the duality between
LTL success and ELL success (defined in Section 5.2).

3.3] LTL PROOF STRUCTURES 51

Let IT be a LTL proof structure for a saturated system S. Let
{K¢ |y € \T/A} be as discussed in the text. Find:

(a) a ranking function § : ¥ — W mapping states of S into
elements of a well-founded domain (W,), and

(b) assertions {ﬁ¢ KURS \T/A} (setting (3 o \/%@A By),

such that conditions A1-A3 are valid.

Al. " s K+vp
A2, {ByNd=w} AT {KTV(BAS<w)V (By Ao =w)}
A3, {ByAd=wA-K,} AT{KrV(BAS<w)}

ST AQA

Figure 3.5: Rule A(S) for proving success

PROPOSITION 3.3.2. A proof structure I1 is successful iff S |= Ay @A. O

Rule A(F,\/FG) can thus be instantiated with S for S, K+ for ¢ and
{Ky | v e \/I\’A} for {p1,...,pn} yielding Rule A(S) of Figure 3.5.

To see the practical advantage of defining K, as above rather than setting
it to false, consider Condition A3 of Rule A(S) for) = e. It requires that
the ranking decreases along every transition from a [,-state where K, does
not hold. With K, set to false this would mean every transition from a [,-
state, while with K, as defined above, a decrease in rank is only required at
Ky s-states (where control K is at a Iy s-sequent). The chosen definition is
thus more permissive. Moreover, the transitions from K, s-states correspond
to underlying system transitions, which we feel to be more intuitive and to
make the rule easier to apply. Note that if V(¢) is non-empty, K, is not
needed and may be “switched off’ by setting 8, = false.

Proofs and Soundness of Rule A(S)

DEFINITION 3.3.3. Let II be proof structure for S and Z - A ¢. We say that
Rule A(S) is applicable to I1 if ST+ AQj, that is, we can find a well-founded
domain (W,), a ranking function §: 3" — W and assertions {3 | ¢ € N
such that conditions A1-A3 are valid. &

52 A RULE FOR PROVING SUCCESS 3.3

DEFINITION 3.3.4. (LTL PROOFS) Let II be proof structure for S and = +
A 6.

e Il is a proof of S,Z = A, written I1: S,= IF A ¢, if it is successful,
and

o [T is a S-proof of S,=Z = A ¢, written I1: S;= F A¢, if Rule A(S) is
applicable to II.

We say that S,Z = A ¢ is provable (S-provable), written S,Z IF A¢ (S,Z
A ¢), if there is a proof structure II for S and =+ A ¢ such that IT: S,Z IF A¢
(IT: S,Z+ Ag). O

NoTATION. If TT proves S,0 = A ¢ with © being the initial condition of S,

we write [I: S+ A¢ and S+ A¢ instead of II: S,©0 - A¢ and S,0 - A ¢,
respectively, and similarly for S-proofs and S-provability.

From Propositions 3.3.1 and 3.3.2 we immediately get

PROPOSITION 3.3.5. (SOUNDNESS OF RULE A(S) FOR PROVING SUCCESS)
Let § be a saturated system. If 11: S,=F A¢ then I1: §,= IF A¢. O

Note that the fact that IT is a proof of S,= = A ¢ does of course not a
priori imply that S, = = A ¢ holds. That this is indeed the case follows from
the soundness of our proof system, which will be proved along with relative
completeness in the next chapter.

Safety Formulas

The case where there is no V-subformula in ¢ has already been discussed
extensively. To conclude this section, we also consider the other extreme
where there are no U-subformulas in ¢. In this case ¢ describes a safety
property, since there are no (sub-)formulas that are promised to become true
in the future (as is the case with ¢, in ¢; U ¢3). We would then expect that
no well-foundedness argument is necessary to establish success of a proof
structure for a system S and a sequent = - A(¢), since all infinite paths are
successful. Indeed, the following proposition, the proof of which is deferred
to the next chapter (see Proposition 4.2.21), exempts us from applying Rule
A(S) altogether, at least in case all terminals are axioms. Note that the
proposition holds for any system S, with or without fairness constraints,
since only liveness properties but not safety properties depend on fairness.

PROPOSITION 3.3.6. Let Il be a proof structure for system S and sequent
=+ A¢, where ¢ does not contain any U-subformulas. Suppose that all
terminals in Il are axioms. Then II: S I+ A ¢.

3.4] LTL PROOF STRUCTURES 53

As will also be shown in the next chapter, provided that the property to
be shown is true, there is always a proof structure all of whose terminals are
axioms, so this restriction in the proposition is only a mild one.

3.4 Some Examples

In this section, we illustrate the application of our proof method with three
examples. In particular, we will prove a guarantee, a safety and a persistence

property.

3.4.1 A Guarantee Property

In order to complete Example 3.2.4, it remains to show that proof structure
IT; is successful for system S| (and property ¢;). Recall that system S
simply decrements a natural number variable x or loops at x = 0. Proof
structure II; is reproduced in Figure 3.6 in a decorated form for reference.

{’}/3 : true - A(F(z = 0)) ‘

”Vz :truel—A(xzo,XF(xZO))‘

T~

”yl:m>0|—A(m=O,XF(x=0))‘ ”y@szFA(sz,XF(sz))‘

—ho:x>OI—A(XF(x:0))‘

Figure 3.6: Proof structure IT; for system S| and property ¢, = A F(x =0).

O

In the following we suppose that the coding [-] is defined by [+;| =i for
0<i<4,[T] =5 In order to apply Rule A(S) we choose the auxiliary
assertion (3, and the ranking ¢ as follows:

By = true 5(z, K) = o

Note that 5 = f,, since 3, is the only auxiliary assertion, and that K, =
K € {0,4,5}. Condition Al is trivially satisfied. For condition A2, we can
restrict ourselves to the cases where K, holds, the others being covered by
A3. Condition A2 then boils down to showing

{r=nA(1<K<3)A"{Ktvz<n}

54 SOME EXAMPLES 3.4

For 1 < K < 3, the relevant transitions are (v, =,7), (72, =,71), (72, =
,74) and (73, =,72) and all of them maintain the ranking constant. Finally,
for condition A3 we have to check

{r=nAK¢c{0,45} A"{KtVvax<n}

[t is now easy to see that the only enabled transition for K = 0 is (7o, dec, y3)
and decreases the rank, while the relevant transitions from K € {4,5},
namely (74, zero, T) and (T, zero, T), lead to K.

Hence II; is a proof of S = AF(z = 0) by soundness of Rule A(S)
(Proposition 3.3.5).

3.4.2 A Safety Property

Consider the system S3 with a boolean-valued variable b, a natural number
variable z, initial condition ©3 = (b = tt) A (z = 0) and transition relations:

The labeled transition system for this specification is depicted in Figure 3.7.

inc inc mnc
(0,tt) —— (1,tt) —— (2,tt) —— (3,tt) — - -~

up up up up

inc inc inc

(0, ff) —— (1, F) —— (2,ff) —— (3,fF) — -

Figure 3.7: LTS for system S3

The property we want to verify for this system is ¢35 = A((b = ff) W(b =
tt)). Figure 3.8 shows proof structure II3 for system S; and property ¢3. Re-
call that 1y W 1)y is defined as 19 V (X 1)5) V 1)1, so there are no U-subformulas
in ¢3. By Proposition 3.3.6, this proof structure is successful, since all its
terminal sequents are axioms. Therefore, proof structure Il3 is a proof of

Sz E ¢3.

3.4] LTL PROOF STRUCTURES 55

O FA(by Why)

’true - A(bbet)‘L

true - A(by, by)]true = A(be, X(br W by)) \

o~

’bf}—A(bf,bt)‘ ’bt}—A(bf,bt)‘ ’btl—A(bt,X(bbet))‘ ’bfl—A(bt,X(bbet))‘

|
by F AX(by Wby)) —

O O U

Figure 3.8: Proof structure Iy for system S; and property ¢35 = A((b =
ff) W(b = tt)), writing b, for b = tt and b, for b = ff.

3.4.3 A Persistence Property

System Sy has a single natural number variable x with initial condition ©4 !

true and the transition relations pg.. and p,, defined by

Pdec E r>0Ar =21
P = ev(z)ANZ =z

As a property to be proved for this system consider the persistence formula
¢4 = AF Gev(x) expressing that x eventually stabilises on an even value. The
labeled transitions system for S, appears in Figure 3.9 and a proof structure
for S, and ¢, is displayed in Figure 3.10.

(&)

ev ev
O dec dec O dec dec O
e 4 3 2 1 0

Figure 3.9: LTS for system S,

Successful paths in this proof structure are exactly those that are either
finite, ending in the axiom s, or infinite, ending in (y1v677)*.
In order to prove that I1, is successful using Rule A(S), we quite naturally

56 SOME EXAMPLES (3.4

{’yo : true A(FGe)‘
h=3

’fyl :truel—A(Ge,XFGe)}-
h=2

”yg:truel—A(e,XFGe)‘ ”ygztruel—A(XGe,XFGe)‘

/h:Q \ h=2
”yg:ol—A(e,XFGe)‘ "‘/5:e|—A(e,XFGe)‘ "‘/7:true|—A(Ge,FGe)’7
h=1 h=0 h=2

v
—1’)/4:0|—A(XFG6)‘

h=0

Figure 3.10: Proof structure Il for S; and ¢y = AF Gev(z) with ev(x)
abbreviated to e and od(x) to o

choose the auxiliary assertions (3, and (g, as follows:

B &= od(x)

086 e = ev(x)

This yields 5 = true, so condition Al of Rule A(S) is trivially satisfied. We
propose the following ranking function:

5(z, K) ™ (z, h(K))

with the lexicographic ordering, where the value of h(K) is as indicated below
each node in Figure 3.10 and is defined for K = T by h(T) = 0. We suppose
that the coding [-] is defined by [v;] =i for 0 < ¢ < 7 and [T] = 8. This
yields

K,
KGe

K €{0,1,2,3,7}
K € {1,6,7}

It remains to prove that A2 and A3 are satisfied. For condition A2 we again
assume that K holds, the other cases being covered by A3. The case 1) = o
then boils down to

{od(z) A (z,h) = (m,n) N K € {0,1,2,3,7}}
AH
{K1V (z,h) < (m,n)V (od(x) A (x,h) < (m,n))}

3.4] LTL PROOF STRUCTURES 57

All relevant transitions are of the form (v,=,’), thus preserving the value
of x. Also, the value of h does not increase along these transitions, so neither
does the overall ranking.

For 1) = Ge, the verification condition reads

[{\env(x) A(z,h)=(m,n)NK € {1,6,7}}
{Kt V (z,h) < (m,n)V (ev(x) A (z,h) < (m,n))}

For K € {1, 7}, the relevant transitions are (71, =,%2), (71, =,76) and (7, =
,71) which clearly preserve the value of z and h. For K = 6, transition
(76, €v,y7) on one hand preserves the ranking (hence ev(z)) and transition
(76, dec,y7) on the other hand decreases the ranking.

Condition A3 for ¢ = e is equivalent to

{od(z) N (z,h) = (m,n) N K € {4,5,6,8}}
A
{K7V (z,h) < (m,n)}

For K = 4 or K = 6, the relevant transitions (74, dec,vo) and (7, dec, y7)
decrease z, hence the ranking. For K = 5 and K = 8(= Kr), we clearly
have {K =5} A" { K7} and {K1} A" {K+}, respectively.

The remaining case is A3 for ¢y = Ge, which boils down to

{ev(z) A (z,h) = (m,n) N K € {0,2,3,4,5,8}}
AH
{K+V (z,h) < (m,n)}

We distinguish three cases. For K € {0,2} the all non-trivial transitions
are of the form (v,=,7’), thus preserving = while decreasing the value of
h. Hence, the rank decreases along these transitions. For K € {3,4} the
condition holds trivially, since any transition departing from these positions
requires that od(z) holds. Finally, any transition departing from K € {5, 8}
reaches Kr. We conclude that Il is a proof of S, = AF Gev(z).

28

SOME EXAMPLES

Chapter 4

Soundness and Completeness via
Games

This chapter is devoted to proving the following

THEOREM 4.0.1. (SOUNDNESS AND RELATIVE COMPLETENESS) Let S be
a saturated system, = an assertion and ¢ a LTL formula. We have

S,Z | ¢ ifand only if §,Z + ¢.

Due to the expressiveness of the assertion language £ we cannot expect
that all verification conditions are provable in some formal system. Therefore,
completeness is shown relative to the validity of the verification conditions,

thereby decoupling the reasoning in our proof system from the reasoning in
the assertion language L.

SEF¢
o1

Player 3 wins G5(Z, ¢)

Figure 4.1: Road-map to soundness and relative completeness

A major part of this theorem will be proved by a game-theoretic argument.
The proof proceeds in three stages as depicted in Figure 4.1. As an outline
of the present chapter, we will briefly discuss each of the three equivalences.

29

60 4.0

1. CTL* Games (Section 4.1) As a preparatory step we will define, for
a given model M = (7,V), run ¢ € Ry and CTL* formula ¢, the CTL*
game Gp(0,1), an infinite two-player game, where — intuitively speaking
— one player (called 3) tries to show that the property holds (M, o |)
and the other player (called V) tries to refute it (M,o [~ ¥). We then
show that the truth of M,o |= % can be characterised by the existence of
a winning strategy for Player 3 in the game G (o,v). Furthermore, this
game is determined, that is, one of the players has a winning strategy. This
characterisation is not directly related to proof structures and has an interest
of its own.

2. Trails and Strategies (Sections 4.2 and 4.3) In this second step
we investigate the internal structure of paths in proof structures and show
that to any trail ¥ of a LTL proof structure II for § and sequent = - A ¢
corresponds a V-strategy 7y for the LTL game Ggs(oy, ¢). Clearly, if there is
a trail ¥ such that the V-strategy 7y is winning then oy provides a counter-
example to the truth of S,= = A ¢.

We introduce an alternative notion of success proposed in the literature
called admissibility [Dam94]| and matching more closely the winning condi-
tions of our games. We show that a trail ¥ inducing a computation oy is
admissible precisely if 7y is a loosing strategy for Gs(oy,¢). This can be
interpreted as a failed attempt to produce a counterexample. On the other
hand, we demonstrate that if Player V has a winning strategy 7 for some
game Gs(o, ¢) with o a Z-run of S, then 7 is represented in II in the sense
that there exists a trail ¢ such that 7y = 7 and oy = 0. As a consequence,
if all trails ¥ projecting to o are admissible, we can conclude that Player 3
has a winning strategy for the game Gs(o, ¢) and hence S, 0 = ¢. Summing
up, we can say that Player 3 wins Gs(Z, A ¢) precisely if II is admissible.

We then compare admissibility with success. Although the two notions
do not precisely match on the level of individual paths or trails, they do
coincide on the level of proof structures, that is, II is admissible exactly
if it is successful. As a final ingredient for the establishment of the second
equivalence in the figure above, we show in Section 4.3 that, provided Player 3
wins the game Gs(Z, ¢), a proof structure does indeed exist for system S and
sequent = - ¢.

3. Soundness and Completeness of Rule A(S) (Section 4.4) The
third equivalence follows from the fact that Rule A(S) is sound and relatively
complete for proving success of LTL proof structures.

4.1] SOUNDNESS AND COMPLETENESS VIA GAMES 61

We do not claim that our proof is the shortest possible one. However, our
game-theoretic analysis of proof structures provides interesting insights into
their fine structure and has as such an interest of its own. We therefore think
that the little “detour” via games is well worth its price.

4.1 CTL* Games

In this section we will give a characterisation of the CTL* satisfaction relation
in terms of winning strategies in an infinite two-player game. This character-
isation is similar in spirit to the one for the modal p-calculus [Sti95, Sti96a,
Sti97|. An alternative notion of CTL* games is proposed in the very recent,
as yet unpublished work by Lange and Stirling [L.S00].

4.1.1 Game Definition

Given a CTL* model M = (7,V) and a run ¢ € Ry, the CTL* game
Gum(o, @) is defined as follows. There are two players, called 3 and V. Intu-
itively, Player 3 is trying to establish M, o |= ¢ while his opponent, Player V,
is trying to refute M, o = ¢ (that is, establish M, o (£ ¢). Game configu-
rations are pairs consisting of a run of 7 and an CTL* formula. The initial

configuration is (0o, ¢9) = (0,¢). The rules of the game are described in
Table 4.1.

WY action new configuration
P end of play -

Y1 V 1y | Player 3 chooses one of the ; (S, 3)

Y1 A1y | Player V chooses one of the ; (s, 1)

1 Z 1y | Player 3 unfolds vy Z 1)y (¢, unf(1 Z1hy))
Xap Player V advances ¢ by one state (s, 2)

Ev Player 3 chooses some < € Cr(s(0)) | (S,)

A1) Player V chooses some ¢ € Cr(s(0)) | (S,)

Table 4.1: Game moves in configuration (g,)

The possible moves in a configuration (¢, 1) depend on the top-level con-
nective of the formula . A game play ends if ¢ is an atomic proposition.
For boolean formulas it is Player 3 that chooses one of the disjuncts if 1 is a
disjunction and Player V chooses one of the conjunct in case v is a conjunc-
tion. For the temporal connectives, Player 3 unfolds Z-formulas and Player V
eliminates Next connectives and advances the run by one state. Note that

62 CTL* GAMES [4.1

for these connectives, it is quite irrelevant which player actually moves, since
there is no choice to be made. In case of a top-level path quantifier in
there is a choice — namely, of a computation ¢ starting in the same state as
¢ — and it is made (not surprisingly) by Player 3 in case of an existential
path quantifier and by his opponent V in case of a universal path quantifier.

Table 4.1 defines a relation > on configurations. The game tree Tg, (5.4
induced by this relation contains the root e together with all positions p =
CoC1 + * * ¢y, With m > 0 such that

® Cyp = (Ua (b)a and
o ¢i>ciyq forall0 <7< m.
A play either ends at an atomic proposition or proceeds ad infinitum by re-

peated unfolding of some Z-formula. The winning conditions are summarised
in Table 4.2.

play type Player 4 wins Player V wins
pt finite, ending in (,p) <(0) € V(p) s(0) € V(p)
p infinite 395 (i) € V(@) | F¥%. ma(u(i)) € U(o)

Table 4.2: Winning conditions for game G (o, ¢)

We say that a configuration (s,v) is true if ¢ = 1, and false otherwise.
For finite plays the winner is determined according to the truth or falsity of
the final configuration. For infinite plays p, Player 3 wins if there is some V-
subformula of ¢ appearing in infinitely many configurations on p and Player V
wins if some U-subformula of ¢ appears infinitely often along .

The game Gu(U, ¢) for a non-empty set U C Sz is initiated by Player V
choosing a U-computation o of 7, yielding the initial configuration (o, ¢).
Then the game proceeds as Gu(o, ¢), with the same winning conditions.
Thus,

TG, (v0) U 1G,(0,0)-
ceCr(U)

Given a system S with system variables X and a ground-quantified CTL*
formula ¢ over X, the games Gs(o, ¢) for 0 € Rs and Gs(Z, ¢) for a satisfiable
assertion = are defined in the obvious way. As usual, when there is no
confusion possible we will drop indices M or S. Finally, we speak of an LTL,
ELL, CTL game when the formula ¢ is in the respective sublogic of CTL*.

4.1] SOUNDNESS AND COMPLETENESS VIA GAMES 63

4.1.2 Characterisation of CTL* satisfaction

For this section, consider a fixed, but arbitrary CTL* model M = (7, V), run
o € Ry and CTL* formula ¢. The following lemma states that the winning
conditions stated for each player in Table 4.2 are indeed complementary, that
is, any play is won by some player (there are no draws).

LEMMA 4.1.1. (NO DrAWS) Any play of G(o,¢) won by some player. In
particular, any infinite play p ends in the following pattern for some run

¢ € Ry and Z-formula v = ¢1 Z ¢o:

22N (gv w>(g7 unf(d}))<g7 b1 b Xw>(g7 Xw)<§17 1/1)@17 unf@b)) T
where b € {A,V} according to Z.

PROOF. The statement is trivial for finite plays. For infinite plays, let us
call Z-move a move from a configuration with a Z-formula. It is clear that
any infinite play g must exhibit an infinite number of Z-moves, since any
other type of move decreases the size of the formula. As there are only
a finite number of possible formulas occurring in configurations — namely,
subformulas of ¢ and subformulas of unfoldings of Z-subformulas of ¢ — there
must be some Z-formula, say v = ¢ Z ¢, which is unfolded infinitely often
in p. But the only way to do so is to follow the sequence in the statement
of the Lemma from the first point on where ¢ occurs in a configuration
on . Any other sequence would prevent the regeneration of ¢ in a later
configuration. O

Note that game moves are designed to preserve the respective goal of each
player. More precisely, if it is Player 3’s (V’s) turn to move and the current
configuration is true (false), then he has the choice of making a move to a
true (false) next configuration. This observation provides the basis for

PROPOSITION 4.1.2.

1. ifo |= ¢ then Player 3 has a (deterministic) history-free winning strat-
egy for G(o, ¢), and

2. if 0 £ ¢ then Player ¥V has a (deterministic) history-free winning strat-
egy for G(o, ¢).

PROOF. We prove the first case, the second one follows by a symmetrical
argument. Suppose o |= ¢. Player 3 determines his moves according to a
fixed choice function e, a partial function that is defined at least on true

64 CTL* GAMES [4.1

configurations of the forms (g, ¢1 V ¢2), (5,01 Z¢2) and (s,Eep). On the
former two types of configurations ¢ is defined by

i 2 {0 L ¥ sl <l

(s, 1 Z1hs) = (S unf(ihy Zay))

Furthermore, on true configurations of the form (¢, Ev) we require that

e(c,Ev) =(n.v) such that n € Cr(c(0)) and n = ¢ (%)

Clearly, such a function e exists by the semantics of the existential path
quantifier.

We show by induction on the length of a play that ¢ induces a strategy for
Player d that allows him to preserve the truth of configurations regardless of
the moves of his opponent, that is, we have ¢ |= v for any configuration (s,)
occurring along a play. The initial configuration of the game is (oq, ¢o) =
(0, ¢) and is true by assumption. Suppose the game play has proceeded for
k moves to position

(007 ¢0)(017 ¢1) e (o-ka ¢/€)
such that oy = ¢x. Then, according to the structure of ¢, we have:
e ¢, = p for an atomic proposition p: Player 3 wins

e ¢ = Y1 V1)e: By induction hypothesis we have oy |= ¢ V1)o. Thus, the
choice function € gives us configuration (o, v;), where 1); is the smaller
of 11 and v such that o, = t; holds (¢; in case of a tie-break).

Player 3 sets (0x41, Prv1) = (0%, ¥s).

e ¢ = 11 Aty Since oy = 101 A by by induction hypothesis, whichever
of (oy, 1) or (ox,102) Player V chooses as (0y41, ¢ri1), we always have

Ok+1 E Ors1-

e temporal operators: there is no real choice and truth is easily seen to
be preserved across moves.

e ¢ = E: since (ox, E®) is true by induction hypothesis, Player 3 can
set (0g41, Prr1) = €(0ok, E1) which is a true configuration and a legal
move by constraint (x) above.

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 65

e ¢r = Av: By induction hypothesis o = A, so whatever computation
¢ with ¢(0) = 04(0) Player ¥ may choose as oy, we always have

Okt FF 9.

By the above construction, the choice function ¢ induces a (unique) deter-
ministic, complete and history-free 3-strategy 7. We have already seen that
Player 3 wins any finite play. It remains to be shown that, following the
strategy 7, Player d also wins any infinite play

we (007 (bO)(O-lv (bl) e (Ukv (bk‘) e

Suppose for a contradiction that his opponent, Player V, wins such an infinite
play u, with ¢ = 6, U0, appearing infinitely often on . By Lemma 4.1.1 p
ends in the pattern

()6, 02 V (00 AX))(s, 00 AXD) (s, X)) (<,) (! unf()) - -

for some computation ¢. Since all configurations on y are true by our in-
variant, it follows that ¢' = 6; U, for all i > 0. By the semantics of U we
also have ¢/ |= 6, for infinitely many j > 0. Thus for some m > 0 there is
a configuration ¢ = (¢, 6y V (61 A X)) on p such that ¢™ = 6. But this
means that p is not played according to 7, since strategy 7 moves from ¢
to configuration (¢, 6,) (because ¢ |= 0y and |62| < |61 A X¢)|) and not to
(¢"™, 01 AX1) as is the case on p. Contradiction. Hence, Player V cannot win
the play p. According to Lemma 4.1.1, Player 3 wins p . O

THEOREM 4.1.3. Let M = (7,V) be a CTL* model, 0 a run of T and ¢ a
CTL* formula. Then

(i) The game Gr(o, ¢) is determined, and
(ii) Player 3 wins Ga(o, ¢) if and only if M, o = ¢.
PROOF. Directly from Proposition 4.1.2. O

COROLLARY 4.1.4. Let M = (7,V) be a CTL* model, U C St and ¢ a
CTL* formula. Then

(i) The game Gap(U, ¢) is determined, and

(ii) Player 3 wins G (U, ¢) if and only if M, U = ¢. O

66 TRAILS AND STRATEGIES [4.2

4.2 Trails and Strategies

Paths through proof structures exhibit themselves considerable internal struc-
ture. In the following, we will make this structure explicit and show that to
each trail ¥ of a proof structure II corresponds a V-strategy of the game
Gs(og,¢). We then relate winningness of these strategies with the success
condition for trails: we will see that the LTL game Gs(Z=,A¢) is won by
Player 3 (and hence S,Z = A¢) precisely if IT is successful. Unless other-
wise stated we consider throughout this section an arbitrary but fixed LTL
proof structure IT = (I, A, 7,.) for some system S and sequent 7, = = = A(¢).

4.2.1 Generative Paths and Admissibility

We start by defining, in a similar way as in [Dam94|, the generation relations
for the LTL proof rules in Figure 3.1. These relations describe dependencies
among formulas as created by the application of a proof rule.

DEFINITION 4.2.1. The generation relation ~»,,C ®, x ®., is defined for
each edge (7,7') € A of II by case analysis on the rule applied at ~:

“pEA®.q), pA®) = 1d(®)

Ik A(@,91Ves), pH A(®@p1,62) = {(41V g2, 01), (1Y ¢, 02)} UId(D)
“pEA@,61A02), pHA(®,61) = {(01 A G2, 61} UId(P)

O A®,61A62), pH A(®,62) = {(¢1 A 62, ¢2)} UIA(D)

b A(D,d1 Z o), pEA@unf(61Z82)) = L(P1Z P2, unf(d1 Z¢y))} UId(P)

M pEAX D), g A(®) = {(Xp,0) | ¢ € B}
def
“pEA®), g-A®) = 1d(®)
where 1d(®) = {(¢,d) | ¢ € P} is the identity relation on . &

DEFINITION 4.2.2. (GENERATIVE PATHS) Let 7m: voy,---7;--- be a path
in TI. We say that a (finite or infinite) sequence ¢ : ¢g¢py - - - ¢y -+ of LTL
formulas with 0 < |¢| < || is a generative path running along m if either

® | =¢€,0r

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 67

o & = {po} and ¢; ~,, 4, ., Giy1 for all ¢ with 7 +1 <[]

Denote by I(7) the set of all generative paths and by [*(7) the set of finite
generative paths running along 7m. We call the tree I*(w) the internal pre-
strategy of . &

In order to link up the game-theoretic notions of strategies and winning-
ness to success of paths, it is convenient to introduce an alternative notion
of success called admissibility which rests on generative paths. In a second
step, we will then compare admissibility with success.

DEFINITION 4.2.3. (ADMISSIBILITY)

1. a path 7 in II is called admissible if it is

e finite and ends in an axiom, or

e infinite and there is a generative path ¢ running along 7 such that
inf(1) N V(¢) # @.
2. a trail 9 of II is admissible if my is admissible.

3. a proof structure II is admissible in case all its II-fair trails are. &

4.2.2 Internal Strategies of Trails

We now define the notion of internal (pseudo-)strategy of a trail J, which
is obtained by combining the suffixes of the run oy induced by ¢ with the
internal pre-strategy of the path my induced by 4.

DEFINITION 4.2.4. Let 0: tot; ---t; - - - be a trail of II. Define
1. the sequence oy for i € w by

a5 (i) = B(0)

2. the trees Ty and 7y by

Ty = {Gy*t]|e*(mg)} and 79 = 4Ty
where the operation x * y is defined on words =,y € A* coinductively
by rxe=¢exx =€ and ay * bz = (a,b) - (y x z). The tree Ty is called
the internal pseudo-strategy and 7y is called the internal strategy of the
trail o). O

68 TRAILS AND STRATEGIES [4.2

Note that oy is a sequence of suffixes of oy and that both Ty and 7y are
indeed trees. We will see shortly that 7, is a V-strategy for the game G(o, ¢).
Before that we record some basic properties of the internal (pseudo-)strategy
of a trail ¥/ in the form of two lemmas.

LEMMA 4.2.5. Let ¥ be a trail of II with my: ~oy1---7;---. Then for 0 <
k < ‘7T79|

ped, = Fpely |pl=k+1 & p(k) = (09(k),¥).
PROOF. By a routine induction on the length of nodes of T}. O
The previous lemma implies that the height of Ty is |my|.
LEMMA 4.2.6. There is a bijection between the paths of Ty and those of Ty.

PROOF. Note that whenever some node n = n’c of Ty has more than one
child, we have ¢ = (_, ¢1 V ¢2) and ng, = {ncy, ncy} with ¢; = (_, ¢;). Since
¢ # c1 and ¢ # ¢y, the stutter removal operator preserves the branching
structure of Ty and is therefore a bijection between the paths of Ty and those
of TY-]

DEFINITION 4.2.7. We say that a path 7 in IIis closed if it is either infinite or
ends in a terminal sequent 7, such that all) € ®,, are assertions. Otherwise,
m is called open. O

PROPOSITION 4.2.8. (TRAILS AND V-STRATEGIES 1) Let O be a trail of TI.
Then we have

(i) Ty is a deterministic V-strategy for G(oy, ¢), and
(ii) 7y is complete if and only if my is closed.

PROOF. (i) Let ¢ be a trail with my: 771 -+ -7, - - - and suppose

p: (00, %0) (01, Yr) - - (o, Yr) € Ty

By the definitions of Ty and oy we have o; = oy(j) for all 0 < j < k, and for
all0 <1< k

o _ (O'Z‘)l lf Yi - FA(X)
s o; otherwise

and ¥; ~, 4., Vig1. It follows that either (o3, 1) > (0441, Y1) or (03, v;) =
(0441, ®ix1). Thus fp is a position of the game G(oy, ¢). Consequently, 7y is

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 69

a tree prefix of Tg(,4). The fact that it is a deterministic V-strategy can be
seen by inspecting the cases for the boolean operators in Definition 4.2.1.

(ii) “=": By contraposition. Suppose 7y is open with |my| = &+ 1. Then
there is a formula ¢ € ®,) that is not an assertion. By Lemma 4.2.5 there
is a path p € Ty with p(k) = (oy(k),v). Hence, fu is a path of 7y that is
not a play of G(oy, @), so 7y is not complete.

“<" Suppose my 1 yo---7;--- is closed. Let p be a path of Ty. By
Lemma 4.2.6 it is sufficient to show that fu is a play of G(oy,®). Suppose
first that p is finite, i.e., u = n - (0,v) with |u| =k + 1, and v, = p = A(D).
By Lemma 4.2.5 we have ¢y € . We show that v is an assertion and thus
g a play of G(oy, ¢). There are three cases:

(a) |u| = || and ~, is an axiom. Then ¢ is an assertion since 7y is closed
by assumption.

(b) |p| = |7| and 74 is an anti-axiom. Then 1 is certainly an assertion.

(¢) |u| < |7|. Then ¢ must be an assertion, since otherwise by Definitions
4.2.1 and 4.2.4 p would be extensible and hence not a path of Ty.

If, on the other hand, p is infinite, then fyu is an infinite path of 7y, hence a

play of G(o, ¢). 0

4.2.3 Winning and Losing Strategies

As a preparation to relating admissibility of trails and winningness of their
internal strategies, we state some fundamental properties of finite plays in

LEMMA 4.2.9. (FINITE PLAYS) Let ¥ be a trail of II. Then
(i) if 7y ends in an axiom Ty is losing,
(ii) if my ends in an anti-axiom Ty is winning, and
(iii) if my does not end in an axiom all finite plays in Ty are won by V.

PROOF. Suppose 7 : 7o ---7;--- is the path induced by a trail ¥ of II. By
Lemma 4.2.5, we can distinguish three situations from which a finite path
p € Ty of length |u| = k + 1 ending in some configuration (o, q) with ¢ an
assertion may arise:

1. v, = pF ®,q is an axiom: since o(0) = p, also o(0) |= ¢, so fu is won
by Player .

70 TRAILS AND STRATEGIES [4.2

2. 7, = pF ¢ is an anti-axiom: since 0(0) = p, we have ¢(0) }~= ¢, so fu is
won by Player V.

3. 7 = pk ®,q and rule A(bsf) is applied at 7;: for similar reasons as in
the previous case fju is won by Player V.

These are the only cases giving rise to finite plays in 7y. Thus, point 1 proves
(i), points 2 and 3 entail (iii) and (ii) follows from 2 and 3 together with
Proposition 4.2.8(ii). O

PROPOSITION 4.2.10. (TRAILS AND V-STRATEGIES II) Let 9 be a trail of
I1. Are equivalent:

(i) 9 is admissible,
(ii) 1y is losing, and
(iii) Ty is non-winning.

PROOF. (i)=-(ii): Suppose ¥ is admissible. If 7y is finite then 7 is losing
by Lemma 4.2.9(i). If my is infinite then oy * ¢ is an infinite play won by
Player 4, where ¢ is the generative path witnessing the admissibility of .
The implication (ii)=-(iii) is trivial. We show (iii)=-(i) by contraposition.
Suppose 7y is inadmissible. If 7y is finite then it ends in an anti-axiom and so
Ty is winning by Lemma 4.2.9(ii). If, on the other hand, 7y is infinite, then 7
is complete by Proposition 4.2.8. We also know, by virtue of Lemma 4.2.9(iii),
that all finite plays in 7y are won by Player V. Moreover, by assumption no
infinite play can be won by Player 4. Thus 7y is a winning V-strategy. O

4.2.4 Represented Strategies

As the internal strategy of an admissible trail is loosing by the previous
proposition, it can be seen as a failed attempt to produce a counter-example.
Now the question naturally arises which types of strategies arise as internal
strategies of trails and, more specifically, whether some winning V-strategy
for a game G(o, ¢) with 0 € Rs(Z) is represented as a trail of II, whenever
Player ¥ wins that game (that is, whenever he has a winning strategy for the
game).

DEFINITION 4.2.11. Let 0 € Rs(Z) and let 7 be a V-strategy for Gs(o, ¢).

e two positions p, q € 7 are called step-equivalent, written p ~ g, if

cf(p) = cf(qg) and #X(p) = #X(q),

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 71

where cf(p) = ¢ if ¢ is the current configuration in position p (that is,
p = p'c for some p’ € 7) and #X(p) denotes the number occurrences of
X-formulas on p.

e 7 is called step-uniform if it makes the same decisions for step-uniform
positions, that is, for all p,q € 7:

P~q = p/p=4q:/q

e a trail ¥ of Il represents T if

{ 19 =7 1if my closed

oy =0 and .

T9 C T if my open

We say that 7 is represented in 11 if there is a trail 1 of II representing 7.
We call 7 completely represented in II if there is a trail ¥ representing
7 such that 7y = 7. &

Step-uniformity restricts the history-dependence of strategies by requiring
them to make uniform decisions at uniform times (that is, after a given
number of Next moves). In turns out that all complete, deterministic and
step-uniform V-strategies are represented in II.

PROPOSITION 4.2.12. (REPRESENTED V-STRATEGIES) Suppose 0 € Rs(Z)
and let 77 be a complete, deterministic and step-uniform V-strategy for
G(o,¢). Then 7 is represented in II.

PROOF. We construct two infinite sequences {o;}icw, {7i}icw of suffixes of
o and elements of I'", respectively, such that the following invariants are
maintained:

I1. 0,(0) = p,,, and
12. for all « € I(m;) with |¢| =i+ 1 we have §(¢; x 1) € 7.

where m; = v9---7; and (; = og---0;. We will then define a trail 9 from
these two sequences and show that the claim of the Proposition holds for
that 9.

We start the construction with oy = ¢ and the root sequent vy = ©
A(¢). Clearly, both invariants are fulfilled. Suppose that we have constructed
the sequences up to some k£ > 0 and that both invariants hold for i = k.
Consider two cases:

72 TRAILS AND STRATEGIES [4.2

Case (1) vk is a terminal sequent. We complete the construction by
defining o; and ~; for j > k by

- T if 7 is an axiom
—k Yk
95 = (o)’ and ;= { 1 otherwise

Case (2): v, is not a terminal sequent. We construct o1 and .1 by
case analysis on the rule R applied at ~;. For rules A(bsf), A(V), A(U) and
A(V), we set o1 = ox and we let 75,1 be the unique successor sequent of
v, in II. The invariants are easily shown to be preserved. For rule A(sp)
we set 0,41 = o0, and choose 7,41 to be some successor of ~; such that (I1)
is preserved. The existence of such a successor is guaranteed by the side
condition of A(sp). (I2) is then trivially preserved. For rule A(X) we set
Opt1 = (ak)1 and 75,1 the only successor of v;. Again, both invariants are
preserved.

The remaining and only interesting case is that of rule A(A), so suppose
rule A(A) is applied at v, = p F A(®, 1 A ¢2). Then there exists ¢ € I(m)
such that |¢] = k+ 1 and ¢ = ¢---(¢1 A ¢3), implying by (I2) that p =
P (k.01 A d2) = 8(C +t) € 77 Since 77 is complete and deterministic we
have p - (oy, ¢;) € 7 for either j = 1 or j = 2. Set o441 = op and Y41 =p
A(®, ¢;). Invariant (I1) is trivially preserved. To see that (I2) is preserved,
note that any position ¢ € 77 with ¢ = §({ * ¢/) for some ¢/ € I(m;,) of length
k+ 1 and ending in ¢; A ¢, is in fact step-equivalent with p. Since 77 is step-
uniform by assumption, it follows that q - (ox, ¢;) = §(Crrr * (V- ¢;)) € T7.
Hence, (I2) is preserved.

Now, define the trail 9 for j € w by

9(j) = 0 (0)[K — ;]
It is not difficult to see that 9 is indeed a trail with
o9 =0 and oy(i) =0;forallicw

Since any position p € Ty can be represented as f((y * ¢) for some k£ > 0 and
v € I(my), we certainly have 79 C 77. Moreover, as 7y is complete precisely
if g is closed (Lemma 4.2.8(ii)), we have 7y = 77 if and only if 7y is closed,
showing that 77 is represented in II. O

The observation that any history-free winning strategy is complete and
step-uniform immediately yields

COROLLARY 4.2.13. Suppose 0 € Rs(Z) and let 77 be a deterministic,
history-free winning V-strategy for G(o,¢). Then 77 is completely repre-
sented in II. O

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 73

Note that the converse of Proposition 4.2.12 does not hold, even if we
drop the completeness requirement: as the following example shows not every
strategy represented in II is necessarily step-uniform.

EXAMPLE 4.2.14. Figure 4.2 displays a path segment ~yv17273 of a proof
structure.

[70: P - A1 A 62,G(¢1 A 92)) |

(1P A1, 6(61 A 62)|

[12:p - A1, 61 A)|

”Y?ﬂp" A(¢17¢2)‘

Figure 4.2: A path segment leading to a non-step-uniform strategy

As a result of applying rule A(A) to ¢1 Ay at g the disjunct ¢y is selected,
while at v, the application of the same rule to ¢; A ¢5 selects ¢o. It is not
hard to see that as a consequence the internal strategy 7y of any trail ¥ with
my containing this segment is not step-uniform. s

As the example suggests, proof structures can be constructed in a way
such that multiple choices as in the example can be avoided and all strategies
produced by its trails are step-uniform. A sufficient condition is to choose
at any sequent 7 a <-maximal formula ¢ € ®, and apply to ¢ the rule
corresponding to its top-level operator.

But let us after this short digression return to our main track.

4.2.5 Winningness and Admissibility
Putting together the results of the previous two sections, we get

PROPOSITION 4.2.15. (WINNINGNESS AND ADMISSIBLE TRAILS) Let o €
Rs(Z). Then Player 3 wins Gs(o, ¢) if and only if all trails inducing o are
admissible.

PROOF. By contraposition using Proposition 4.2.10 and Corollary 4.2.13. [

The previous proposition can now easily be lifted to the level of proof
structures as is recorded in

74 TRAILS AND STRATEGIES [4.2

THEOREM 4.2.16. (WINNINGNESS AND ADMISSIBLE PROOF STRUCTURES)
Let IT be a LTL proof structure for S and sequent =t~ A(¢). Then Player 3
wins Gs(Z, A ¢) if and only if I1 is admissible.

PROOF. Note that Player 3 wins Gs(=, A ¢) iff he wins Ggs(o, ¢) for all o €
Cs(Z). The result then follows directly from Proposition 4.2.15. O

4.2.6 Admissibility vs. Success

The previous section showed that the notion of admissibility of a proof struc-
ture I for system S and sequent = - A(¢) characterises the property that
Player 3 wins the game Gs(=Z,A¢) (and hence S,Z = A¢). In this section
we study the relation between admissibility and success.

By examining the proof rules and the definition of the generation relation,
it becomes clear that a successful path is also admissible. The converse
implication does not hold for infinite paths in general as is demonstrated by
the following counter-example.

EXAMPLE 4.2.17. Figure 4.3 shows a path 7 in a proof structure for property
A(GpV FGp). As the actual system is quite irrelevant for this example only
the right-hand side of each sequent is shown. The dashed arrows indicate

generative paths. Clearly, 7 is admissible, but not successful. &
A(GpV Fp)
/AR
P \ ¢I NS K
A(Gp, Fp)

Figure 4.3: An admissible, but unsuccessful path

However, it turns out that if there is an admissible, but unsuccessful trail
¥ in a proof structure then, although 7y is a losing V-strategy, it can be
transformed into a winning strategy.

4.2] SOUNDNESS AND COMPLETENESS VIA GAMES 75

LEMMA 4.2.18. Let ¥ be an admissible, but unsuccessful trail of II. Then

(i) Player ¥V wins the game Gs(oy, ¢), and

(ii) there is an inadmissible trail ' in I1 such that oy = oy.

PROOF. (i) Suppose ¥ is an admissible, but unsuccessful trail of 9. It follows
that oy is a =Z-run of S and that 7y is infinite, admissible and unsuccessful.

We show that from 7y we can construct a winning V-strategy for Gs(oy, ¢).
Clearly, all finite plays are won by Player V, but we have to eliminate the
“offending” infinite plays won by Player d. Loosely speaking, any play in 7y
lost by Player V is due to some “unlucky” choices, while the right (winning)
choice is possible each time and even present elsewhere in 7.

Let us call ¢-path a path in a (pre-)strategy on which V-formula ¢ appears
infinitely often (i.e., a play won by 3) and let V' be the set of V-formulas
with a t-path appearing in 7y (and thus in Ty). Let 11,19, ... , 1, be some
linearisation of the partial order (V,3=), that is, for all v;,v; with i < j
either ¢; »= 1; or they are incomparable w.r.t. the subformula order. Suppose
Y = ¢j1V ¢js for each 1 < j <m.

We construct a sequence T4, ... ,T,,.1 of trees starting from 7} = T and
respecting the following two invariants:

J1. 7, = ¢T; is a complete V-strategy with all finite plays won by Player V
J2. if there is a ¢-path in T; then ¢ € {¢;,... ¥y, }.

It follows that 7,,.; contains no ¥-path and thus 7,,,; is winning. Clearly,
both invariants hold for Tj.
In order to construct 7;,; from T;, consider a ¢;-path u in T;. Note that

e (0%, unf(¢);)) is present on p for all but finitely many k& by Lemma 4.1.1

e since 7y is infinite and there is a 1;-path in 7y, the unsuccessfulness of
my is due to an infinite number of occurrences of ¢;2 on my, implying
that there are infinitely many j such that cf(n) = (07, ¢;) for some
noden € Ty

It follows from these two observation that there exist a [> 0, a finite prefix
pu € T; of p with cf(p,) = (o!,unf(¢;)) and a node ¢, € Ty with cf(g,) =
(0!, #i2). Now we replace in T} the set of nodes p,, - (T;/p,) by

pu- (0, 0i2) - (To/qp)

T;11 is obtained from 7T; by performing such a replacement for each ¢;-path
p in T;. Clearly, J1 is preserved. Since any of the trees Ty/g, can contain
y;-paths at most for j > 4, invariant J2 is also preserved.

(ii) Follows from (i) by Proposition 4.2.15. O

76 EXISTENCE OF A PROOF STRUCTURE 4.3

PROPOSITION 4.2.19. (WINNINGNESS AND SUCCESSFUL TRAILS) Let 0 €
Rs(Z). Then Player 3 wins Gs(o, ¢) if and only if all trails of Il inducing o
are successful.

PROOF. “=": By contraposition. Let ¢ € Rs(Z) and suppose there is an
unsuccessful trail ¥ of II inducing 0. We have to show that Player V wins
Gs(o,¢). If ¥ is inadmissible this follows from Proposition 4.2.15, otherwise
from Lemma 4.2.18. “<=": By Proposition 4.2.15, since any successful trail is
admissible. O

An important consequence of this proposition is that any =Z-computation
o following an unsuccessful path provides a counter-example to the statement

S,Z E ¢, that is, o [~ ¢.

The next theorem shows that, although the notions of admissibility and
success do not coincide on the level of individual paths or trails, they do on
the level of proof structures.

THEOREM 4.2.20. (WINNINGNESS, ADMISSIBILITY AND SUCCESS) Let II be
a proof structure for system S and sequent =+ A(¢). Are equivalent:

(i) Player 3 wins Gs(=, A ¢), and
(ii) 11 is admissible, and
(iii) 11 is successtul, i.e., I1: S, = I+ A ¢.
PRrROOF. By Theorem 4.2.16 and Proposition 4.2.19. U

We are now in a position to make up for the proof of Proposition 3.3.6.
The proposition is restated here for convenience.

PROPOSITION 4.2.21. Let II be a proof structure for system S and sequent
=+ A(¢). Suppose that there are no U-subformulas in ¢ and that all termi-
nals in Il are axioms. Then I1: §,= IF A ¢ is successful.

PROOF. Since there are no U-subformulas in ¢ and all terminals in II are ax-
ioms all paths in II are admissible. Hence I is admissible. By Theorem 4.2.20
IT is successful. O

4.3 Existence of a Proof Structure

Results obtained so far indicate that any given proof structure II for a system
S and sequent = F A(¢) is successful precisely if Player 3 wins the game
Gs(Z,A¢). The next step is to show that such a proof structure does indeed

4.3] SOUNDNESS AND COMPLETENESS VIA GAMES 7

exist, whenever Player 3 wins Gs(Z,A ¢), that is, S,= = A¢. For this
purpose we need the ability to characterise the set of states satisfying a LTL
formula A by an assertion from L£,,. Tt is at this point that the need for the
expressiveness of the fixed point operators in £, arises.

LEMMA 4.3.1. There is a function x: CTL* — L, such that for any system
S=(X,X,{pr | A € A},O,F) and any ground-quantified CTL* formula 1
with free variables Y C X we have that x(v) is a formula of L,, with the
same free variables Y such that

{seX|skEvr=Ix@l

PROOF. By Proposition 2.4.4 we can transform ¢ into an equivalent formula
of the modal p-calculus using the translation described by Dam [Dam94]| (see
also [Ref96]). The translation from the modal p-calculus to our extended
assertion language £, is then straightforward. O

NOTATION. We will write x,, instead of x(¢).

LEMMA 4.3.2. Let S be a system, = a satisfiable assertion and A ¢ a LTL for-
mula. Suppose Player 3 wins Gs(Z, A ¢). Then there exists a proof structure

11 for S and E - A(¢).

PROOF. We construct a sequence Ilg, I, ... ,II, of pre-proof structures for
S and ¢, while maintaining the following invariant for all nodes p - A ® of
each II;:

p EA(\/ ¢) and p is satisfiable.
ped

From the hypothesis it follows that S,= = A¢ and = is satisfiable, so
the invariant holds for the root sequent = F A(¢), which makes up the initial
pre-proof structure Ily. Let us call a node of a pre-proof structure open,
in case it has no successors, but is not a terminal. In order to construct
IT;;1 from II; we pick an open node 7 in II; and apply some rule(s) to it
in the way described below. If some rule application generates a node that
exists already, we loop back to that node. Finally, we will show that this
procedure terminates, yielding a “canonical” proof structure II = II,, for S
and =+ A(¢).

Let v = p = A(®) be an open node of II;. We first consider the case,
where rule A(X) is not applicable to . Let ® = W 1) where ¢ is not a Next
formula. We proceed by case analysis on the structure of ¢). In case the
top-level connective in 1) is a binary operator (A, V,V or U), we simply apply

78 EXISTENCE OF A PROOF STRUCTURE 4.3

the respective rule (A(A),A(V), A(V) or A(U)) at . Since these rules are all
backwards sound, the invariant is preserved and II; ; is easily seen to be a
pre-proof structure.

Now suppose ¥ = ¢ is an assertion. Since -y is an open node, hence not a
terminal sequent, we have the following two cases:

(a) Ep— —qgand ¥ # @. We simply apply rule A(bsf). The invariant is
clearly preserved and II;; is a pre-proof structure.

(b) p A q and p A —q are both satisfiable. Let r be an assertion equivalent
to ¢ such that sequent p A —r F A(V,q) does not appear in II;. We
continue the construction as follows

%pFA@q)
Y p A AT, q)
Absf) y'"p A= B A(Y)

A(sp)

YipArkEAY,q)
v

The application of rule A(sp) yields two new sequents 7/ (an axiom)
and v”. Our choice of r avoids a potential loop back to a node where
the Split rule is already applied. This ensures that condition (A-SPL)
in the definition of a (pre-)proof structure is preserved. Clearly, the
invariant holds for both 4" and +”. Hence 7" can not be an anti-axiom,
so U # & and we can apply rule A(bsf) at 7" yielding node v which
also satisfies the invariant. In this way we obtain pre-proof structure
Hi+1-

For the case that rule A(X) is applicable to 7, we apply it in the following
way:

pHAX D)
Xa@) FA(P)

Since p = A(\/¢E¢X¢) by the invariant, the side condition p = [A]xaw@) of
the rule holds. As p is satisfiable by the invariant and any state of S has
a successor by assumption, yae is satisfiable as well. Hence II;,; is a pre-
proof structure. Moreover, xa@) = A(®) holds trivially, so the invariant is
preserved.

Finally, we show that the above procedure terminates. Suppose for a
contradiction that it does not terminate yielding an infinite pseudo-proof
structure 11 by transfinite iteration. Now consider a spanning tree 7' for 1
rooted at 7,. As any node of II is reachable from v, all nodes of II must
appear on T'. Since Il (and hence T') is finitely branching, there is an infinite
branch 7 in 7" by K6nig’s Lemma. By Lemma 3.1.5, there must be an infinite

4.5] SOUNDNESS AND COMPLETENESS VIA GAMES 79

number of applications of rule A(X) on 7. But since there can only be a finite
number of different right-hand sides of the form A(X ®) appearing in sequents
of ﬁ, there must be two sequents v and +/ containing same set of formulas
X ® on w. By construction v and «' have the same and only successor sequent
Xa@) - A(®) which must thus appear twice on 7, a contradiction, because 7
being a branch of the tree 7' is cycle-free. Hence, our construction terminates
after a finite number of steps, yielding a proof structure II. O

THEOREM 4.3.3. (WINNINGNESS AND PROVABILITY) Let S be a system, =
a satisfiable assertion and A ¢ a LTL formula. Then Player 3 wins Gs(=, A ¢)
if and only if S,= |k A ¢ (that is, there exists a successful proof structure 11
for § and =+ A¢).

PROOF. By Theorem 4.2.20 and Lemma 4.3.2.]

4.4 Soundness and Completeness of Rule A(S)

The final missing link in our correctness proof (third equivalence in Table 4.1)
states that Rule A(S) is sound and complete relative to assertional validity
for proving success of a proof structure.

PROPOSITION 4.4.1. (RELATIVE COMPLETENESS OF RULE A(F,\/ FG)) Let
S =(X,%,{pr | A € A},0) be a saturated system and let q and py,... ,pm
be assertions. Then S |= A(FqV /-, FGp;) impliesS - A(FqV /", FGp;).

PROOF. The proof of relative completeness of Rule F-RESP in [MP91] can
be adapted without difficulties, so we do not repeat it here. O

From this proposition and Proposition 3.3.5 we immediately get

THEOREM 4.4.2. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE

A(S)) Let II be a proof structure for a saturated system S and sequent
=+ A¢. Then 11: S,= - A if and only if I1: S,Z - A 6. 0

4.5 Main Result

The results of this chapter are summarised in

THEOREM 4.5.1. (SOUNDNESS AND RELATIVE COMPLETENESS FOR LTL)

Let § be a saturated system, = a satisfiable assertion and A ¢ a L'TL formula.
Then

S, 2 A¢ifand only if S,=F A¢.

80 MAIN RESULT [4.5

PROOF. The three steps depicted in Figure 4.1 are covered by Corollary 4.1.4
and Theorems 4.3.3 and 4.4.2, respectively. O

Chapter 5

ELL and CTL* Proof Structures

In this chapter we extend our proof system to CTL*. To this end, we first
introduce ELL proof structures, the duals of LTL proof structures. The ELL
proof rules can essentially be derived from the LTL rules by dualising the
right-hand sides of sequents and side conditions. The symmetry is however
not perfect. In particular, handling disjunction in the ELL system is more
difficult than conjunction in the LTL system. We have two rules for dis-
junction which need to be applied in combination with the (ELL) Split rule,
requiring a judicious choice of assertions. The notion of the associated sys-
tem and trails of an ELL proof structure are analogous to the LTL case, and
the success condition is dual to the one for LTL. We also present a success
rule for ELL proof structure.

As expected, trails of ELL proof structures correspond to 3-strategies in
a similar way as LTL trails correspond to V-strategies. Most of the results
about strategies can be transferred directly from the LTL case by duality.
The existence of a “canonical” ELL proof structure and the strategies repre-
sented in it needs to be reviewed. The proof system for ELL is shown to be
sound and relatively complete.

We extend our proof systems to apply to arbitrary CTL* formulas by
combining LTL and ELL proof structures. The LTL and ELL rules dealing
with assertions are extended to path-quantified formulas, which may appear
arbitrarily nested inside CTL* formulas. For the case of a path-quantified
formula, the side conditions for the extended rules require the construction
of a new proof structure. As we prove statements of the form S,= = ¢ and
¢ ~ A¢ for any CTL* formula ¢ we can assume w.l.o.g. that any CTL*
formula has a top-level path quantifier. A CTL* proof structure is then
essentially a collection of ELL and LTL proof structures and it is a (S-)proof if
the constituent proof structures are (S-)proofs. As the dependency among the
latter proof structures is acyclic, path-quantified formulas can essentially be

81

82 ELL PROOF STRUCTURES [5.1

treated like assertions and the proof of soundness and relative completeness
for CTL* directly lifts from the base cases for LTL and ELL.

5.1 ELL Proof Structures

Given a system S = (X, X, {pr» | A € A},0,F), an ELL sequent is of the
form p = E(®), where p is an assertion and ® is a non-empty, finite set of
ground-quantified, path-quantifier-free CTL* formulas. A sequent p - E(®)
is valid if p = E(A\4ep ¢), that is, from any state s satisfying p there is a
s-computation of & satisfying the conjunction of the formulas appearing in
®. We use abbreviations analogous to those used for LTL sequents.

An ELL proof structure is defined in the same way as a LTL proof struc-
ture, except that the form of the sequents and the set of rules is replaced:

DEFINITION 5.1.1. A ELL proof structure for a system & = (X, X,{px | A €
A}, ©,F) and sequent =+ E ¢ is a rooted graph

M= (,ACT xT,y, €l),

where I' is a finite set of sequents, v, = = E ¢ is the root sequent and for
each node v € " we have that

(E-SAT) p, is satisfiable,
(E-ACC) ~ is reachable from ~,,
(E-RUL) if v has n > 0 successors {v1,... 7%} =1{7 | (7,7) € A} then

v

rR—
/71 f}/n

Cr

is the correct application of some rule R from Table 5.1, that is,
the rules’ side condition C§y is satisfied, and

(E-SPL) if (v,7) € A then rule E(sp) not applied to both v and . &

We call a sequent v an aziom (anti-aziom) if rule E(ax) (E(nz)) is applied
to 7. A sequent that is either an axiom or an anti-axiom is called terminal.
The set of sequents where rule R is applied is again denoted by I'g.

Note that condition (E-SPL) ensures the temporal consistency of proof
structures. In fact, Lemma 3.1.5 directly transfers to ELL proof structures:
on any infinite path through an ELL proof structure, there is an infinite
number of applications of Rule E(X).

5.1]

ELL AND CTL* PROOF STRUCTURES

83

E(ax)

E(nz)

E(bsf)

p b E(®,¢1V p2)
pk E(P®,)

pEE(®, ¢V p2)
pE E(P, ¢)

pEE(®,¢1 A o)
pE E(®, ¢y, ¢2)

p - E((I)v gbl U ¢2)
pEE(®@, ¢V (1 A X(d1 U o))

p - E(q)7¢1v¢2)
pHE(®, ¢ A (P11 VX(P1V2)))

p;f(EXf) pE(A)q

pFED .
W ED . g rEs PRV

Table 5.1: ELL proof rules

84 ELL PROOF STRUCTURES [5.1

5.1.1 Some Remarks on the Rules

The interpretation of right-hand side of sequents is dual to the one for LTL
sequents. Note that no dualisation takes place on the left-hand side of se-
quents: the intended meaning of p - E(®) is still “for all states s satisfying
p, ... Besides the obvious substitution of E for A, the ELL rules can be
systematically obtained from the LTL rules by

e swapping the format of axioms and anti-axioms w.r.t. their LTL coun-
terparts, that is, ELL axioms are of the form p - E(¢) and anti-axioms
of the form p - E(®, q),

e replacing all operators in the right-hand side of sequents by their du-
als; hence, rule A(op) becomes rule E(op?), where op and op? are dual
operators (pairs of dual operators are (A, V), (V,U) and the self-dual
(X, X)),

e negating assertions in side conditions that also occur on the right-hand
side of the sequent (concretely, side conditions for axioms, anti-axioms
and the predicate rule of the form p |= ¢ are replaced by p = —¢ and
vice versa), and

e replacing the weakest precondition operator [A] in the side condition of
Rule A(X) by its dual (A) in the side condition of Rule E(X); observe
that the assertion ¢ is not negated as it appears on the left-hand side
of the premise sequent

The Split Rule remains the same (up to substituting E for A) as it concerns
only the left-hand side of sequents. There is one exception to this symmetry:
rule A(A) should become

p - E((I)a ¢1 V ¢2)
p = E<(I)7 (bl) p - E<(I)7 (b?)

but there are two disjunction rules, E(V;) and E(V,), in our system. The
reason is that the above rule is not backwards sound: p = E(®,¢; V ¢9)
does not necessarily imply p = E(®, ¢1) and p = E(®, ¢2), hence threatening
completeness of the proof system (see also discussion of A-sequent format in
Section 3.1.1). The reader might object that none of our two rules E(V;) and
E(V,) is backwards sound either. This is correct, but they form the building
blocks for the following rule, which is derivable from E(V;), E(V,) and E(sp):

p l_ E(q), (bl AV ¢2)
GTE@ 6 GFE@ gy PNV

E(V)

E(V)

5.1] ELL AND CTL* PROOF STRUCTURES 85

This rule generalises rule E(V)" above. The reason for not including rule E(V)
instead of E(V;) and E(V,) right from the beginning is that by condition (E-
SAT) we cannot choose one of the ¢;’s to be equivalent to false, so E(V;) and
E(V,) are still needed. The case is reminiscent of rule A(bsf) that in general
needs to be applied in conjunction with the Split rule A(sp).

Observe that in general there are more choices to be made in the con-
struction an ELL proof structure than in the construction of a LTL proof
structure. In particular, the disjunction rule E(V) above requires a judicious
choice of the two assertions ¢; and gs.

5.1.2 Derived Rules

Some useful derived ELL proof rules are summarised in Table 5.2.

) orfwey srewey Pheve
V' rERa 5(35«5 Z??an Ugy) PEove
SV B g o6 mXGve) PR
E(F) e rtexE | PRave
= TLES XG0

E(X) T Zg .E_(%qq;)k £@) pE MV g

Table 5.2: derived ELL rules

Due to the disjunctions appearing in unfoldings of temporal formulas,
there also exists left and right single branch versions of rules E(V)', E(U)’
and E(F) for the case where one of ¢; and ¢y is equivalent to false. For
instance, rule E(V)" also appears in the following variants:

pEE(P, ¢V o) pE E(®, 01V o)

E(Vl) D - E((I), ¢2’ ¢1) p H E((I), ¢27X(¢1 V¢2))

E(V:)

86 DEFINITION OF ELL SUCCESS 5.2

This said, rule E(G) is nothing else than rule E(V,) with ¢; = false.
The following rule for the 'unless’ operator (W) is not derivable, but
sound and can thus be added to our system:

W) p E(®, ¢ W ¢y)
a1 F E(q), (bQ) q2 F E(q), ¢17X<¢1W¢2

It is based on the equivalence

P1W g = ¢ V (91 A X(P1 W ¢2)).

Again, we will use these rules freely in our examples.

»pﬁmv%

5.2 Definition of ELL Success

By now it comes as no surprise that the notion of ELL success is dual to the
one for LTL.

DEFINITION 5.2.1. (SUCCESSFUL PATH) A path 7 in an ELL proof structure
IT is successful if it is

e finite, ending in an axiom, or
e infinite and for all ¢ € U(¢) we have that
inf(m) N Ry # @
where Ry, =T' — Q) with @, as in Definition 3.2.2. &
Note that for v = ¢; U ¢ we have

Ry={y|®,NU, =2 V ¢y € d,}.

In other words, an infinite path is successful if it is not the case that there
is an U-formula ¢ = ¢; U ¢5 which is unfolded infinitely often along the path
with its “promise” ¢, occurring only finitely many times on that path. Intu-
itively, such indefinite unfolding of 1) without the promised ¢, also occurring
infinitely often would correspond to postponing the fulfillment of the promise
forever from some point on, which is in contradiction to the semantics of the
until operator.

The system S associated with an ELL proof structure II is defined in the
similar way as in Definition 3.2.7 with the difference that Iz is everywhere
replaced by T'gy) for § € {ax,nx, X} (the sets I'yery, and Iy, are redefined
accordingly). Also the notions of an ELL trail and its projections to system

5.2 ELL AND CTL* PROOF STRUCTURES 87

runs and paths in the proof structure remain the same up to a replacement
of I'a¢) by ') as above. The definition of II-fairness remains unchanged for
ELL trails. The LTL Trail Lemma (Lemma 3.2.11) is then complemented by
the following

LEMMA 5.2.2. (ELL TRAIL LEMMA) Let Il be an ELL proof structure for
S and =+ E(¢). We have:

(i) all trails of TI are infinite,

(ii) for any state s = = there exists a s-run o of S following some path
of 11, and

(iii) a trail ¥ of 11 is I-fair iff oy is a computation of S.

PROOF. (i) and (ii): By the side conditions of rules E(X) and E(sp). (iii) The
same argument as in the LTL case applies also here. O

Note in particular that point (ii) of this Lemma is weaker than the cor-
responding statement of the LTL Trail Lemma (Lemma 3.2.11), the latter
saying that any run of S follows some path in a LTL proof structure. Clearly,
this is due to the change of the side condition from a Hoare triple (for Rule
A(X)) to a possibility triple (for Rule E(X)).

DEFINITION 5.2.3. (SUCCESSFUL ELL TRAIL) An ELL trail ¥ is successful
if 7y is successful. &

DEFINITION 5.2.4. (ELL Succiss CRITERION) An ELL proof structure IT
for system S and sequent = - E(¢) is successful if for any state s = = there
is a successful TI-fair trail ¥ such that 9(0)|x = s. O

We proceed to a syntactic characterisation of the ELL success criterion.
DEFINITION 5.2.5. Let Wg = U(¢) U{L}. The assertions K, for ¢ € Ug are
defined by

P :{ KelQ) foryeU)
¥ K =1[1] fory = 1

¢

PROPOSITION 5.2.6. (ELL SUCCESS, SYNTACTICALLY) Let II be an ELL
proof structure. Then

88 A PROOF RULE FOR ELL SUCCESS 5.3

(i) a trail ¥ of 11 is successful iff it satisfies the ELL success formula

Q=)\ GF-K,
PpeVe

(i) 11 is successful iff S" |= Ey Qg, where Eyy quantifies over I-fair trails.

PROOF. (i) Observe that for ¢ € U(¢) and a state t € S with ¢(K) € {T, L}
we have t = =Ky, so any trail traversing an axiom and thus ending up with
control K caught at T is successful. It is then easy to see that a trail ¥ is
successful if and only if ¥ = Qg. (ii) Immediate from the definitions. O

5.3 A Proof Rule for ELL Success

For the time being let us disregard fairness conditions and work with satu-
rated systems S only (fairness issues will be dealt with in Chapter 6). We are
looking for an appropriate proof rule to establish that an ELL proof struc-
ture IT for a saturated system S is successful, i.e., S = EgQe. We take
a similar approach as for LTL success and first introduce a rule (E(/\ GF))
for proving properties of the general form E(A!", GFr;) over arbitrary satu-
rated systems and then instantiate and modify it slightly yielding Rule E(S)
for proving ELL success.

Remark (history variables) For completeness, the particular system
under study possibly needs to be augmented with a history variable' prior
the application of Rule E(/\ GF) or E(S), respectively (see Section 5.5.4).

5.3.1 Rule E(\GF)

We propose Rule E(/\ GF) (see Figure 5.1) for arbitrary systems and exis-
tentially quantified conjunctions of recurrence properties (that is formulas of
the form E(A", GFr;) with assertions r;).

Let us now explain the “mechanics” of Rule E(A\ GF). In contrast to Rule
A(F,\/ FG), we have a ranking function d; mapping program states to a well-
founded domain (W, ;) for each 1 <i < m. Just like Rule A(F,\/ F G) the
present rule relies on auxiliary assertions «;.

Condition R1 states that any initial state satisfies a; for some 1 <7 < m.
Condition R2 requires that from any «a;-state there is some transition leading

LA history variable [AL91] is a system variable that records information about the past
behaviour of a system without affecting the original state components.

5.3] ELL AND CTL* PROOF STRUCTURES 89

to an qyg1-state also satisfying r; or preserving «; and decreasing the ranking
0;. Intuitively speaking, the ranking J; measures the distance to the next
g1 N\ Ti-state.

Let S = (X,X,{px | A € A},0) be a saturated system and let
r1,...,Tm be assertions. To apply this rule, find for 1 <1i < m:

(a) a ranking function ¢6; : ¥ — W, mapping states of S into
elements of a well-founded domain (W;, >=;), and

(b) an assertion «;,

and check the validity of conditions R1 and R2 below, where o &
Vi, a; and a@bd:ef((a—l—b— 1) modm) + 1.

R1. © -«
SEEAL GFr;)

Figure 5.1: Rule E(A\ GF)

Suppose that for a given proof structure Il we have identified rankings
0; and assertions «; satisfying conditions R1 and R2. Then starting from
any initial state s = © of S, we can construct a s-run (= s-computation) of
S satisfying A", GFr; in the following way. By R1 s satisfies «; for some
1 <% < m. Suppose that we have constructed the run prefix oy : sg - - - s with
sy, satisfying «;. Then by R2 there is a system transition leading to a state
s’ that either satisfies ;g A r; or still satisfies «; and decreases the ranking
0;- Set spy 1 = s'. By repeated application of this construction step we
will eventually obtain a run prefix o y;: S, - Sk - - - Sgyy With sgy; satisfying
;o1 A r; by well-foundedness of the domain W;. Then we repeat the same
procedure for aygi, constructing a prefix ogijin : So Sk Skl Sktiin
with s;; satisfying a;ge A rig1, ete., ad infinitum. This yields a s-run o of §
satisfying A", GFr; as required. Thus, we have just proved

PROPOSITION 5.3.1. (SOUNDNESS OF RULE E(/A GF)) Let S be a saturated
system and let ry,...,r, be assertions. Then S + E(A]*, GFr;) implies

S EE(A™, GFr,). O

90 A PROOF RULE FOR ELL SUCCESS 5.3

5.3.2 Rule E(S)

The ELL success rule for saturated systems, called Rule E(S), is displayed
in Figure 5.2. It is essentially obtained from Rule E(/ GF) by instantia-
tion, taking S" for S and {-K, | ¥ € Vg} for {ry,...,r,}. However, a
slight modification has been made to condition E2 in Rule E(S) compared
to its counterpart R2 in Rule E(/\ GF): we have added K+ as a disjunct to
the right-hand side of the possibility triple. The justification for this step is
simple. If in the construction of a trail witnessing Qg (see proof of Proposi-
tion 5.3.1) we are able to reach Kr-state at some point, then we can safely
stop the construction. This is because we know that the trail prefix can be
completed into a successful trail, so there is no need to prove it each time

Rule E(S) is applied.

Let II be an ELL proof structure, let Qg = /\we\IfE GF—K as defined
in Section 5.2 and suppose K7,. .., K,, enumerates {K, | ¢ € Wg}.
Find for 1 <7 <m:

(a) a ranking function §; : ¥ — W mapping states of S into
elements of a well-founded domain (W, >=;), and

(b) an assertion a,

such that conditions E1 and E2 below are valid, where o & Vit i

def

and a®b= ((a+b—1)modm) + 1.

El. 6% -
E2. {Oéi VAN (5Z = w} <AH> {KT V (Oél'@l A _|Kl) V (Oéi VAN 52 < w)}
ST EQe

Figure 5.2: Rule E(S) for proving success of ELL proof structures

DEFINITION 5.3.2. Let I be an ELL proof structure for S and = F E(¢).
We say that Rule E(S) is applicable to 11 if S + EQg, that is, there exist
rankings J; and assertions «a; such that conditions E1 and E2 are valid. <

DEFINITION 5.3.3. (ELL PrROOFS) Let II be an ELL proof structure for S
and Z F E(¢).

5.4] ELL AND CTL* PROOF STRUCTURES 91

o Il is a proof of S,= = E¢, written I1: S, = IF E¢, if it is successful,
and

e Il is a S-proof of S,= = E¢, written I1: S,= F E ¢, if Rule E(S) is
applicable to II.

We say that S,= = E ¢ is provable (S-provable), written S,= IF E¢ (S,Z
E ¢), if there exists a proof structure II for S and = + E(¢) such that II:
S,ZIFE¢ (II: S,ZF E¢). &

Soundness of Rule E(S) follows from soundness of Rule E(/A\ GF) (Propo-
sition 5.3.1) and from the discussion above:

PROPOSITION 5.3.4. (SOUNDNESS OF RULE E(S) FOR PrOVING ELL Suc-

CESS) Let II be an ELL proof structure for a saturated system S and sequent
=+ E(¢). Then II: S,=F E¢ implies [1: S, = I E ¢ is successful. O

Consider now the case where there is no U-subformula in ¢. Then ¢
describes a safety property and we would expect that we do not need a well-
foundedness argument to establish success. Indeed, the success formula for
this case reads Qg = GF—-K, and is satisfied by any trail not traversing
an anti-axiom. In particular, any infinite path is successful. Since in the
absence of fairness any run is a computation, the following proposition is a
consequence of Lemma 5.2.2(ii):

PROPOSITION 5.3.5. Let II be an ELL proof structure for a saturated system
S and sequent = F E(¢) such that ¢ does not contain any U-subformula and
there is no anti-axiom in II. Then I1: §,= I+ E ¢. O

This should be compared with the corresponding result for LTL (Propo-
sition 3.3.6), where no restriction to saturated systems was necessary. Here,
we can in general only guarantee the existence of witnessing =-runs. For
systems with fairness constraints we still have to apply Rule E(S) in order to
show the existence of the required fair Z-runs.

5.4 Example

EXAMPLE 5.4.1. System S5 has a single natural number variable z and the
following two transition relations:

def
Pine = T =x+1
ef

Prero = . yP=ax A2 =0

[=9

92 EXAMPLE 5.4

Zero

Zero

FT N

zemCO.1.2.3.4.5.6.7.8.9."'
inc inc inc mnc inc inc inc e inc inc

Figure 5.3: LTS induced by system Ss.

(7 : true F E(F(z = 0)) |

T~

”)/4 :Jyy? = F E(F(x =0)) ‘ ”yﬁ :Vy.y? # 2+ E(F(x =0)) ‘

l

75 ¥y # o - E(XF(z = 0)) —

’73 .y =aF EXXF(z = 0))‘

(9212 =0FE(F(z =0))]

”yl:xzol—E(xZO)‘

O

Figure 5.4: Proof structure II5 for system S; and sequent true - EF(z = 0).

5.5] ELL AND CTL* PROOF STRUCTURES 93

The LTS induced by this system is shown in Figure 5.3. The statement that
we want to verify for this system is Sy, true = EF(z = 0), that is, from any
state it is possible to eventually reach the state where x = 0.

A possible proof structure Il5 for this purpose is shown in Figure 5.3.
Note that at the root sequent v; we have applied rule E(sp), splitting cases
according to whether or not x is a square number. At sequent 5 we use rule
E(F,) and at -4 and s we use rule E(F,) (see Section 5.1.2). Let us now show
that this proof structure is successful using Rule E(S).

Setting 7o = T, suppose that the coding [-] is defined by [v;] = i for
0 < < 7. Since there is only one U-subformula (F(x = 0)), we write just F
instead of F(z = 0) in af and Kg. In order to apply Rule E(S) we define the
o and af by

def def ~
a) =false and afF = \/ Dy
~yelr+

and choose the single ranking
o(z, K) = (d(z), K)
for ¢ € {L,F} with the lexicographic ordering < on N?, where

def g(z)—z+1 ifzx>0
dz) = { 0 otherwise

g(z) = min{meN|3z.22=m Am >z}
Thus, d(x) measures the distance of from x to the smallest square number
greater or equal to x.
Condition E1 holds trivially. Condition E2 for ¢y = L is also trivial. For
v = F, E2 boils down to showing

{py A (6 = (u,v))} (A" { K7 V (ar A (0 < (u,v)))}.
for each 4y € T'". This means that every witnessing trail will have to reach
K+ at some point. The preservation of af being immediate this reduces to

{7y A (6 = (u,0))} (AT) {Kr v (5 < (u,0))}.
For 79 and v, we can obviously reach K+ in one step. In the other cases,
we have to show that the ranking decreases. For v € {v9,74,76,77}, it
is a transition from Ag; which makes the second component of the rank
decrease while preserving the first (for 47 this may be either (v7,=,v4) or
(77, =,76), depending on whether z is square or not). From -3 the transition
(73, zero,v4) decreases both components of the rank if x > 0 and only the

second if z = 0. For =, the transition (vs,inc,~y;) decreases the distance
d(x), hence the ranking 0. &

94 SOUNDNESS AND COMPLETENESS [5.5

5.5 Soundness and Completeness

5.5.1 Admissible Trails and Winning Strategies

DEFINITION 5.5.1. Let IT = (I', A,~,) be an ELL proof structure. The E-
generation relation ~. C ®., x ®., is defined for each edge (v,7') € Ain a
ELL proof structure by case analysis on the rule applied at :

~pE(®,), pHE(®) = 1d(®)

I pEE(®,61Vé2), pHE(®,61) = {(¢1V b2, 1)} UId(D)

I E(®,61Vee), pHE(®,62) = {(¢1V ¢2,02)} UId(P)

U pE (@61 Ad2), pHE(®.61,02) = {(61 A b2, 01), (61 A B2, 02)} UId(P)

Db E(®d1 Z o), ph E(@unf(é1 Zd2) = (@1 Z P, unf(p1Z o))} U (D)

~MIpEE(X @), g E(®) = {(X¢,0)| ¢ € D}
k- E(®), gF E() = 1d(®)
where 1d(®) = {(¢,d) | ¢ € P} is the identity relation on . &

The following notions are then defined in a similar way as their LTL
counterparts:

e given a path 7 in an ELL proof structure an E-generative path running
along m is determined as in Definition 4.2.2 but using the E-generation
relation; the set of all E-generative paths running along 7 is denoted
by Ie(m) and its subset of finite E-generative paths by If(7); the latter
set, is called internal pre-strateqy of ™

e given a trail ¥ of an ELL proof structure II, the definitions of the
internal (pseudo-) strategy Ty and Ty of ¥ are the same as in Defini-
tion 4.2.4 except that [*(my) is replaced by If(my).

DEFINITION 5.5.2. (ADMISSIBILITY) Let II be an ELL proof structure for
system & and sequent = - E ¢.

1. A path 7 in I1 is admissible if

e finite, ending in an axiom, or

5.5] ELL AND CTL* PROOF STRUCTURES 95

e infinite and for all ¢ € Ig(m) we have that
inf(¢) NU(¢) = &
2. A trail ¥ of 11 is admissible if 7wy is an admissible path.

3. Il is admissible if for all states s of S with s = = there is a admissible
[I-fair trail ¥ such that ¥(0)|x = s. &

By duality an admissible path (trail) is also successful, but the converse does
not hold for infinite paths in general. It comes as no surprise that we have

PROPOSITION 5.5.3. (TRAILS AND 3-STRATEGIES) Let II be a proof struc-
ture for S and = F E ¢, and let ¥ be a trail of II. Then

(i) 79 is a deterministic 3-strategy for Gs(oyg, P),
(ii) 19 is complete if and only if Ty is closed, and
(iii) 1y is winning if and only if 9 is admissible.
PROOF. By duality. O

By this proposition and Lemma 5.2.2 we obtain the soundness result in

PROPOSITION 5.5.4. Let Il be an ELL proof structure for S and =+ E¢. If
IT is admissible then Player 3 wins Gs(Z, E ¢). O

In contrast to the LTL case, the converse direction does not hold in gen-
eral, even in the absence of fairness: although we know by the ELL Trail
Lemma that for each initial state of the system there is a run following some
path, we cannot guarantee that this path is admissible. In fact, there need
not be an admissible path at all in an ELL proof structure as the following
simple example shows.

EXAMPLE 5.5.5. System Sg has a single natural number variable z and the
two transition relations
pine = 2 =z+1

def

= [
Pzero — T =0

with initial condition ©5 £ true. Figure 5.5 shows a possible ELL proof
structure for this system and property ¢g = EF(z = 0), which is clearly
satisfied by Sg.

The only path in Il is inadmissible (and also unsuccessful). Obviously,
the mistake was that we have chosen to apply Rule E(V,) at 7 instead of

using E(V) to split off the case where x = 0. O

96 SOUNDNESS AND COMPLETENESS [5.5

’71: true - E(F(z = 0)) %—

"ygztruel—E(xzo\/XF(x:O))‘

(73 true b E(XF(z = 0)) ——

Figure 5.5: Proof structure I for Sg and ¢ = E F(z =0)

5.5.2 Existence of an Admissible ELL Proof Structure

The construction of an admissible proof structure requires a judicious appli-
cation of the Split Rule in combination with the two rules for disjunction (or
the derived rule E(V)). Therefore, we construct in (the proof of) the following
lemma a “canonical” proof structure Il and show that it is admissible.

LEMMA 5.5.6. (EXISTENCE OF ADMISSIBLE ELL PROOF STRUCTURE) Let

= be a satisfiable assertion and suppose Player 3 wins the game Gs(=, E ¢).
Then

(i) there exists a proof structure Il for S and =+ E(¢),

(ii) any deterministic, history-free winning I-strategy - for Gs(o, ¢) with
o € Rs(Z) is completely represented in g

(iii) Tlx is admissible.

PROOF. (i) The construction is similar to the one for LTL proof structures
in Lemma 4.3.2. We construct a finite sequence of pre-proof structures
Iy, ..., I, such that II, is a proof structure for S and = F E(¢). The
initial pre-proof structure Ily consists of the root sequent = E(¢). Pre-
proof structure II; ; is constructed from II; by applying some rule(s) to an
open node (a non-terminal sequent with no successors) while maintaining the
invariant

p = E(/\ ¢) and p satisfiable.
ped

The initial pre-proof structure I, satisfies the invariant by assumption. In
order to construct Il;,; from II;, suppose first there is an open node v: p
E(X®) in II; where rule E(X) is applicable. We apply the rule in the following
way:
v:pFEX®)
7't Xeea) F E(D)

5.5] ELL AND CTL* PROOF STRUCTURES 97

where yg) is an assertion characterising the set of states where E(®) holds
(see Lemma 4.3.1). The side condition is satisfied and our invariant is pre-
served.

Now suppose there is an open node v: p = (®,4) in II; where rule E(X)
is not applicable and 1 is a formula other than a X-formula. We proceed
by case analysis on the top-level operator of ¢. The only interesting case is
disjunction, all other cases are straightforward.

Suppose that 1 = ¢1 V ¢o. From the invariant it follows that for each
s = p we have s = E(®, ¢1) or s = E(®, ¢2). We distinguish three cases:

(a) p = ~E(®, ¢s): it follows that p |= E(®, ¢1) and we apply rule E(V,)

p - E((I)a ¢1 V ¢2)
pEE(®,¢1)

E(V1)

clearly preserving the invariant.
(b) p = —E(®, ¢1): this case is symmetrical to the previous one.

(c) Otherwise, there exist p-states s; and sy such that s; = E(®, ¢1) and
Sy = E(®, ¢2). We proceed by applying a combination of the Split and
disjunction rules in the following way:

v:pFE(®, 01V)
Yi:x1 F E(®, 01V @2) E(V,) Y2: X2 F E(D, 01V ¢2)
v x1 b E(®, 1) Y i xa E(D, ¢)

where x; and y» are formulas equivalent to the characteristic predicates
XE@,41) and Xg(@,¢,), Tespectively, chosen in a way as to avoid looping
back to a sequent where the Split rule E(sp) is already applied. This
ensures that condition (E-SPL) is satisfied. It is easy to see that the
invariant holds for all four new sequents vy, 71, 72 and 75.

E(sp)

E(V1)

Finally, by a similar argument as in (the proof of) Lemma 4.3.2 we can
show that this construction terminates, thus yielding an ELL proof structure
which we call IIx. Observe that by the invariant I[Ix can not contain any
anti-axioms. We remark that case (c) above is the only place where rule E(sp)
is applied in the construction of IIg.

(ii) Let 0 € Rs(Z) and suppose 7 is a deterministic, history-free winning
strategy for Gs(o,¢). We show that 7 is completely represented in Ilg.
In a similar way as in Lemma 4.2.12, we construct two infinite sequences
{0i}icw and {;}icw of suffixes of o and elements of I't| respectively, while
maintaining the following invariants:

98 SOUNDNESS AND COMPLETENESS [5.5

J1. 0,(0) = p,,, and
J2. for all « € Ig(m;) such that |¢] =i+ 1 we have §((; *¢) € 7.

where m; = 79+ and (; = g9 ---0;. Clearly both invariants hold for the
initial choice 09 = o and 7y = = F E(¢). Continuing the construction we
determine o, and v, by case analysis on the rule R applied at ~,. If
v 18 a terminal then it must be an axiom by construction of Il and we
define 0; = (04)"7 and v; = T for j > k. From the remaining cases we pick
R e {E(\/l)a E(vr)a E(Sp)}

Suppose that rule E(V;) is applied at vy, = p = E(®, ¢1 V ¢2) and that it is
not preceded by an application of E(sp) at v, (if & > 0). We set o171 = 0%
and g1 = p F E(P, ¢1). Since for any 0 € PU{p V o} there is a vy € Ie(my)
of length k£ + 1 such that tp: ¢-- -0 (see also Lemma 4.2.5), there is by (J2)
a position ng = my - (0%, 0) = 1((x *x19) € 7. With 7 being a winning strategy
we must have oy, = 6. By construction of I[Ix we know that p = = E(®, ¢2).
As oy, is a p-computation by (J1) we deduce that oy [~ ¢2. Since 7 is winning
it must move from any position of the form m - (o, ¢1 V ¢o) = 1((x *¢) (with
L € Ig(my) of length k + 1) to position m - (o, ¢1 V ¢2) - (0%, ¢1). Hence, (J2)
is preserved. (J1) is trivially preserved. The case where E(V;) is applied to
v, without a preceding application of E(sp) is symmetrical.

Suppose that E(sp) is applied to ;. By construction of IIx we know
that 7, = p F E(®,¢1 V ¢2). Pick ¢ € I(m) such that [¢] = k£ + 1 and
L=2¢- - (p1Vs). From (J2) it follows that n = f((rxt) = m-(op, 1 Vo) € T
and since 7 is deterministic and complete we have either n - (oy, ¢1) € 7 or
n - (o, ¢2) € 7. Suppose w.l.o.g. that n - (ox,¢1) € 7. Since there are also
positions p- (ox,0) € 7 for all @ € ® by (J2) and 7 is winning we have oy = 6
as well as o), = ¢1, hence 0(0) = x1 (recall x; is equivalent to xg@,¢))-
We set op11 = o and Y1 = x1 F E(®, 91 V ¢2) which appears as one of
the successor sequents of ; by construction of IIx. Hence (J1) is preserved.
(J2) is trivially preserved. Again by construction of IIx we know that the
only successor sequent of .1 is x1 F E(®, ¢1) which we choose as our i .
Set op12 = 0k41. Invariant (J1) is trivially preserved, while (J2) is preserved
because T is history-free and the choice of the new configuration (o, ¢1) at
position n = §((x * t) = m - (og, ¢1 V ¢2) of 7 is therefore independent of the
particular ¢ picked above.

Having completed the construction of the sequences {o;}ic, and {7;}icw,
we define 9 for j € w by 9(j) = 0;(0)[K + ~;]. It is not difficult to see that
¥ is a trail with oy = o and oy(i) = 0;. Since any position m € 7 can be
represented as f(¢; * ¢) for some i > 0 and ¢ € [g(m;), we have 7y C 7 by
invariant (J2). Because all terminals of IIx are axioms 7y is closed, hence 7

5.5] ELL AND CTL* PROOF STRUCTURES 99

complete and therefore 7y = 7.

(iii) Let s = . By assumption Player 3 wins the game Gs(o, ¢) for some
o € Cs(s). Hence, he has a deterministic, history-free winning strategy 7 for
this game (Proposition 4.1.2). By point (ii) there is a trail ¥ with oy = o
and 7y = 7, which is II-fair by Lemma 5.2.2(iii). Thus, ¥(0)|x = s and ¥ is
admissible by Proposition 5.5.3. Hence, Ilx is admissible. O

5.5.3 Winningness and Successful Proof Structures

Before we state our main theorem on winningness and the existence of suc-
cessful or admissible ELL proof structures, we have the following lemma,
comparing admissibility and success.

LEMMA 5.5.7. (ADMISSIBILITY AND SUCCESS) Let II be an ELL proof struc-
ture for system S and sequent = + E(¢). Suppose s |= = and there exists
a successful, but inadmissible trail ¥ of I with J(0)|x = s. Then Player 3
wins the game Gs(oy, ¢).

PROOF. Suppose 9 is a successful, but inadmissible trail of II. It follows
that my must be infinite. By observing that all finite plays in 7y are won
by Player 3 we can apply exactly the same procedure as in the proof of
Lemma 4.2.18 (but using U-formulas instead of V-formulas) to construct
from 7y a winning 3-strategy for the game Gs(0y, ¢). O

THEOREM 5.5.8. (WINNINGNESS AND EXISTENCE OF ADMISSIBLE OR SUC-
CESSFUL ELL P.S.) Let S be a system. Are equivalent:

(i) Player 3 wins the game Gs(Z, E ¢),
(ii) there exists an admissible proof structure Il for S and = + E(¢), and

(iii) there exists a successful proof structure 11 for S and =+ E(¢), that is,
S,ZIFE¢.

PROOF. (i)=-(ii): By Lemma 5.5.6. (ii)=-(iii): Any admissible proof struc-
ture is also successful. (iii)=-(i): Suppose II is a successful proof structure
for S and = I E(¢) and let s = Z. Then there is a successful TI-fair trail ¥
in IT with 9(0)|x = s. Then Player 3 wins Gs(oy, ¢) by Proposition 5.5.3 (i)
and (iii), if ¥ is admissible, and by Lemma 5.5.7, otherwise. Hence, Player 3
wins the game Gs(=, E ¢). O

100 A PROOF SYSTEM FOR FurLL CTL* [5.6

5.5.4 Soundness and Completeness of Rule E(S)

Rule E(S) is sound and relatively complete for showing success of proof struc-
tures for saturated systems as is stated in

THEOREM 5.5.9. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
E(S)) Let S be a saturated system and let II be a proof structure for S and
sequent = F E(¢). Then II: S,=Z IF E¢ if and only if I1: §,Z F E(¢).

PROOF. Soundness of Rule E(S) was shown in Proposition 5.3.4. The proof of

relative completeness is deferred to Chapter 6 (it follows from Lemma 6.3.7(ii)).
U

5.5.5 Main Result

THEOREM 5.5.10. (SOUNDNESS AND RELATIVE COMPLETENESS FOR ELL)
Let § be a saturated system, = an assertion and E ¢ an ELL formula. Then

S,ZEE¢ ifandonlyif S,ZFE¢
PRrROOF. By Corollary 4.1.4 and Theorems 5.5.8 and 5.5.9. U

Note that the only reason that this theorem is restricted to saturated sys-
tems is that the same restriction appears in Theorem 5.5.9. This restriction
will be lifted in Chapter 6 on proving success under fairness constraints.

5.6 A Proof System for Full CTL*

Extending our proof systems for LTL and ELL to full CTL* is now straight-
forward. Let S be a system, = an assertion and ¢ a ground-quantified CTL*
formula. We would like to verify S,= = ¢. As a consequence of Proposi-
tion 2.4.3(iii) we know that S,= = ¢ if and only if S,= = A ¢, so we may
assume w.l.o.g. that ¢ has a top-level path quantifier. Therefore, there is no
need for an intermediate “gluing” proof system as presented in [Kic96]| (for
the finite-state case) to resolve the top-level boolean combinations of state
formulas.

In contrast to LTL and ELL formulas, the CTL* formula ¢ may have
arbitrary path-quantified subformulas (of the form Q1 for Q € {A,E}). Let
us call ¢ a basic state formula if it is either a literal or a path-quantified
formula. As already observed by Emerson and Lei in [EL85|, with respect to
the LTL and ELL rules, path-quantified formulas can fortunately be treated
very much like assertions. More precisely, we extend the axiom, anti-axiom

5.6] ELL AND CTL* PROOF STRUCTURES 101

and assertion rules (Q(az), Q(nz) and Q(bsf)) of the LTL and ELL proof
systems to apply to all basic state formulas (see Table 5.3). The definitions
of LTL and ELL proof structures are adapted to use the modified sets of
LTL and ELL rules, but remain otherwise unchanged. The notion of a proof
remains unchanged.

Aar) ZER@Y) | EEr 2EEW
A(nz) w pF Ene) pFEFé,w) b)
Ay) DB b | ees) EE oy

Table 5.3: modified LTL and ELL rules; v is a basic state formula; p F ¢
holds for an assertion ¢ if p = q.

The side conditions of rules Q(ax), Q(nz) and Q(bsf), we replace p |= ¢
and p = —q by pF v and p - =), respectively, where 1 is now a basic state
formula. Recall that negation is a meta-level operator on all formulas but
assertions, so the side conditions for path-quantified formulas have all the
form p = Q@ and require the construction of a new LTL or ELL proof of
S,p = Q6 (the case depending on Q). For assertions the statement p - (—)g
is to be interpreted as p = (—)q as hitherto.

As the type (LTL or ELL) of proof structure can be inferred from the
top-level path quantifier of its root sequent, we will often just say “proof
structure for system S and sequent = - Q ¢”.

DEFINITION 5.6.1. (CTL* PROOF STRUCTURES) Given a system S, an as-
sertion = and a CTL* formula Q ¢, a CTL* proof structure I1 for system
S and sequent = F Q¢ is a tuple II = (II;,... ,II,) of LTL or ELL proof
structures such that

e [I; is a proof structure for S and =; F Q; ¥;, with =, F Q¥ = ZF Q ¢,
and

o for all 1 < j < n thereis al <i < jsuch that Z; - Q,v; appears as
a side condition of II;. &

102 USING INVARIANTS IN PROOFS 5.7

DEFINITION 5.6.2. (CTL* PROOFS) Let IT = (I1;, . .. ,II,,) be a CTL* proof
structure for system S and sequent = - Q ¢. Then II is a proof (S-proof) of
S,Z = Qo, written I1: S,Z I Q¢ (II: S, = F Q ¢), if all constituent proof
structures II; are proofs (S-proofs).

We also say that the statement S, = = Q ¢ is provable (S-provable) and
write S,Z IF Q¢ (S,Z - Q ¢) if there is a CTL* proof structure IT such that
II: $,Z1F Q¢ (II: S,Z - Q9). o

5.6.1 Soundness and Completeness for CTL*

Let IT = (II,...,IL,) be a CTL* proof structure. The matching of side
conditions and root sequents appearing in the LTL and ELL proof structures
I1; constituting IT induces an acyclic dependency graph on the II; (II itself is
a linearisation of this graph). The quantifier depth of the temporal formula
in the root sequent of the respective proof structure strictly decreases along
each path in that graph. This observation forms the basis for

THEOREM 5.6.3. (SOUNDNESS AND RELATIVE COMPLETENESS FOR CTL*)
Let S be a saturated system, = an assertion and Q ¢ a CTL* formula. Then

S,Z = Q¢ ifand only if S, Q¢

PROOF. By well-founded induction on the quantifier depth of Q ¢. The base
cases are covered by Theorem 4.5.1 for LTL and Theorem 5.5.10 for ELL.
For the induction step, suppose Q ¢ has path-quantifier depth n. It follows
that the side conditions in the proof structure for S and = F Q ¢ of the form
pF Qv have qd(Q1) < n. Hence by induction hypothesis S, p = Q¢ if and
only if S,p F Q1), so these side conditions can essentially be treated as if
they were assertions. Thus, the results for the base cases lift to the induction
step. [

5.7 Using Invariants in Proofs

Suppose we want to verify S = Q ¢ for some system S and CTL* property
Q ¢. In the process of constructing a proof, we may reuse any previously
proved invariant I of the system S in several ways. First, in the construction
of a proof structure II for S and Q ¢ we may safely replace any side condition
of a LTL or ELL proof rule of the form p = r by

INpET

5.7] ELL AND CTL* PROOF STRUCTURES 103

This proceeding is sound, because [is also an invariant of the associated
system S, so we know a priori that any state appearing on a trail will
satisfy 1.

Second, for the same reason it is sound to use invariant I to strengthen the
assertion on the left-hand side of any implication or Hoare triple appearing
as a verification condition in the success rules A(S) or E(S). In the same way
we can also make use of invariants of the system S itself. As an example,
the assertion Jx defined by

T\ (K =[] =)

~er+

is an invariant of S™. A type of formula occurring frequently as auxiliary
assertion in applications is vveFo p, for some I'y C I'". By calling on the help
of invariant Jx in the proof this assertion can be simplified to K € [T].

104

USING INVARIANTS IN PROOFS

(5.7

Chapter 6

Proving Success under Fairness

In order to prove interesting liveness properties of reactive systems, it is
important to be able to rely on the fair scheduling of system components
(processes, transitions, ...). By definition a run is unfair, if some system
“component” is indefinitely delayed though is it sufficiently often ready to
progress. Liveness properties most frequently depend directly on the progress
of individual components. So with pure non-deterministic scheduling (no
fairness constraints), a much smaller number of liveness properties will hold
of a system.

In our development of the local deductive model checking proof system,
the LTL and ELL success rules do not account for fairness so far. It is
important to note that this is the only reason why the soundness and rela-
tive completeness theorems for LTL and ELL (Theorems 4.5.1 and 5.5.10)
and thus also the one for CTL* (Theorem 5.6.3) are restricted to saturated
systems.

In this chapter, we will extend the success rules A(S) and E(S) to account
for fairness constraints. As a consequence of Theorems 6.2.3 and 6.3.8, es-
tablishing soundness and relative completeness of the extended rule A(S) 4,
and E(S) 4 for proving LTL and ELL success, respectively, the restriction
to saturated systems in the above-mentioned soundness and completeness
theorems for LTL, ELL and CTL* can be dropped. For CTL* we get

THEOREM 6.0.1. (SOUNDNESS AND RELATIVE COMPLETENESS OF CTL*
PROOF STRUCTURES) Let S be system, = an assertion and ¢ a CTL* for-
mula. Then §,Z |= ¢ if and only if S,Z F ¢. O

Before we tackle the development of the extended rules, let us examine the

possibility to express different types of fairness constraints in the temporal
logic itself.

105

106 EXPRESSING FAIRNESS IN CTL* 6.1

6.1 Expressing Fairness in CTL*

Generalised Fairness

Let us first consider a general form of (state-based) fairness. In LTL this can
be expressed by the formula

Q= A (FGp; v GFry)
i=1

This formula satisfied by a run if for each i either the assertion p; holds con-
tinuously from some point on or the assertion r; holds infinitely often. Thus,
if assertion p; is seen to express non-readiness of some system component and
r; progress of that component, then formula €2 indeed expresses a generalised
form of strong fairness. Weak and unconditional forms can be obtained by
setting p; = false.

A simple way to verify a CTL* property ¢ of a saturated system S under
such a fairness constraint €2 is to include the fairness constraint into the
formula. This is achieved by replacing all path quantifiers by their relativised
forms:

A(-) s replaced by Ag(-) = A(Q —)
E(-) isreplaced by Eq() = E(QA-)
Let ¢ be the formula obtained from ¢ by this transformation. If we

denote by S;) the system with computations Cs = {0 € Rs | o = Q}, then
it is easy to see that S;Q |= ¢ precisely if S | Ag ¢™.

Weak and Strong Fairness

Let S = (X, 2, {pr | A € A}, O, F) be a system with fairness constraint F =
(P, W, F). Unfortunately, weak and strong fairness as defined by F are not
directly expressible in CTL* (in the sense of the existence of CTL* formula
Qg such that any run o of S is fair w.r.t. F precisely if 0 = Q). Expressing
that some Ag-transition (with Ag C A) is taken requires a relativised 'Next’
operator. Such an operator is defined by

0 X ¢ if (0(0),0(1) = pa, (T, T) and o' |= ¢
With this new operator a formula Qf is definable in CTL* by

Qr = WF(W) A SF(F)

6.1] PROVING SUCCESS UNDER FAIRNESS 107

where

WF(W) < Ar,ew (FGen(Ay,) — GF Xy, true)
SF(F) = /\AfeF (GFen(Ay) — GF Xy, true)

Note that WF (W) and SF(F') can equivalently be expressed in the following
ways:

WEW) = Ap,ew (GFmen(Ay) V GFX,, true)
= A ew GF(men(Ay) V Xy, true)
SFE(F) = /\AfeF (FG=en(As) V GF Xy, true)

Using the formula Q£ the verification that system S satisfies a CTL* formula
¢, that is S |= ¢, amounts to showing that S~ = Aq, ¢***, where S~ is the
saturated system underlying S.

Discussion

Including fairness constraints into the property formulas has the advantage
of great flexibility. While this method can be used for the verification of
systems under generalised fairness, its use with the type of weak/strong fair-
ness constraints we have introduced for transition systems would require the
modification of the temporal logic and the proof system to include relativised
Next operators X,. However, while replacing Rule E(X) with a relativised
version is no problem, the disjunctive semantics of LTL sequents creates some
difficulties with generalising Rule A(X) to deal with these operators.

Another, more practical, disadvantage is that specification formulas in-
cluding fairness constraints quickly grow to an unhandy size. This in turn
leads to larger proof structures that are more difficult to survey. For these
reasons we add the fairness constraints directly to the system specification
and modify the success rules to account for fairness.

108 LTL SUCCESS UNDER FAIRNESS 6.2

6.2 LTL Success under Fairness

In Section 3.3, we have introduced Rule A(F,\/ F G) for proving properties of
the form

A(Fq\/\n}FGpZ)

i=1

(where g and the p; are assertions) for saturated systems. Rule A(S) for show-
ing success of a LTL proof structure IT was then obtained by an appropriate
instantiation of Rule A(F,\/ F G). In this section, we follow a similar approach
and first present Rule A(F,\/ F G) ., an extension of Rule A(F,\/ FG) that
accounts for fairness. Then this rule is slightly modified to deal with II-
fairness and instantiated to yield Rule A(S)sq;r, the LTL success rule under
fairness.

6.2.1 Rule A(F,\/FG)gr

Let S be a system with fairness constraint F = (P,W, F) and let ¢ and
D1, .- ., Pm be assertions. Rule A(F,\/ F G) f4;, for proving that the fair system
S satisfies A(F ¢V /[, p;) is displayed in Figure 6.1. Just as Rule A(F,\/ F G)
this rule is derived from Rule F-RESP of [MP91] for proving future response
formulas of the form G(p — F¢) under weak and strong (transition) fairness
constraints (see also the discussion in Section 3.3.1).

Supposing that Aq,..., A, enumerates W U F', this rule requires that we
find an auxiliary assertion f; for each p; (1 <i < m) just as Rule A(F,\/ FG)
does and additionally an assertion (3,,;; for each A; (1 < j <n), so we have
m + n auxiliary assertions.

Let us now take a look at the premises. Premises P1-P3 are the same as
for Rule A(F,\/ FG), with the index i ranging from 1 to m + n in P2 and
j from 1 to m in P3. The new conditions are P4-P6. These deal with the
sets of fair transitions Ay € W U F. Premise P4 states that from a (3, -
state any Aj-transition either reaches a g-state or decreases the rank. These
transitions are called “helpful” in [MP91], since they bring us nearer to a g¢-
state. Conditions P5 and P6 deal with enabledness of fair transition sets. For
the case where A, € W P5 requires that 3, implies either ¢ or enabledness
of Ay. Finally, premise P6 covers the case where A, € F and states that
we have to prove that a modified system, call it &', satisfies the modified
property A(F(q V en(Ag)) V Vi, FGp;). System S’ is the same as S except
that the initial condition O is replaced by f3,,.x and the fairness constraint
F = (P,W,F) of S is replaced by Fi, = (P, W, F}), where F}, = F — {A;}

6.2] PROVING SUCCESS UNDER FAIRNESS 109

removes the set Ay from the set F' of strongly fair transition sets. Observe
that although P6 requires the recursive application of Rule A(F,\/ F G)qir,
this recursion is well-founded, because the set F' is finite and F}, is smaller
than F.

Let S = (X, 3, {pr | A € A}, 0, F) be asystem with F = (P, W, F),
where WU F = {Ay,...,A,}. Let g and pq,... ,p, be assertions.
In order to apply this rule, find:

(a) a ranking function ¢: ¥ — W mapping states of S into ele-
ments of a well-founded domain (W, >), and

(b) assertions {31, ..., Bmin} (setting 3= \/"" 3),

def

and check the validity of conditions P1-P6 below, where in P6 F;, =

Pl. ©—=qVg
P2. {Bind=w} A{gV(BAI<w)V(BiNI=2w)} i€][l,m+n]

P3. {BiANdo=wA-p;} AgV(BANI<w)} Jj€[1,m]
P4, {BnxNd=w} Ay {gV (BAI<w)} ke [1,n]
P5. Guar — qVen(Ayg) A, e W

P6. S, Bt Fu b AF(gVen(Ay)) vV VL, FGp) A, € F
Sk A(Fq\/\/;ilFGpi)

Figure 6.1: Rule A(F,\/ FG) fqir

Soundness and Relative Completeness

THEOREM 6.2.1. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
A(F,\/ FG)tur) Let S be a system and let ¢ and py, ... ,p, be assertions.
Then SEA(FqV V" FGp;) ifand only if S = A(FqV /" FGp;).

PROOF. “=" (soundness) By induction on the size of the set F'. Suppose we
have found the required assertions and the ranking and that premises P1-P6
hold. Consider a run o: s9---s;--- of the system S. We have to show that
o is unfair or satisfies Fg VvV \/[", FGp;. If o satisfies F¢ then we are done.

110 LTL SUCCESS UNDER FAIRNESS 6.2

Otherwise, ¢ holds nowhere on o, so [is invariant and the ranking ¢ does
never increase on o by P1 and P2. By well-foundedness the ranking 0 is
constant from some position [on in ¢. Since [is the disjunction of all the j;
for 1 <i < m +n, some §; holds at s; and continues to hold for all s; with
Jj>1by P2. If 1 <i<m, then also s; = p; for all j > [by P3, so o satisfies
F Gp; and we are done. Otherwise, i = m + k for some 1 < k < n and by
P4 Ay is never taken from position [on. If Ay € W it follows from P5 that
Ay is enabled from [on, so o is weakly unfair w.r.t. A;. On the other hand,
if A, € F then by condition P6 and the induction hypothesis o' satisfies
F(qVen(Ar))V V", FGp; (since s; = Bpir). If o satisfies \/;", F Gp; then
so does o and we are done. Otherwise we have ¢/ = Fen(Ay) for all j > [,
since ¢ holds nowhere on ¢ and [, continues to hold from position [on.
But this means that Ay, is enabled infinitely often on ¢! and hence on ¢, so o is
strongly unfair w.r.t. the set Ay. This establishes S = A(F¢V V.., FGp;) as
required. Note that the base case (F empty) also clearly holds. We conclude
that Rule A(F,\/ F G) t4; is sound.

“<” (relative completeness) The proof of relative completeness of Rule
F-RESP of [MP91] goes through with the obvious minor modifications, so
we do not repeat it here. O

6.2.2 Rule A(S)q, for LTL Success

Recall that in Proposition 3.3.2 we have characterised success of a LTL proof
structure II by

ST = Ay Qa
where the quantifier Ap ranges over Il-fair trails and
O EFETvOR where O8% \/ FGK,
PYeUp

In order to adapt Rule A(F, \/ F G) for proving LTL success, we have to modify
it to deal with II-fairness instead of the usual fairness constraints.

DEFINITION 6.2.2. (II-ENABLEDNESS) Let S be a system with fairness con-
straint F = (P, W, F), let II be a proof structure and S" the system asso-
ciated with IT with F! = (P% W1 FI). Define the assertion en''(Afl) for
A e Wy F by

enT(ALD) £ en(Ao)

where Ag € W U F is the transition set of S inducing AYl, that is, Al =
7y L(Ag) (see also Definition 3.2.7). o

6.2] PROVING SUCCESS UNDER FAIRNESS 111

Let II be a LTL proof structure for system S and let {K, | ¢ € Ta)
and K7 as defined in Section 3.2.3. Furthermore, let Wity Ft =
{AL,... A} and T = WA U{1,... ,n}. In order to apply this rule,
find:

1. a ranking function § : ¥ — W mapping states of S" into
elements of a well-founded domain (W,), and

2. assertions {f; | i € I} (setting 3 < Vier i),

and check the validity of conditions A1-A6 below, where A; =
mo(A}) in A5, A6 and F' = (P, W', F'" — {A}l}) in AG.

Al. e = qvp
A2. {Bind=w} AT {qgV(BAI<w)V (BN 2w)} i€l

A3, {ByAd=wA Ky} A" {qgV (BAS<w)} Ve Wa

A4 {Bind=w} A {qV (BN <w)} Jj€[l,n]
A5, Br — qVen(A}) Al ewn
A6, S, B FUE An (F (g v en(A})) v OF) Al e

SUTHAR(Fqgvl)

Figure 6.2: Rule A(S)fq;: LTL success under fairness

This modified enabledness for Af' € W™ U F™ means in fact enabledness
of the original underlying transition set Ay € W UF of S. It might be helpful
to see how weak and strong II-fairness are expressed in LTL:

WwFYL(w) = Aanewn (FGenH(Ag) — GFXyn true)

SFU(FY) = Ay (G Fen(A) — GF Xyn true)

Rule A(S) fqir for showing LTL success under fairness (see Figure 6.2) is
then obtained from Rule A(F,\/F G) by

e instantiating S with S and py, ... ,p, with {K, | ¢ € {I\/A}, and then

e replacing en(A}l) by en(A}) in P5 and P6.

112 ELL SUCCESS UNDER FAIRNESS 6.3

Note that, since the rule invokes itself recursively, ¢ remains uninstantiated
at this point. In order to prove S = A Qa holds, we use the rule with ¢
set to K.

The notions of S-proof and S-provability (Definition 3.3.4) are modified
to rely on the applicability of Rule A(S) 4, instead of Rule A(S). The proof
of Theorem 6.2.1 can easily be adapted to show soundness and relative
completeness of Rule A(S)4 (with ¢ unspecified). Together with Propo-
sition 3.3.2 this yields

THEOREM 6.2.3. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
A(S) fqir FOR LTL Succgss) Let II be a LTL proof structure for a system S
and sequent =t A(¢). Then I1: S,= IF A¢ if and only if 11: S,ZF A¢. O

6.3 ELL Success under Fairness

In Section 5.3 we have introduced Rule E(/\ GF) to prove properties of the
form E (A, GFp;), where py,...,py, are assertions, for saturated systems.
This rule was then instantiated to yield Rule E(S) for proving success of ELL
proof structures.

Reducing Strong to Unconditional Fairness and Persistence

In order to fix some ideas for extending these rules to account for fairness
constraints recall from Section 6.1 that proving an ELL property of the form
E ¢ for a system S with fairness constraint F = (P, W, F') amounts to showing
that

ST EEQFAY)

where S~ is the saturated system underlying S and Qr = WF(W) A SF(F)
is the formula expressing the fairness constraint F. Also recall that SF'(F)
can be equivalently written as

SF(F) = N\ (FG-en(A) V GF X, true)

AEF

Consider a run o of &~ satisfying Q2 A ¢, that is, a computation of S
satisfying ¢). Then o determines a (unique) partition (U, D) of F' (that is,
UUD = F and UN D = @) such that

o = UF(U) AFGdis(D)

6.3] PROVING SUCCESS UNDER FAIRNESS 113

where

UF(U) = Aper GFXatrue

dis(D) = NAaep —en(A)

The partition (U, D) describes in what particular way o satisfies the strong
fairness formula SF'(F'): each transition set A € D is disabled almost every-
where on o (corresponding to the left disjunct for A in ﬁ’(F)), while any
A € U is taken infinitely often on o (corresponding to the right disjunct for

Ain gl\T(F)) The formula UF(U) expresses unconditional fairness of each
A € U. Note also that FGdis(D) is equivalent to A,., FG—en(A).

If we extend our fairness constraints F to include unconditional fairness
by defining F = (P,W, F,U), where W and F are defined as before and
U C P is a set of unconditionally fair transition sets, then we can formulate
the statement,

STEE(WFW)AUF(U) ANFGdis(D) A1)
equivalently as
S; F[U] = E(FGdis(D) A1)

where S; F[U] is the same as S except that the fairness constraint F of S
is replaced by F[U] & (P,W,,U). Clearly, S; F[U] = E(FGdis(D) A1)
implies S = E1, but the converse does not hold in general. However, we
have the following

PROPOSITION 6.3.1. Let S be a system with initial condition © and fairness
constraint F = (P,W, F) and let Ev) be an ELL formula. Then S |= E if
and only if there exist assertions ©; and partitions (U;, D;) of F' for some
[>1and 1< j <[such that

(i) © — \/'_, ©; is valid, and
(ii) S; F[U;],0, = E(FGdis(D;) A1) for all 1 < j <.

PROOF. “«<” This direction is clear. “=" Let S be a system with fairness
constraint F = (P, W, F'). Suppose S = E1). Define

U(U,D) = WE(W) A UF(U) Adis(D) A
and let P, ..., P, with P; = (Uj, D;) enumerate the set

(U, D) (U, D) partitions F' and there exists a
’ ©—run o of § such that o = EV(U, D)

114 ELL SUCCESS UNDER FAIRNESS 6.3

Since F' is finite, there are indeed finitely many P;. Now we can define ©;
for 1 <j<I:

def

;= O Axewr,

Note first that although E W(P;) is, strictly speaking, not a CTL* formula
(because of the relativised next operators), it is not difficult to see that
there is characteristic assertion xgy(p,) in L. By the definition of the P;
and ©; the statement S~,0; = EVU(P;) holds, thus also S;F[U,],0; =
E(FGdis(D;) A1) for each 1 < j < [. Since S |= E4 by assumption, any
initial state satisfies some ©;, hence © — \/;.:1 ©, is valid as required. I

Let us return to the problem of proving ELL success. The ELL success
formula Q is of the form ¢ & A~ GFr;. Let us for the moment disregard
[I-fairness and stick with properties of this form over arbitrary systems. Let
S be a system with fairness constraint F = (P, W, F'). The above proposition

allows us to reduce the problem of proving S = E % to showing

i=1

for each 1 < j < [and an appropriate choice of assertions ©q,...,0; and
partitions P, ..., P, of F with P; = (U;, D;).

We now proceed as follows. In order to simplify the presentation, we first
generalise our Rule E(/\ GF) of Figure 5.1 to deal with properties of the form
FGg A A~ GFr; over saturated systems (Rule E(FG, A GF)) and show its
soundness and relative completeness. Then we show how to extend this rule
to work with weak and unconditional fairness constraints (with F’s of the
form (P,W,2,U)), yielding Rule E(F G, A GF),,s. Based on the reduction
in Proposition 6.3.1, an auxiliary Rule E(F G, A GF) 4 is then introduced
for systems with the usual weak and strong fairness constraints. Finally, we
will present variants of Rules E(F G, A GF),,s and E(F G, A GF) 4, dealing
with II-fairness as required for ELL success.

Remark (history variables) Relative completeness results indicate that
prior to the application of any rule in this section, it might be necessary to
extend the system under study with a history variable.

6.3] PROVING SUCCESS UNDER FAIRNESS 115

6.3.1 Rule E(FG, \GF)

In order to simplify the presentation, we will first introduce a rule for satu-
rated systems and properties of the form

E (FGq/\/m\GFrZ)

i=1

This rule, called E(F G, A GF) and displayed in Figure 6.3, can then easily
be extended to deal with fairness as sketched in the previous paragraph and
detailed in the next section.

Let S = (X, 3, {pr | A € A},0) be a saturated system. Let ¢ and
r1,...,Tm be assertions. In order to apply this rule, find for each
0<i:<m:

(a) a ranking function §; : ¥ — W, mapping states of S into
elements of a well-founded domain (W;, >=;), and

(b) an assertion «;

and check the validity of conditions R1-R5 below (where in RI:
a d:ef\/;loai and in R3,R5: 1 <i<mandi® 1= (imodm) + 1).

R1. © —«a
R2. ag— —q
R3. a; — ¢
(&) ((11A50j0u>
R {/\ 50:u}<A>{\/ (aoAéo<ou)}
(67 (Ozi@l/\m/\éo j(] U)
R5. AN Oy =1u <A> vV (ai/\éi <; w A &y jou)
A 0 =w vV (ozo/\50—<0u)

SFE(FGgANA”, GFry)

Figure 6.3: Rule E(FG, A\ GF)

The application of Rule E(F G, A\ GF) requires that we find for each 0 <
i < m an auxiliary assertion «; and a ranking function d;: > — W, mapping

116 ELL SUCCESS UNDER FAIRNESS 6.3

system states to elements of a well-founded domain (W;, ;). For 1 <i <m
these can be thought of as corresponding to assertion p;, while ay and d, are
associated with q.

Before we discuss the premises in detail observe that setting ¢ and «g
to false and taking a trivial (constant) ranking for Jy yields exactly Rule
E(/A GF), which is thus a special case of the present rule. Hence the assertions
«; and the rankings 6; for 1 < ¢ < m play a similar role as they do in
Rule E(A GF). Intuitively speaking, for 1 < i < m, in an «;-segment the
ranking ; decreases unless the target r; is reached. New is that these “a;-
modes” are only active while ¢ holds and whenever ¢ does not hold a fall-back
to the additional “cg-mode” occurs and the ranking d, decreases. As oy does
never increase, there can be only a finite number of fall-backs to —g-states.

Now let us examine the premises more closely. Premise R1 requires that
any initial state also satisfies a; for some 0 < i < m. According to R2 and
R3 the assertions g and «; (for 1 < i < m) imply —¢ and ¢, respectively.

Premise R4 states that from an «q state, it is possible to reach an a;-state
with Jy not increasing or again an «g-state with the ranking dy decreasing.
The final premise R5 says that for the other modes «; (for 1 < i < m) there
are three possibilities: from an «a;-state we may

1. advance to an g A 7;-state, with dp not increasing, or
2. reach an q;-state, with ¢; decreasing and dy not increasing, or

3. fall back to a ag-state with dy decreasing.

Note that by premises R4 and R5 the ranking J, is not allowed to increase.

Soundness and Relative Completeness

THEOREM 6.3.2. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
E(FG,AGF)) Let S be a saturated system, and let ¢ and r,...,r, be
assertions. Then S + E(FGg A A", GFr;) if and only if S = E(FGq A
Aie, GFry). O

PROOF. Let S = (X, X, {px | A € A}, ©) be a saturated system and let ¢ and
r,...,r, be assertions.

Soundness. Suppose we have found intermediate assertions «; and rank-
ing functions §; for 0 < ¢ < m such that premises R1-R5 are valid. We say

that a transition s = s' is a witness for a possibility triple {pr} (A0> {¢}, if
sEp, s Eqand A € Ay. Furthermore, we say a run (prefix) o: sgsq -« s - -

6.3] PROVING SUCCESS UNDER FAIRNESS 117

is constructed according to some set T of possibility triples, if every transition
on ¢ is a witness for some triple in 7.

By inspecting the premises R1-R5, it is not hard to see that from any
state s = © a s-run o can be constructed according to R4 and R5 and that
« invariantly holds along these runs. Suppose o: sgs;y - - s - - - is such a run.
We have to show that o = FGgA A~ GFr;.

Suppose first that o [~ FGgq. Since o was constructed according to R4
and R5, the ranking d, never increases along o. By R4 and R5 it decreases
whenever a transition is made to a state where ¢ does not hold. Since o [~
F G g, there are infinitely many positions on ¢ where ¢ does not hold. This
implies that dy decreases infinitely often, contradicting the well-foundedness
of >¢. Hence, 0 = FGgq.

It remains to show that also o = A", GFr;. Since o = F Gg, there is a
position kg such that s; |= ¢ for all j > kq. Since ap implies —¢, we also know
that s; = ag for all j > ky. On the other hand, a holds invariantly along o
by R1,R4 and R5, so sk, = «; for some 1 < i < m. We show that there is
a k; > ko such that s, = ;g1 A ;. This follows by well-foundedness of >;

from the fact that all transitions s; X, sj41 for j > ko are witnesses for R5.
Now we can repeat this argument to show that there is a ky > k; such that
Sky = Qiga ATig1 and so on, ad infinitum. Hence, also o = A", GFr;. Since
our initial state was arbitrary we have S = E(FGgA A", GFr;) as required.

Relative completeness. Suppose S = E(FGgA A;~, GFr;) holds. We will
define auxiliary assertions «; and rankings ¢; for 0 < ¢ < m and show that
premises R1-R5 are valid.

Before we do so, however, we have to extend our system S with a (natural
number) history variable H, yielding system S which is defined as follows:

X ¥ XuU{H} H¢ X
A def H=0 A -q
o = @/\ \/ H=1 AN ¢)
H = N g
~ def vV H' =1 AN ¢ AN 1=0
2 V H=H A dA A i>0
VvV H=H&1 N ¢dANY N i>0

The idea behind variable H is to record the actual “mode”. Note that H is
indeed a history variable as it does not affect the original state components,
neither by modifying enabledness nor by making other variables depend on

118 ELL SUCCESS UNDER FAIRNESS 6.3

H. Therefore, we also have S = E(FGgA A, GFr;). Now, let us define

the intermediate assertions «;:

a0 = xo A ¢ A H
o = xo A g AN H=i for1<i<m

where

def

Xo = XEVy, with \IIO dZEf FGQ/\/\ZIGFTZ

X1 = xew, Wwith ¥, = GgNA N~ GFr;

Observe that each a; implies xg, reflecting the fact that each state of a run o
witnessing W, satisfies yo. However, this is not sufficient, as a run where yj
holds invariantly does not necessarily satisfy Wg. It is for this reason that we
need the ranking functions ¢;. Intuitively speaking, they make sure that each
“target” r; can be reached repeatedly while at the same time —g is met only
finitely often. The ranking functions ¢;: ¥ — (N, >), which all map extended
states to the standard well-founded domain of natural numbers, are defined
by

min{|o| | o: s+ a xyo—segment, s’ = x1} if s = xoAxa
0 otherwise
min{|o| | o: s+ a x;—segment, [o| > 1,5 Er;} if s x3

do(s) otherwise

where 1 <7 < m and a g-segment is a segment of a run such that all states
appearing on it satisfy the assertion q. Note that the ranking functions are
well-defined, since all the sets of which we take the minima are always non-
empty. We say a segment o realises ranking d,(s) for some 0 < j < m, if
55(5) = |-

For a xo A —xi-state s the ranking dy(s) gives the minimal length of a x-
segment the last state of which satisfies y;, whereas it yields zero on any other
states. In a similar way, for y;-states the ranking functions 9; for 1 <i <m
measure the least distance to a r;-state reachable on a y;-segment. On the
other hand, for a state s not satisfying x; the ranking 6;(s) equals do(s). The
idea is that we are not interested in the fulfillment of the r; until we have
reached a yi-state. Thus, from a (yo/A)—x1-state our primary goal is to reach
X1- Note the equivalence Wy = F ¥y, underlining our idea of ignoring r; until
¢ has become stable.

6.3] PROVING SUCCESS UNDER FAIRNESS 119

We proceed to the verification of premises R1-R5. Premises R2 and R3
follow immediately from the definition of the a;. The remaining premises
are:

R1. Since © = E ¥, by hypothesis, any state sq that satisfies © also satisfies
Xo- Hence, © implies g V .

For premises R4 and R5, note that the first transition on the segment
realising the respective ranking provides the witnessing transition required
by the premise. In other words, we always follow the shortest way to reach
the respective goal.

2

RA4. Suppose s = ag and dy(s) = u, realised by the yo-segment o: ss’---s".
Note that by the definition of 4y we have always u > 1. It follows that
s | xo A —q and s(H) = 0, as well as s’ = xo. We distinguish two
cases:

(a) s £ g. This implies that s'(H) = 0 and s’ & x1. Therefore,
do(s') < u and s’ = ag as required.

(b) s = ¢. In this case s'(H) = 1. For the ranking J, we have
do(s') =u—11if s = x1 and dy(s’) = 0 otherwise. In both cases
do(s") < w and also s’ = aj.

R5. Suppose s = «;, do(s) = u and 6;(s) = w for some 1 < i < m. There
are two main cases:

(a) s~ x1. Let 0: ss’- -+ 5" be a xo-segment realising dp(s) = u. Note
that ©w > 1. We have three sub-cases:

(i) s £ q. It follows that s’ & xi, hence u > 2 and §y(s') =
u — 1 < u. By the definition of p) we have s'(H) = 0 (a
fall-back). Therefore, s’ = ag A (09 < u).

(i) s’ =g A —ry. Since ' is on a yo-segment we have s’ = yo A ¢
and by the definition of p) we stay in s'(H) = i. Thus, s’ = «;.
We also have s’ [~ x1, otherwise we would also have s = yi,
since s = ¢q. Hence, u > 2 and dp(s') = v —1 < u. But
as neither s nor s satisfies y; we have 6;(s) = w = do(s) =
u > do(s") = 6;(s'). Hence, s’ = a; A (§; < w) A (6p < u) as
required.

(iii) s' = gAr;. By the definition of p) we have s'(H) = i@ 1, thus
s' E ag1 A 1. For the ranking the same argument as in (ii)
above shows that dy(s") < u. Therefore, s’ = ;g1 Ar; A (0p <
u) in this case.

120 ELL SUCCESS UNDER FAIRNESS 6.3

(b) s x1. Let o: ss’---s" be a xi-segment realising d;(s) = u. Then
we have s’ = x; and therefore also s’ = xo A g, since x; implies xo
as well as ¢. As s and s’ both satisfy x; we get dp(s) = do(s’) = 0.

(i) ' W~ 7. It follows that s(H) =i and w > 2, implying s’ = «;
and 6;(s") < w. Hence, ' = a; A6 < w A (6g < u).

(ii) ' | r;. Here the “mode” is switched to §'(H) = i @ 1 and
therefore ' = a1 A i A (0p <).

PROOF. This completes the proof of semantic completeness. For syntac-
tic completeness it remains to show that the auxiliary assertions and the
rankings are expressible in our assertion language £ over the (acceptable)
structure A we are working in (see Section 2.3.1). The assertions «; are al-
ready formulated in £. Tt is not difficult to see that the rankings §; can also
be expressed in £ using the coding scheme for finite sequences supported by
the structure A. We conclude that Rule E(F G, A GF) is complete relative to
validity in L. U

6.3.2 Rules E(FG, A GF),.s and E(FG, A GF) 4,

Let us now extend Rule E(F G, A\ GF) to account for fairness. Recalling the
discussion at the beginning of this section, showing that

SFE(FGq/\/\GFn)
i=1

holds for a system S with fairness constraint F = (P, W, F') can be reduced
by Proposition 6.3.1 to proving

S;FlU;],0; EE (FG (g ANdis(Dj)) A 7\G F’ri> (%)

for an appropriate choice of assertions ©; and partitions (U;, D;) of F'. The
system S; F[U,] is obtained from S by substituting the fairness constraint F
with F[U;] = (P,W,@,U;), thus replacing the strong fairness constraint F
of F by the unconditional fairness constraint Uj.

This reduction is implemented in Rule E(F G, A GF) f4ir (see Figure 6.4),
which invokes Rule E(F G, A GF),.s (displayed in Figure 6.5), to prove the
statements of the form (%) above.

Rule E(F G, A GF)yyy is a modified version of Rule E(FG, A GF). In ad-
dition to the latter rule this new rule requires that we also find pairs of
assertions «; and ranking functions ¢; for m+1 < j < m+n, each such pair

6.3] PROVING SUCCESS UNDER FAIRNESS 121

Let S = (X, X,{px | A € A},0,F) be a system with fairness con-
straints F = (P, W, F'). Let ¢ and rq,... ,r,, be assertions. Find:

(a) assertions O1,...,0;, and
(b) partitions (U;, D;) of F for 1 < j </,
such that condition F1 below is valid and F2 can be established

using Rule E(F G, A GF)us-

F1. @ — \/2:1 @j
F2. S;F[U;],0,FE(FG(gAdis(D)) AN, GFr) 1<j<I

SFEFGgAN"L, GFr)

Figure 6.4: Rule E(F G, A GF) 4y

corresponding to an element of the set {Ay,... A} = W UU of weakly and
unconditionally fair transition sets.

DEFINITION 6.3.3. Let ag, a1, ... , o be assertions and dg, 61, ... , d; be rank-
ing functions as required for the application of Rule E(F G, A GF),.s of Fig-
ure 6.5. Define assertions ", a=", a; ¥ and o =" for 0 < i <[by

def
Oz?’w = ai/\éozu/\c%:w
<u def
(0% = Oéi/\(sojou
<w def
a; = o No; <;w

Ozi/\éi —<iw/\50 <o U

¢
Premises R1-R5 are the same as in Rule E(F G, A GF). Using the notation
introduced in the definition above, R5 now reads:

R5. {0} (A) {(ah Ar) Va7 =" v as)

where 0 < ¢ < m. Note that superscripting an «; with < wu expresses
(independently of i) that §y does not increase, while a superscript < w states
the decrease of 6;.

122

ELL SUCCESS UNDER FAIRNESS

6.3

Given a system S = (X, X, {px | A € A},0,F) with fairness con-
straint F = (P, W, @,U) and assertions ¢ and ry,... ,r,. Suppose
Ay, ..., A, enumerates W UU.

In order to apply this rule, find for each 0 < i < m + n:

(a) a ranking function §; : ¥ — W, mapping states of S into
elements of a well-founded domain (W, =),

(b) an assertion a,

and check the validity of conditions R1-R7 below.

Rl1. © -«

R2. ay— —¢q

R3. Vii"ai—q

R4, {ag“} (A) {(a5" V a5"}

R5. {al} (A) (@ Aro) V= v ag)

(2

R6. { uw} j— m | A) {]@1‘(]@1)V&<w<u\/0‘0<u}
RT. {af™} (Ao | A) {aity | o= v oz}

SFE(FGgANAL, GFr)

The side conditions are: 1 <7< min R5, m+1<j<m+n and
A, € WinR6,and m+1 <k <m+nand Ay, € U in RT.

. . def <
The assertion « is defined by o = \/7 " oy, assert10ns al o,
v and o =" are as in Definition 6.3.3, and d; = —wzn(Aj_m) and

the operation @ is given by a ® b= ((a +b — 1) mod (m +n)) + 1.

Figure 6.5: Rule E(F G, A GF)yur

6.3] PROVING SUCCESS UNDER FAIRNESS 123

The new premises dealing with weak and unconditional fairness are R6
and R7, respectively. Note that, in a very similar way as the assertions r;
of R5, each element W U U is associated with a new “target” that is visited
infinitely often on any run o constructed according to R4-R7. Namely, each
A, € W must be taken or disabled infinitely often, and each A, € U must be
taken infinitely often on such a run o (thus making sure that o, in addition to
witnessing F GgA A", GFr;, is indeed a computation of S). For this reason,
premises R6 and R7 are very similar to R5. The difference is that the “target”
now involves taking transition sets in W or U. In order to account for this
new type of target, we introduce a generalised form of possibility triple.

DEFINITION 6.3.4. (GENERALISED POSSIBILITY TRIPLE) Let S be a sys-

tem with variables X and set of transitions A. Let p, ¢; and ¢y be assertions
over X and let A;, Ay C A. Define

{p} (A1 | A2) {a | o} = p— (M) qa V (As) o)

o

A generalised possibility triple of the form {p} (A; | As) {q1 | g2} states
that from a p-state there is a A;-transition leading to a ¢;-state or a As-
transition leading to a go-state.

Consider first the new premise R7 concerning unconditional fairness. For
m+1<k<m-+nand A,_,, € U, it reads

RT. {0} (A | A) {0ty | o™ =" v ag}
stating that in ag-mode, there is

e a A, _,,-transition leading to the successor mode aygq; with the ranking
dp not increasing, or

e an arbitrary system transition either preserving aj-mode with & de-
creasing (and dp not increasing) or causing a fall-back to «y with dg
decreasing.

In the former case, taking an Ay_,,-transition means reaching the target for
k.

Premise R6 dealing with weak fairness combines the forms of R5 and R7.
Form+1<j<m+mnandA;_, € W, it is given by

R6. {0} (Aj | A) {afgl (@ A —en(A;) \/Oszéu\/ozg“}

124 ELL SUCCESS UNDER FAIRNESS 6.3

In addition to R7, there is a second possibility to hit the target for j, namely
by taking any system transition leading to a state in the successor mode g
where A;_,, is disabled.

After this discussion it is not difficult to see that, provided we can find the
required assertions «; and ranking functions J; such that all premises hold,
any ©-run o constructed according to R4-R7 is weakly fair w.r.t. all A, € W
and unconditionally fair w.r.t. all A, € U, that is, o is a ©-computation
of § (w.r.t. F). It is then a tedious, but not a difficult affair to adapt
the proof of soundness and relative completeness of Rule E(FG, A GF) to
Rule E(F G, A GF)uyuy-

THEOREM 6.3.5. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
E(F G, A GF)yus) Let S be a system with fairness constraint F = (P, W, &,U)
and let g and ry,... 1, be assertions. Then S - E(FGgA A, GFr;) by
Rule E(F G, A GF)yyy if and only if S = E(FGg A A\~ GFr;). O

The following result then follows directly from the previous one and
Proposition 6.3.1:

THEOREM 6.3.6. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
E(FG, AGF)tur) Let S be a system and let q and rq,... 1, be assertions.
Then SFE(FGgA AZ, GFr;) by Rule E(FG, A GF) 4, if and only if S |=
E(FGgA A, GFry). O

6.3.3 Rules E(S) ., and E(S). ; for ELL Success

wu f

In order to derive rules for proving ELL success from Rules E(F G, A GF) f4ir
and E(F G, A\ GF),uy, we will instantiate the system S with the system S™ as-
sociated with a proof structure II and the assertions pq,. .., p,, with {=K} |
1 € Vg}. Additionally, we will need to make two modifications, one con-
cerning Il-fairness and the other concerning the special role of the control
location T in the associated system S!. The resulting Rules E(S) fair and
E(S);uf are displayed in Figures 6.6 and 6.7, respectively.

We now examine the mentioned modifications in more detail. First, we
have to deal with II-fairness instead of the usual type fairness constraints.
This modification concerns the enabledness assertions only. More precisely,
in Rule E(S)]

wu f

e assertion dis"'(D") instantiates ¢ of Rule E(F G, A\ GF),. s, where

dis"(D") =\ —en™(AY)

AlleDI

6.3] PROVING SUCCESS UNDER FAIRNESS 125

Let II be an ELL proof structure for system S and let Qg =
Nyew, GF =Ky as defined in Section 5.2. Find:

(a) assertions O1,...,0;, and
(b) partitions (U', Di') of F!' for 1 < j <1,

such that condition C1 below is valid and C2 can be established by
Rule E(S)]

wuf*

L. e"—V._ e,
02 SH, @j }_(UJH,D}_I) EH QE 1 S] S l

S"F En Qe

Figure 6.6: Rule E(S) fq;r

o assertion d; = —en'(AlL,) in E6 of E(S),, replaces men(A;_,,) in R6
of E(F G, \ G F)uu;.

The second modification is based on the fact that any trail prefix ¢y---t,,
with ¢,,(K) = [T] can be extended to a (successful) II-fair trail, so it is not
necessary to prove this every time we apply the ELL success rules. For this
reason we have added a disjunct K+ on the right hand side of each possibility
triple in E4-E7, saving us from proving anything about modes and rankings
whenever Kt can be reached by a A-transition (see also Section 5.3.2).

Because of this second modification the conclusion of Rule E(S)Lf reads

S E i pry En Qe
rather than
S FUUM), = F En(F Gdis™ (DY) A Q)
and premise C2 of Rule E(S); accordingly reads S™, 0 l_(UJl_'[,D}_'I) En Qe.

Note that, in contrast to the first modification, this one is not necessary but
convenient.

126

ELL SUCCESS UNDER FAIRNESS

6.3

Let IT be an ELL proof structure for system S and let S with
fairness constraint F1 = (PY W F1) be the system associated
with II. Let (UY DY) be a partition of F' and suppose that
AU A enumerates W U U, Let = be an assertion and
Qe = /\we\l,E GF —K, as defined in Section 5.2. Suppose Kj, ... , K,
enumerates { Ky | ¢ € Ug}. In order to apply this rule, find

(a) a ranking function §; : X" — W, mapping states of S into
elements of a well-founded domain (W, >=;), and

(b) an assertion a,

for each 0 <7 < m + n and check the validity of conditions E1-E7:

El. Z—a«

E2. «ap — —dis™ (DY)

E3. \/:Hl" a; — dis (D)

B4, {ag"} (A") {KTVai"Vas"}

E5. {af’w} (AT {KT V(aih A K VaEtsty <“}

E6. {aj"} (AL, | AT) { asy | K7V (a5 Ady) Vai™ " va
E7. {o™} (AL, | AT {ak@l | K+ Va;“<" vV oz(f“}

<u
0

SH, E I_(UH7DH) EH QE

The side conditions are: 1 < <min E5, m+1< 7 <m-+n and
Ajf.[,me Win E6, and m+1 <k <m+nand A}l € U"inET.

<u

. . def
The assertion a is defined by a = \/"[" a;, assertions o}, a7,

ar® and o""=" are as in Definition 6.3.3; dis"(D") and d; are
defined by dis"(D) = Ayncpn —en" (AY) and d; = ﬁenH(AH)

def

with en'!(-) as in Definition 6.2.2; the operation @ is given by a®b =
((a+b—1)mod (m +n)) + 1.

Figure 6.7: Rule E(S),,

wu f

6.3] PROVING SUCCESS UNDER FAIRNESS 127

A Special Case: no Strong Fairness. If the strong fairness constraint F’
of the system (and hence F™) is empty, the only partition of F'!is (&, @), so
we can directly apply Rule E(S), . by instantiating Z with ©" and both U"
and D™ with @. We can also replace dis'(&), being an empty conjunction,
by true and “turn off’ ay by setting it to false, making E2 and E4 hold
trivially. The help of aq to ensure the persistence of dis" (@) is not needed,

since F Gtrue is a tautology.

Soundness and Relative Completeness

LEMMA 6.3.7. Let Il be a ELL proof structure for a system S, let = be an
assertion and (U, D) a partition of F', the strong fairness constraint of
the associated system S". Then

(i) "= b pny En Qe by Rule E(S)],; implies S™, = |= Ey Q, and

(11) SH, fH[UH], =): EH (F G diSH<DH) AN QE) 1mp11es SH, = l_(UH,DH) EH QE
by Rule E(S)}

wuf*

PROOF. Let us call E(S)yys the rule obtained from Rule E(S),, by sub-
stituting false for K+ (hence ignoring the second modification above). It is
straightforward to adapt the proof of soundness and relative completeness
of Rule E(F G, A GF)yus (Theorem 6.3.5) to Rule E(S)yuf, showing that the

latter rule it is sound and relatively complete for proving
S FIUM, Z |= En (F Gdis" (DY) A Q)

Then (ii) follows immediately from relative completeness of Rule E(S) -
For (i) suppose that all premises of Rule E(S),,, ; are valid and consider a
state ty of S" satisfying =. Then in the process of constructing a trail starting
in ty according to E4-E7, we will either reach point where we have already
constructed to---t; and t; = K7, in which case this prefix can certainly
by extended to a successful Il-fair trail 9, or we will never reach a state
satisfying K+, in which case it follows from the soundness of Rule E(S)qus
that the constructed trail ¢ is IlI-fair and successful. In any case there is a

successful Il-fair trail starting in ¢y, so point (i) holds. O

We modify the notions of S-proof and S-provability (Definition 5.3.3) to
rest on the applicability of Rule E(S) . instead of Rule E(S).

THEOREM 6.3.8. (SOUNDNESS AND RELATIVE COMPLETENESS OF RULE
E(S) fair FOR ELL SuCCESS) Let II be a ELL proof structure for a system
S and sequent =+ E(¢). Then S,= |- E¢ if and only §,= I E ¢.

128 ELL SUCCESS UNDER FAIRNESS 6.3

PRrROOF. Note that Proposition 6.3.1 is easily adapted to associated systems
S™" under II-fairness. The result then follows by this modified proposition
together with Lemma 6.3.7. O

Chapter 7

Application: The Bakery Protocol

In this chapter we will illustrate the use of our proof system by proving
some properties of Leslie Lamport’s Bakery Algorithm for mutual exclu-
sion [Lam74|. The algorithm is based on the idea of a ticket machine, where
people entering a (big) bakery draw a ticket with a number on it that indi-
cates their turn to buy their Sunday morning croissants.

We will state and prove the properties of mutual exclusion (mutually
exclusive access of the clients to the croissants), accessibility (eventual ac-
cess, once having a ticket) and possible unboundedness (the possibility of
unbounded growth of the ticket numbers) of this algorithm.

7.1 Program Specification

We will consider here a version of the algorithm with two processes competing
for access to their respective critical sections. The programs for the two
processes P, and P, are given in graphical form in Figure 7.1.

Each process 7 has two variables: a control variable 7;, ranging over three
control locations, called N; (non-critical section), T; (trying section) and
C; (critical section), and a natural number data variable y;, indicating the
ticket number. There are basically three possible actions in each process,
one corresponding to each control location. Transition ¢; draws a ticket by
setting its own number y; to the number of the other process incremented
by one, while moving from the non-critical to the trying section. Transition
e; enters the critical section of process i, if allowed to do so by the ticket
number y;, that is, the other process’ number is zero or greater than y;.
Finally, transition [; leaves the critical section by resetting the ticket number

129

130 PROGRAM SPECIFICATION (7.1

to zero. An additional transition i (not shown in the figure) allows idling
steps at any point of a computation. These are mainly to model the activity
of the processes in their respective critical and non-critical sections.

Pli

li:y1:=0 e1:yY2 =0Vy <yo

P2:

lo:ys:=0 e2:y1 =0V ys <

Figure 7.1: Graphical specification of the bakery protocol transitions

The formal specification of the algorithm, system Sy, is displayed in
Figure 7.2. For the sake of brevity we identify control locations L; with the
assertion m; = L; in formulas and just write L; for m; = L; and L, for n, = L;,
where L; € {N;, T;,C;}. The program starts in a state, where both processes
are in their respective non-critical sections N; and the initial ticket numbers
are zero. The fairness constraint W declares the two sets {e;, 1} and {es, l5}
as weakly fair. This means that each process can neither indefinitely delay
entering its critical section, if it is continually possible to do so, nor stay in
its critical section forever (¢; is always enabled in process i’s critical section).

7.1]

APPLICATION: THE BAKERY PROTOCOL

131

Pi
Pty
Per
Pl
Pta
Pea

@

S w9

{71, ma, y1, 2}
{i7t17€17l17t27€27 l2}

pres(my, T2, Y1, Yo)

Ni AT Nyp = ya+ 1 A pres(ma, yo)

Ty ANCLA (y2 =0V y; < ya2) A pres(ma, Y1, Ya)
Cy ANy Ayp = 0A pres(ma, y2)

No NTS N yhy =1y + 1 A pres(my, y1)

To NCyNA (y1 =0V y2 < y1) A pres(my, y1, y2)
Cy NNy Ay =0 A pres(mi, y1)

Nl/\Ng/\y1:O/\y2:0

(P, W,)
{{i, ti, o}, {ex, i}, {ea, b} }
Her, li}, {ea, 2} }

Figure 7.2: The system specification Spor = (X, 3, {pr | A € A}, O, F), where

the assertion pres(Z) = T’ = T describes the variables that are preserved.

132 PROPERTY SPECIFICATION (7.3

7.2 Property Specification

We show that the bakery algorithm satisfies the following properties:
MUX Gz = AG(—Cy V —Ch)

mutual exclusion; the two processes are never in their respective
critical sections at the same time

ACC LCEAG(T, — FCy)
accessibility; whenever a process tries to access its critical sec-
tion then it will eventually succeed

UNB 4l “AGEF(y, > B)
unboundedness; from any point in a computation there is a con-
tinuation such that variable y; grows beyond bound B; the pa-

rameter B is a fixed, but arbitrary natural number, so this means
that y; may grow without bound

While the first two are essential properties that should be satisfied by any
mutual exclusion algorithm, the third property is a particularity of the bakery
algorithm. It is the possibility of unbounded growth of the ticket variables
makes it an infinite state system.

7.3 Verification of Mutual Exclusion

For the verification of the mutual exclusion property
¢mua: =A G(_‘Cl \ _'CZ)

we propose two different approaches, the first based on a generic proof struc-
ture for invariance and the second on a more refined style of proof structure
taking the structure of the system into account.

7.3.1 A Generic Proof of Invariance

Figure 7.3 shows the generic proof structure Il;yy for some given system
S = (X,%,{pr | A € A},0,F) and invariance property AGp (with p an

7.3] APPLICATION: THE BAKERY PROTOCOL 133

assertion). The verification conditions generated by this proof structure are:

1. 8= from A(sp)at o
12. ¢ —p from A(az) at 73
I3. {¢}A{y} from A(X) at 7,

The instantiation of this proof structure requires that we find an inductive
assertion v (I3), strengthening p (I2) and implied by the initial condition ©
(I1). As there is no U-subformula in AGp and no anti-axiom in the proof
structure, it is successful (Proposition 4.2.21).

Yo: Che A(Gp)

MwﬁFA(XGp)\

Figure 7.3: Generic LTL proof structure I1;5y for invariance properties.

Note that 11-13 are exactly the premises of the general invariance rule INV
of [MP91, MP95]. Rule INV is shown to be sound and relatively complete in
[MP91]. This means that any invariance can be proved using proof structure
II;nv. The generic proof structure II;yy is necessarily very coarse in the
sense that it does not reflect the structure of the system at hand. For our
concrete example, we choose a different style of proof structure exhibiting
some of the (abstract) structure of a system.

7.3.2 A Refined Style of Invariance Proofs

A more detailed proof structure for Sy, F @rue is shown in Figures 7.4 and
7.5, where the intermediate assertions 11,105 and 13 are defined by

Y1 = Ny AN,

() = ANTA=Co A (Y2 =0V 1y <o)
def

Yy = ~Ci A-NaA(y1 =0V ys <)

The construction starts as with proof structure Il; 5y above by an application
of Rule A(wk) at the root sequent =5, yielding sequent 7, generalising the

134 VERIFICATION OF MUTUAL EXCLUSION (7.3

statement to be proven. This rule application generates the side condition

© — P Vb Vihs

that is, I1 above where 1) o 1 V 1y V b3, As the initial condition © implies
N7 and N this is clearly a valid assertion.

At 4 we apply Rule A(sp) in order to split the cases, one for each ;. Each
of these cases is represented in Figure 7.4 by a “macro node” labeled ;. The
internal structure of macro node ; is displayed in Figure 7.5. All incoming
edges of node 1; in Figure 7.4 in fact point to sequent 7} in Figure 7.5. At
this sequent Rule A(G) is applied, yielding sequents i and ~4. In order to
show that the latter is an axiom, the validity of the assertion

Y — 2Cy V 20y

has to be shown. Clearly, these assertions are valid for all 1 < ¢ < 3. Edges
leaving the macro node v; in Figure 7.4 are in fact leaving sequent ~! in
Figure 7.5, where the derived Rule A(X)' (creating multiple successor nodes)
is applied, leaving us with the Hoare triple

{0} A Vo Vapo}

to be discharged. This assertion is not valid for all 1 < ¢ < 3 as it stands.
We need the help of an additional (inductive) invariant Jy, defined by

Jodzd(NlH?Jl:O)/\(NQHyz:O)

It is easy to see (and prove) that Jy is indeed an invariant of Sp. We use
Jo to strengthen the left-hand side of our Hoare triples, turning them into

{JoNbi}y A {91 Vo Vaho}

for 1 <7 < 3. Recall from Section 5.7 that it is safe to use previously proven
invariants to strengthen the premise of a Hoare triple in this way. A little
calculation shows that all of these triples are indeed valid assertions.

Comparing with Invariance Diagrams

It is interesting to observe that the complete graph G consisting of the macro
nodes 11,1, and 13 (here considered as “black boxes”) and the edges connect-
ing them is an invariance verification diagram as presented by Manna and
Pnueli in [MP94] (see Section 2.6.4).

It is easy to see that any invariance diagram D for S and p can be cast
into a (partial) proof structure by interpreting each node ¢; of D as the

7.3] APPLICATION: THE BAKERY PROTOCOL 135

(0 AG(=C1 V ~(3)) |

Vi, s FAG(=C v —Ca)) |

1

o P3

Figure 7.4: Proof structure II,,,,, for Spar F @mua

] !
Q’)) i Ui AG(CLY ~C2)) |
Z) / \

7h: i ARGV ~Cs) | 741 i F AXG(=C1 V() |

g

Figure 7.5: “Macro nodes” 1); for proof structure II,,,,

136 VERIFICATION OF ACCESSIBILITY (7.4

“macro node” displayed in Figure 7.5 and completed to a full proof structure
IIp for S = A(Gp) by adding two additional sequents in the way indicated
by our example in Figure 7.4. The verification conditions generated by IIp
are exactly the Hoare triples generated by D plus the additional implications
(1) © — VI, ¢, and (2) ¢; — p for 1 <4 < n, which are also part of the
invariance diagram rule (tough not represented in D).

Finally note that the verification conditions to be discharged for such a
proof structure IIp (or, equivalently the conditions associated with diagram
D) are essentially the same as the ones generated by Iy with v & Vi, Ui
However, as the graph D need not be complete (as it is accidentally the case
in our example), it represents generally a more precise abstract view of the
system & under study than it is the case for II;yy .

7.4 Verification of Accessibility

We prove the accessibility property for Process 1, that is,

L :AG(Tl —>FCl)

acc

For this purpose we propose proof structure .. for Spar. F ¢l ., displayed in

Figure 7.6. Edges leaving A(X)-sequents are drawn with double lines. Some
of these are labeled to emphasise a particular underlying system transition.

The upper half of the proof structure (sequents vy, ... ,7) is rather unin-
teresting: we first generalise the root sequent yielding v, and then split cases
at 4. All verification conditions for this part hold trivially. Its primary
purpose is to transform the root sequent 7o: © = A(G(=T; V FC})) into the
sequent ;: T = A(FC})'. Here the proof starts to become interesting.

The key step in the construction of II,.. is the application of Rule A(sp)
at sequent 7 with the following choice of left-hand side assertions for the
three successor sequents (writing p; for p.,):

def

ps = Ti1A-en(er) ATy

P11 d:ef T1 A _|6n(61) A CQ
def

Pua = en(el)

The verification condition to discharge is T} — pg V p11 V p14. This does not
hold as it stands, but we can again safely call on the help of invariant J; and

LOf course, we could have started from the (root) sequent 77 + A(F Cy) right away,
since 71 = A(F C1) implies © = A(G(=Ty V F C1)), but we have chosen to present here a
complete example without “shortcuts”.

7.4] APPLICATION: THE BAKERY PROTOCOL 137

]70; O F A(G(-Ty VFCY)) \

h=8

]%; true - A(G(=Ty VF Cy))

”yg: true - A(=T; V F CY) \]72: true - A(XXG(=T1 V FCY)) \
h=8 h=8

|74 true B AT, F C) |
h=7/ \

[%6: T AGSTLFC)| (st =T - AT, FCy)|

h=6 h=0
a
———— i FAFC)]
h=5
"78: T A ﬁen(el) NTy A(FCl) } {7142 en(el) F A(F Cl) }<=
h=4 h=2
]79: Ty A —en(er) ATs - A(Cy,XF Cy) \]%5: en(er) F A(Cy,XF Cy) \
h=4 h=2
]710: Ty A —enler) ATy = AXF Cy)]%6; en(er) F A(XF Cy) %
h=4 es lo h=2 e
*{vllle/\—'en(el)/\Cg}—/-\(FCl) ’717:01 }—A(FC’l)‘
h=3 h=1
’7122 T A ﬁen(el) ACy = A(ChXFCl) ‘ "718: i+ A(Cl,XFCl) ‘
h=3 h=0
”}/132 T1 A ﬁen(el) A 02 [A(XFCl) |

—

h=3

Figure 7.6: Proof structure Il,.. for Sy - ¢L

acc

138 VERIFICATION OF ACCESSIBILITY (7.4

show that
JoNTy — pg V p11 V pua

is valid. This is indeed the case, since 77 implies (77 V —en(e;)) V en(e;) and
—en(T}) implies y5 > 0, hence T V Cy using Jy.

Note that at sequents 79,713 and ;6 we have in fact applied the de-
rived Rule A(X)’ to create two successor nodes in each case. At 7y the side
condition is

{Ty N=en(er) NTo} A {(Ty A —en(er) A1) V (Ty A —en(er) A Co)}

that is {ps} A {ps V p11}, which is easily seen to be valid by observing that
the idle transition ¢ obviously preserves ps and that transition ey is enabled
in pg-states and leads to a pji-state. All other transitions are disabled in pg-
states. A similar argument shows that the side condition for the application
of Rule A(X)" at =33, namely {p11} A {p11 V p1a} holds, this time with I,
leading from py; to py4. For sequent 714 the side condition is

{en(e1)} A {en(e1) vV Ci}

It is clear that transition e; leads to ;. Transitions i, t5 and [y preserve the
enabledness of e;. All other transitions are disabled if e; is enabled and thus
lead trivially to en(e;) V Cy. In particular, consider transition e;. We have
to show that en(e;) A pe, — en(er) V Cy. But en(er) A pe, implies that y; = 0
or yo = 0, but also that neither Ny nor N; holds, contradicting invariant Jj.

7.4.1 Proving Success for 11,

Preparing the application of Rule A(S) ¢4 to prove Il,.. successful, we name
the weakly fair sets by Ay, = {er, 1} and A,, = {es, >} and note that the
only V-subformula in ¢! . is the G-subformla, so we refer to it as G for short.
As there is no strong fairness constraint, we can take I & {e, G, wy,wy} for

the set indexing the required auxiliary assertions. We set 19 = T and then
define the coding [-] as usual by [v;] =i for 0 <i < 19.

Choosing the auxiliary quantities.

We divide the (pseudo-) sequents into three groups

def

{0, s U s, T
def

ry,, = {’71477157’716}
def

Iy, = {’787--- 7713}

7.4] APPLICATION: THE BAKERY PROTOCOL 139

and then define the auxiliary assertions by 3, = false and, for t € {G,wy,ws},

ﬁndg\/ﬁw

'\/EFu

We also need a ranking, which we define on extended states by
O(71, ™2, Y1, Yo, K) = h(K)

where A([T]) = 0 and h([v]) is defined for sequents v € T" as indicated in
Figure 7.6.

What is the intuition leading to this choice? Note that there are four
non-trivial strongly connected subgraphs in I1,.., namely S; = {71, 72}, Sz =
{8,790, 710}, S3 = {711,712, 713} and Sy = {714, Y15, 716} Consider the three
cases, where on some trail ¥ control K remains from some point on caught
in

e [S1]: Then ¥ is successful (since t(K) € [S;] implies ¢t = K¢ for all
t € Ylace),

e [S,USs]: Then ¢ is IT-unfair w.r.t. ALe= (since the only transitions
that can be taken along edges (710,7s) and (7y13,711) are (710, 2, 7s) and
(73,7, 71), respectively, while for v € Sy U S5, p, implies that A,, is
enabled, hence en'(Afjze), and

e [S4]: Then ¥ is IT-unfair w.r.t. Aljeee (since neither (y1g,€1,714) nOY
(716, l1,714) can be taken along the edge (y16,714), but, for v € Sy, p,
implies enabledness of A, hence en™(A]*).

This means that there are no “harmful” cycles in the proof structure I1,.. (for
which we would have to show that no computation can follow them).

Recall from the discussion of “mechanics” of Rule A(S), that if its
premises hold then some auxiliary assertion 3; will eventually become stable
on a trail unless K+ is reached. If this assertion is Jg then by premise A3
the trail is successful and if it is (,,0r 3,, then by A4 and A5 the trail is
[T-unfair w.r.t. Al or Alleee, respectively. These roles of the 3; perfectly
matches our observations above and suggests that we choose

e (g such that it is implied by p., and by p,,
e (3., such that it is implied by each p; for v € Sy U S5, and

e (3, such that it is implied by each p, for v € S,.

140 VERIFICATION OF ACCESSIBILITY (7.4

Since 3 = B¢V Buw, V Bu, has to be invariant along trails unless K is reached,
we have to make a choice as where to put the remaining control points of
SMace namely ~; for i € {0,3,...,7,,17,18} and T. We add them to I'g
yielding the definition of 3¢ given above. For (,, and f3,, note that I',,, = Sy
and I'y,, = S2 U S3. We have set 3, to false, since it is not needed.

Finding the right ranking is then easy, as with our choice of the auxiliary
assertions (3 it can remain constant within each of the strongly connected
subgraphs S, ... ,Ss. This is because for a state ¢t € Y!ecc we have

e {(K) € S implies t = K,
° Aggcc is not taken along an edge in S5 or S5, and
e Ajle is not taken along an edge in Sj.

Transitions along the remaining edges bring us closer to an axiom and the
ranking can be easily defined in a way as to decrease along these, if necessary.

Verification of premises A1-A6 of Rule A(S) gy

The initial condition ©Msee = p= certainly implies g, hence 3, so condition
Al holds. Also, as already indicated above, §,, implies en(Ale) and
Bu, implies en'(Ale=), so condition A5 holds as well. Premise A6 holds
trivially as the strong fairness constraint is empty. It remains to show A2-A4.
Note that by our particular choice of the auxiliary assertions, [is trivially
preserved across A-transitions, as ,0?““ — p, for any (y,\, /) € Allace,

¥,A)
So in checking A2-A4, we are primarily concerned with the ranking.

A2 A look at Figure 7.6 confirms that the ranking never increases along
an edge in the proof structure and hence along a AMecc_transition. The
ranking decreases as required along edges where the $;-mode changes
and that are not leading to T. Namely, these are the edges leaving ~-
and v as well as edge (713, 714)-

A3 We have to show that the ranking J decreases along all Aecc_transitions
from (g-states not satisfying K¢ and not reaching K. The concerned

sequents are 7s,...,77 in the upper part and ;7 in the lower part of
the proof structure. Clearly, 6 decreases along all edges leaving these
sequents.

A4 From a f3,,-state (yi6,€1,717) is the only A}je-transition that can be
taken and it decreases ¢ from 2 to 1. There are two A}le-transitions
that can be taken from f,,-states, namely (710, €2,711) and (713, l2, Y14)-
These both decrease § as a glance at Figure 7.6 shows.

7.5] APPLICATION: THE BAKERY PROTOCOL 141

This completes the verification of accessibility for Process 1.

7.5 Verification of Unboundedness

In this section, we show the property of unboundedness for Process 1:
uny = AGEF(y1 > B)

A CTL* proof structure for Sy, and this property is composed of the LTL
proof structure II,,;,; shown in Figures 7.7 and the ELL proof structure IL,,;2
of 7.8.

[70: © F AGEF(y1 > B)) |

11 true F AGEF(y1 > B)) le—y

T

vs3: true H A(EF(y; > B)) ‘ ”)/22 true - AXXGEF(y1 > B)) ‘

O

Figure 7.7: Proof structure Il for Spx = &L,
The LTL proof structure I1,,,;; reduces the root sequent © - A(GEF(y; >
B)) to the axiom true = A(EF(y; > B)). The justification of the latter
requires the construction of a proof for Spu,true = E(F(y; > B))). The
other side conditions of II,,,; are trivially satisfied.
Proof structure Il for Sy and true = E(F(y; > B)) is to show that
from any state there is a computation where y; grows beyond bound B.

7.5.1 Checking the Side Conditions for I1,,;>

We use the three disjuncts of invariant 1) = 1) V 15 V ¥3 from Section 7.3 to
split cases at the root sequent g of Il,,52. The corresponding side condition,
the left-hand side of which is strengthened with), reads

V= (1 Ayt <B)V (o Ay <B)V (P2 Ayp < B)Vyy > B

which is clearly valid. Note that at sequents 7,73 and 5 the derived Rule E(F,.)
is applied and at -7 its companion, Rule E(F;), is applied. Sequent 7g is an
ELL axiom.

142

VERIFICATION OF UNBOUNDEDNESS

/j%: true - E(F(y; > B)) \

’71:1#1/\1/1<B

- E(F(sn > B))]

’7221/11 Ay1 < BFE(XF(y: ZB))‘

|

tq

4’{7311#2/\y1<3

E(F(y1 > B)) fe——

t2a
€1

’74:1!12/\111 < BFE(XF(y ZB))‘

|

ll l2

—»{75:¢3Ay1<B

FE(F(y1 = B))

tla
€2

’%‘Ilﬁs/\yl < BFE(XF(y ZB))ﬁ

|

51

{’}/7::(}123'—

E(F(y, > B)) |

|

Ys:9 > BFE(y1 > B)|

O

Figure 7.8: Proof structure Il,,,2 for Spax, true = E(F(y; > B))

ty

7.5

7.5] APPLICATION: THE BAKERY PROTOCOL 143

At the remaining sequents 7, 74 and ¢ derived Rule E(X)’ is applied to
create two or three successor sequents in each case. We pick 74 and take a
closer look at its side condition

Y3 Ayr < B — (A) (L2 A (1 < B))V (Vs A (31 < B)) V (11 > B))

Recall that 13 was defined by =Cy A —=Na A (y1 = 0V yo <). Its first part,
the assertion ~C'; A =Ny, is equivalent to

(N1 A=No) V(T ANT) V(T A Cy).
We proceed by case analysis according to the latter assertion to show that
1. NN A=NoA(yh =0V ya <y1) Ayr < B) — (tq) 13
22NN (Y1 =0Vys <yi) A(y1 < B) = (e2) (V3 A (y1 < B))
3. NiNCAN(y1 =0V iy, <yi) Ay < B) = (o) (Y2 A (y1 < B))

All of these can easily shown to be valid with a little calculation. As an
informal justification note that the transition to be taken is enabled in each
case. The fact that ¢; and ey preserve 13 in (1,2) and that [y leads from 3
to 19 has already been established in Section 7.3. Furthermore, observe that
es and [y do not modify y;, so its value certainly stays below B if this was
the case before the respective transition. For (1) note that (¢;) 3 implies

(t1) (s Ay < B)V (11 = B)).

7.5.2 Proving Success for 11,,;,; and 11,

To show that proof structure II,,,;; is successful, all we need to do is to prove
that its sequent 3 is indeed an axiom, in other words, that proof structure
IT,mp2 is successful. To this end, we can directly apply Rule E(S),.s with =
instantiated to ©M«n2 and partition (&,), as there are no strong fairness
constraints. The assertion dis'(2), being an empty conjunction, then boils
down to true.

We set 79 & T and define as usual [7:] = i. The formula F(y; > B) is
the only U-subformula appearing in this proof structure, so we refer to it as
F for short. We then have Ug = {1, F} and W'umz = {AfJuntz Allunbz} We
associate index 1 with 1, 2 with F, 3 with Alj»»2 and 4 with AJjz»2. Then

def

K ¥ K, =falseand K, & Kr = K € {0,...,7}, so

K,
—~KF

true
K € {8,9}

144 VERIFICATION OF UNBOUNDEDNESS (7.5

Auxiliary assertions and rankings

We choose the auxiliary assertions ay, ... ,ay as follows:
def def —~
ap = false o = \/iem P
d_ef o~ d_ef —~
Qg = Py, a3 = Py
def
oy = false

The only non-trivial ranking function is d;, which we define by

O1(71, ™2, Y1, Y2, K) = (B—max(y1,ya), (11, 72), h(K))
ordered lexicographically, where — is natural number subtraction (with b—a =
0 for b < a) and

2 ifK=0
AME)={ 1 if K is odd
0 otherwise

The ordering relation on locations is defined for i = 1,2 by N; < C; < T;,
and the pairs (71,) ordered point-wise. Denote the lexicographic ordering
on the range of d; by <. Clearly, its inverse > is well-founded. The other
ranking functions do,02,05 and &, are trivial, defined, e.g., by & & 0.

The idea is that any witnessing trail that can be constructed according
to E4-ET7 reaches T at some point. This is the reason why we can “afford” to

set oy to false.

Verification of premises E1-E7 of Rule E(S),,;.

Premise E1 is equivalent to p,, — Vie[o&ﬁ; and is certainly satisfied.
Premises E2, E3 and E4 of Rule E(S),,s are trivially valid. This is also
the case for E7, since there is no strong fairness constraint. It remains to
show premises E5 and E6. The latter is trivial for j = 4. For 7 = 3, it is

{az} (Ao} {K7 Vv ...}
= {K=8Ay > B} (A"w2) {K =9V ...}

which is valid. It is for instance implied by {K = 8} ((7s,4,79)) {K = 9}.
Premise E5 for ¢ = 2 follows from the validity of the following assertion:

{an} (AT} faz A =Ko}
= {K=7ANy > B} {(y,=,%)) {K=8Ay > B}

7.5] APPLICATION: THE BAKERY PROTOCOL 145

Most of the work is in establishing premise E5 for ¢ = 1. After some
simplification, it boils down to

{an A6y = (u,v,w)} (AT2) {K1 V(1 Ady < (u,0,w)) V an}

or, equivalently, for all 0 < k < 6:

{pon N 01 = (u,v,w)} (ATwe2) | \/ Py A0 < (u,v,w)) V pon}
1€[0,6]

since Kt can not be reached from K € [0,6]. The results of the verification
of these conditions are summarised in Table 7.1.

AMunvz. departing B—
transition from p,, A ... max(yi, y2) | (m,m) | h(K) 9
(v0,=7) | 1A (g1 <B) - - 1 1
(Yo,=,13) | %2 A (y1 < B) - — 1 1
(70, =,7) Y3 A (y1 < B) = = ! !
(Y0, =,77) y1 > B nce nce nc nce

[(n,=72) | true | = 1 = 1 1 1T 1]
(72, t1,77) yo+1>B e nc ne nc
(72, t1,73) Yy +1< B ! nc nc !

[(13,=,74) | true | = 1 = 1 1 1T 1]
(74,22, 73) Ny ! nce ne |
(V4, €1, 73) TINT = ! nc !
(74, 1, 75) Ci ATy ! nc !

[(5= %) | true [= [= 1 1 [1]
(v6,t1,77) | NiA(y2+1> B) nc nc nc nc
(Y6, t1,75) | N1 A (y2+1 < B) ! nc nc !
(76, €2, 75) TINT = ! nc !
(76, [2,73) Ty A Cy = ! nec |

Table 7.1: Behaviour of ranking 6, along AMwrt2_transitions from o;-states —
| means strict decrease, = remaining constant, and 'nc’ “don’t care”

In this table an entry for Aen2_transition (yx, A, ;) (where A € AU{=})
with formula € in the second column should be read for j # 7 as

{Py NON O = (w,0,w)} (7, A, 5)) {01 < (w0, w)}

146 VERIFICATION OF UNBOUNDEDNESS (7.5

and for j =7 as

{Dy A O} (9, A7) {true}

Note that adding p,, on the right-hand side of these possibility triples is
redundant, as these assertions are already part of p?y“;"f\{yj).
Additionally, the table indicates how the individual components of the

ranking d; behave along this transition. Observe that

e we need not care about the ranking for transitions leading to p,,,

e for transitions of the form (v,=,4') the first two components of the
ranking obviously do not change, while the third, h(K), decreases,

e for transitions of the form (v, e;,+') and (v,;,7) the first component
remains constant, while the second decreases (moving m; from T; to C;
and from C; to N, respectively), and

e for transitions of the form (v,t;,7') with 4/ # 77 the first component
of the ranking decreases.

We pick two cases and take a closer look at them.
1. (v4,11,75): The possibility triple for this case is equivalent to

{K:4/\Cl/\T2/\(y2:0\/y1gyg)/\y1<B/\51<(u,v,w)}

((v4,11,75))
{61 < (u,v,w)}

This follows from the valid assertion

JO/\K:4/\C'1/\T2/\(y2:0\/y1Syg)/\yl<B
— 3m, T, Y1, v, K
K:4/\1p2/\y1<B
A Cy A NjAyy=0A pres(ma, ya)
N K'=5N-CiA-NSA Yy =0AY5 <y)) ANy < B
A max(y, ys) = max(yi, y2) A (1, m5) < (C1, T»)

The obvious witnessing instantiation for the primed variables is 7] =
Ny, b =T, y; = 0, yb = y2 and K’ = 5. Note in particular that
by the use of invariant Jy we can deduce that y; < ys (since T5), so
max(yy,ysy) = vy = y2 = max(y1,y2). For the second component of
the ranking we have (7}, 7}) = (N1,T1) < (C1,T3). Thus, the overall
ranking does indeed decrease along (74, l1,7s)-

7.5] APPLICATION: THE BAKERY PROTOCOL 147

2. (76,t1,75): Here, the assertion to show valid is

K:6/\N1/_|N2/\(y1 :0\/y2 <y1)
AN (1 <B)A(ya+1< B)Ad = (u,v,w)
<(76at17/y5)>
{01 < (u,v,w)}

This one follows from

Jo/\K:6/\N1/\ﬁN2/\(y1:O\/y2<y1)/\(y1<B)/\(y2+1<B)
— 3my, w1, v, K
K=5ANYsNy < B
A Ny AT ANyy =yo + 1A pres(ma, yo)
AN K'=5AN-CiAN-NGA (Y, =0Ay, <y)) ANy, < B
A max(yy,y) < max(yy,y;) < B

which is easily seen to be valid by instantiating the primed variables
in the only possible way by 7 = Th, ©h = mo, y1 = yo + 1, ¥4 = ¥o
and K’ = 5. Using invariant Jy we deduce y; = 0 from N, so we have
max(y1,y2) = yo while max(y], y5) = y2+1 < B. Thus, there is a strict
decrease in the first component of the ranking.

This concludes our (sketch of) the proof that T, and hence II,,;; are
successful. We conclude that Syq = @2

unb*

148

VERIFICATION OF UNBOUNDEDNESS

7.5

Chapter 8

Conclusions and Related Work

8.1 Summary and Discussion

The aim of this thesis was to design a tableau-based proof system for the
model checking of CTL* properties of infinite state fair reactive systems and
to explain its soundness and completeness in terms of model checking games.
In this section, we will first recapitulate how this goal was achieved and then
discuss some selected issues.

Proof Structures

The present work generalises the finite state local model checking tech-
nique for CTL* proposed by Bhat, Cleaveland and Grumberg in [BCG95|
to infinite-state systems equipped with a quite general type of fairness con-
straints. The sequent format is extended to deal with infinite sets of states
described by assertions and the LTL proof rules of [BCG95| are generalised
accordingly. In their work, proving s = E) is reduced to showing s f= A —1)
by constructing an unsuccessful LTL proof structure. While this reduction
is appropriate from an algorithmic point of view, deductive proofs call for a
more direct approach and we therefore introduce a separate set of rules for
ELL. Each rule system includes a Split rule implementing case analysis. A
simple local condition imposes a mild restriction on its application that en-
sures the temporal consistency of proof structures. A proof system for CTL*
is obtained from the combined rule systems by extending the terminal and
predicate rules to account for path-quantified subformulas. The side condi-
tions for path-quantified formulas involve the construction of a new LTL or
ELL proof structure.

149

150 SUMMARY AND DISCUSSION 8.1

Success Criteria

As in the finite state case, the local rules serving the construction of proof
structures are complemented with a global success criterion, identifying the
proof structures that are acceptable as proper proofs. The success criteria
for our two types of proof structures are complicated by the fact that a
path in a proof structure is no longer followed by exactly one run as in
the finite state case. In particular, there may be paths that are followed
by no run at all. In order to account for this situation, we have defined
the success criteria for LTL and ELL proof structures on a derived system,
called the associated system, obtained as a combination of the original system
and the proof structure at hand. A run of the associated system, called a
trail of the proof structure, combines a system run with a path through
the proof structure. The notions of success and fairness are then lifted to
trails and success of LTL and ELL proof structures is then defined w.r.t.
successful I1-fair trails. A syntactic characterisation of the two success criteria
as temporal properties of the associated system exhibits the duality of LTL
and ELL success and provides the starting point for the design of proof rules
for success.

Success Rules

A success rule for LTL could be derived from a proof rule for future response
properties as described in [MP91]. On the other hand, the ELL success rule
is new. Both of these rules rely on a well-foundedness argument, although in
a different way. First introduced in a basic version for saturated systems, the
success rules are extended in Chapter 6 to account for fairness constraints.
While weak fairness is relatively easy to deal with in each case, it is strong
fairness that makes up most of the complexity of these rules. The LTL
success rule A(S)fq, invokes itself recursively to prove a similar property
of a modified (associated) system with a smaller strong fairness constraint,
while Rule E(S)4 requires a choice to be made, splitting the proof into
several cases according to the way witnesses are supposed to satisfy the strong
fairness constraint. The individual cases are proved using Rule E(S),]

wuf*

Soundness and Completeness via Games

A novel approach is followed in the proof of soundness and completeness of
our proof system. Due to the expressiveness of our assertion language the best
we can expect is to show completeness relative to the validity of assertions.
The novelty is that we use a game-theoretic argument for the main parts of
the proof, which proceeds in three stages. First, we have characterised the

8.1] CONCLUSIONS AND RELATED WORK 151

CTL* satisfaction relation in terms of the existence of winning strategies in
CTL* model checking games. This characterisation is not a priori related
to proof structures and has an interest of its own. In a second step, we
have identified a close connection between LTL (ELL) trails and V-strategies
(F-strategies) and subsequently between non-winningness (winningness) and
LTL (ELL) admissibility. Admissibility is then compared to success and a
successful proof structure for a system S and sequent = F Q ¢ is shown to
exist precisely if Player 3 wins the game Gs(Z, Q ¢). The final step consists in
showing that the success rules are sound and relatively complete. We think
that a game-theoretic analysis can provide interesting insights into the inner
workings of tableau proof systems such as the one presented here.

Discussion

Deductive local model checking applies to any ground-quantified CTL* for-
mula and any reactive system that can be described as a fair transition
system. As with algorithmic local methods only the part of the state space
that is relevant to the property to be proved needs to be represented in a
proof structure. Infinite-state systems are not the only domain of application
of our proof system. It is equally useful for finite state systems that are too
large to be model checked automatically.

As the modal p-calculus subsumes CTL* in expressive power and several
proof systems have been proposed for it (e.g., [BS92, And93, RH96, GBK97]),
the question may arise why we need a specialised proof system for CTL*.
One problem with translating CTL* into the modal p-calculus is that the
translation is double exponential [Dam94|, indicating that CTL* can be a
lot more concise than the p-calculus (this is especially true for certain path
formulas). Another difficulty is that u-calculus formulas are generally harder
to understand than CTL* formulas. The combined effect of these two prob-
lems is that the translation might completely obscure the meaning of the
original formula, thus making it hard to prove using a proof system that was
designed for the modal p-calculus. CTL* is undoubtedly the temporal logic
with the best trade-off between expressiveness and readability, and this fact
alone justifies the design of a proof system for this logic.

Unlike with the deductive approach of [MP91], there is no need to trans-
form the property formula into some canonical form prior to starting a proof.
Similar to the translation into another logic, the problem with canonisation
is that the original property may be obscured and a proof more difficult to
find as a consequence. One could argue that canonisation has merely been
replaced by a reduction of the original formula to the (uniform) success for-
mula that has to be shown to hold for each proof structure. However, the

152 SUMMARY AND DISCUSSION 8.1

proof structure itself is constructed from the original property formula and
the presence of its subformulas and their unfolding forms in the sequents can
provide a certain guidance for its construction. Moreover, the graphical rep-
resentation of a proof structure often provides considerable help in guessing
the auxiliary quantities required for the application of the success rule, given
that the success criterion is formulated in terms of fairness constraints on
(essentially) the original system and successful paths in the proof structure.
Nonetheless, the application of the success rules is probably the most difficult
part of a proof. But it should also be kept in mind that for a quite large class
of LTL formulas, namely for all those with no occurrences of Until operators,
any proof structure without anti-axioms is successful by construction, thus
making the application of Rule A(S) . needless.

The price to be paid for the generality of our approach is that it is no
longer possible to construct proofs in a fully automatic way. Human insight
into the system and property to be proved is required to successfully complete
a proof. This insight is brought into a proof in the form of choices that have
to be made at specific points. For instance, the application of the Next rules
requires choosing a new assertion for the successor sequent. Choosing these
assertions as general as possible increases the chance of being able to loop
back to that sequent later in the proof. Using the success rules also involves
choosing the intermediate assertions and ranking functions. Making the right
choices can lead to very compact proofs. It is not a question of whether it
is good or bad that such choices need to be made, but whether the insight
of the designer (and insight can be expected!) can be transformed naturally
into a successful! proof. More substantial case studies are needed to obtain
conclusive answers to this question.

Strong fairness is a difficult issue, which is often ignored altogether.
Nonetheless, in many situations weak fairness alone is not sufficient to guar-
antee the required progress of individual system components for essential
liveness properties to hold. Although we have proposed success rules dealing
with weak as well as strong fairness, we feel that the treatment of strong
fairness in the ELL success rule E(S) s, is not completely satisfactory. It re-
quires a choice to be made prior to the application of Rule E(S)qu as to how
trails witnessing the ELL success formula Qg should satisfy the strong fair-
ness constraint F'' of S. We would prefer if this choice could be eliminated
or made in a more “dynamic” way as part of the application of Rule E(S);uf.

An important issue that is only marginally covered in this thesis is the
possibility that a property fails to hold and the extraction of counterexam-
ples. An inherent problem of all deductive systems is the distinction between

There in a non-technical sense

8.2] CONCLUSIONS AND RELATED WORK 153

our inability to find a proof and the case where the statement we try to prove
is wrong. One possibility to follow in case we are unable to prove S,0 F ¢
is to try proving S, = F —¢ for some = such that = — O, that is, proving the
contrary of the original property for a subset of the initial states. A better
approach would try to use the already (possibly only partially) constructed
proof structure for § and © F ¢ for such an effort and show that it is un-
successful. A possible solution starts from the observation that a LTL or
ELL proof structure II for S and = - Q ¢ is unsuccessful iff S™ = QunQq
(where Q stands for A or E) iff there is an assertion ¢ implying O™ such that
S ¢ = Qu—Qq (where Q is the dual of Q). As the negation of Qq has the
same form as (g, it is then not difficult to adapt Rule A(S)y4; for proving
that a ELL proof structure is unsuccessful and likewise Rules E(S) 4 and
E(S)I}uf for proving that a LTL proof structure is unsuccessful. The case is
more involved for CTL*, since a linear counterexample does not always exist.
This topic certainly deserves further attention.

8.2 Related Work

8.2.1 Finite-State Model Checking

We have already discussed the paper [BCG95| which provided the starting
point for the development of our deductive local model checking technique.

In recent work by Biere, Clarke and Zhu [BCZ99|, developed in paral-
lel with ours but independently, they propose an interesting tableau-based
method for ELL that combines local and global model checking techniques
for finite-state systems. Their sequents have the form S E(®), where S is
a finite set of states and their rules are similar to our ELL rules. They also
have a Split rule, although not needed for completeness in their case:

S+ E(®)
S FE(®) S,k E(D)

SiUS, =8

The side condition requires that the two cases S; and S5 exactly cover the
original set S. This rule can therefore not be used for weakening. Their Next
rule is also a restricted version of ours:

SFEX®)
img(S) - E(P)

where img(S) = {s' | 3s € S.s — &'} with transition relation —. This is the
set-theoretic equivalent of the strongest post-condition. For total transition
relations, this is a particular way to satisfy (the set-theoretical equivalent of)

154 RELATED WORK 8.2

the possibility triple appearing as the side condition of our rule E(X). Using
img(.S) in the successor sequent is certainly more suitable for algorithmic
purposes than using a subset of img(.S) (corresponding to a choice of successor
states). As a consequence of these restrictions (w.r.t. to our system) and the
finiteness of the sets S, any state appearing in a sequent of a proof structure is
reachable from an initial state and any path in the proof structure is followed
by at least one run of the system. Therefore, a witnessing run can always be
extracted from a successful path (they do not consider fairness). The interest
of this method lies in the ability to represent the finite sets appearing in the
sequents by BDDs and to have efficient algorithms manipulating them. BDD
techniques have hitherto been used only for global model checking. This
technique thus combines advantages of local and global model checking.

8.2.2 Deductive and Semi-Algorithmic Methods

Manna and Pnueli’s Proof System

The proof system described in [MP91, MP95]| has already been sketched in
Section 2.6.3. The advantage of this system is the small number (three)
of basic rules, which are shown to be relatively complete. The price to be
paid is that formulas have to be brought into canonical form by a complex
translation [LPZ85, MP90| prior to the proof. The drawbacks of canonisation
have already been discussed above.

Diagram-Based Methods

Some of the diagram-based methods have been sketched in Section 2.6.4. The
verification diagrams of [MP94] are a diagrammatic form of some of the proof
rules in [MP91]. We have already compared them with our approach in the
previous chapter (Section 7.3.2), where we showed that invariance diagrams
can be considered as a condensed form of proof structures. Other types of
verification diagrams can be translated to proof structures in a similar way.

Generalised verification diagrams (GVDs) [BMS95, MBSU98| (and the
theses [Uri98, Sip99|) are a direct proof method as is ours (in contrast to
methods that are driven by the search for a counterexample such as DMC).
It consists of first constructing an abstraction of the system (the GVD) which
is then model checked algorithmically. An advantage of separating these
two steps is that an abstraction can possibly be used for the verification of
several properties. As with all abstraction methods, if the model checking
phase fails to establish the property then this result is not conclusive and the
abstraction needs to be refined until the model checker succeeds (provided the

8.2] CONCLUSIONS AND RELATED WORK 155

property holds). On the other hand, in the construction of a proof structure
the system and its property are explored hand-in-hand and the presence of
the temporal formulas in the sequents may provide some guidance for its
construction. Moreover, at least for LTL properties, any proof structure is
successful, provided the property holds. If we are unable to complete the
construction of an LTL proof structure then we can still try to extract a
counterexample (a run following an unsuccessful path) from the pre-proof
structure constructed so far. The construction of an ELL proof structure
might however fail due to badly chosen assertions, even if the property holds.

Deductive model checking (DMC) [SUM99| (and the theses [Uri98, Sip99])
differs from our method in that it is indirect, that is, driven by the search for
a counterexample. Whereas the GVD method starts on the system side (by
building an abstraction), the DMC method starts on the side of the formula,
that is, from the tableau of the negation of the LTL formula ¢ to be verified
(called the initial falsification diagram). It then proceeds by refinement of
falsification diagrams, while maintaining the invariant that all counterexam-
ples to ¢ present in the system (if any) are represented in each falsification
diagram. The process is stopped if the language accepted by a falsification
diagram can be seen to be empty.

As an early diagram-based method V-automata were proposed in [MP89]
as an alternative to temporal logic verification. These are finite-state w-
automata that accept an infinite sequence o if all runs of the automaton on
o are accepting. This is reminiscent of the success criterion of LTL proof
structures, where all II-fair trails are required to be successful, that is, for
any computation o all trails projecting to ¢ have to be successful.

It should be noted that V-automata, GVDs and DMC (the latter two be-
ing based on a form of Miiller automaton) have all the expressive power

of w-regular languages [Tho90| or, equivalently, extended temporal logic
(ETL) [Wol83|.

Fix and Grumberg’s Proof System for CTL

The first proof system for CTL is proposed by Fix and Grumberg in [FG96].
They use transitions systems with weak fairness constraints as their compu-
tational model. Sequents are of the form P Satp — ¢, where P is a program,
p is an assertional pre-condition and ¢ is a CTL formula (where path quan-
tification is over weakly fair runs). A sequent is valid if the initial state of
every computation tree of P satisfies the implication p — ¢. They present
a set of rules for proving the validity of sequents. The rule to be applied
to a sequent is determined by the top-level connective of the CTL formula
(negated forms are also included). Each rule reduces its conclusion to a set

156 RELATED WORK 8.2

of assertions and/or simpler temporal properties. The proof system is shown
to be relatively complete.

Their rule for P Satp — —A(¢1U¢ps) reduces this sequent to proving
P Satp — EG(—¢s) or PSatp — —E(—¢s U(—¢1 A —¢s)). Tt is interesting
to see how their rule for P Satp — EG ¢ ensures that a (weakly) fair run
satisfying G ¢ exists. Their rule mechanism to achieve this is based in the
observation that a fair run is composed of fair segments. On a fair segment
each fair transition is either disabled in some state or taken somewhere (see
also the proof of completeness of Rule F-RESP in [MP91|). They introduce a
function g: ¥ — {0, 1} mapping states to a bit vector with one bit for each
fair transition of the system. The premises are designed in such a way that g
records the transitions that have been granted (that is, disabled or taken) on
a segment. The end points of segments are indicated by an auxiliary assertion
I that is required to hold infinitely often on a run witnessing G ¢. Assertion
I is required to imply g = 0 (n zeros), indicating that all fair transitions
have been granted. In this way, ¢ implements a particular form of ranking
function.

It is interesting to compare this mechanism with the modes and rank-
ings of our Rule E(F G, A\ GF).s for proving properties of the form E(FGgA
A~ GFr;) (Section 6.3.2). Suppose that we have no assertions r; and an
empty unconditional fairness constraint. By setting aq & false we can actu-
ally “turn off” the fall-backs and thus obtain a rule for properties of the form
E G ¢, albeit only for assertions g. Only premises R1, R3 and R6 remain non-
trivial for this variant of Rule E(F G, A\ GF),us. The existence of a (weakly)
fair run witnessing G q is ensured by the modes «; and rankings ¢;, one such
pair for each A; € W. Whereas their ranking g measures the distance to the
end of a fair interval, our mode «; “remembers” the A; to be granted next
and §; measures the distance to the point where A; is granted. Premise R6
requires that the mode is switched from «; to a;g1 upon granting A;, thereby
ensuring that all elements of W are granted in a cyclic manner.

Considering the capability required of their function g to record the grant-
ing of transitions, it is not surprising that they also need a history variable
in the proof of relative completeness of their rule.

Other Proof Systems

In [HGD95, BDG"98] a proof system for first-order ACTL is proposed.
ACTL is the sublogic of CTL, where only universal path quantifiers are
allowed. They generate a first-order success formula, the validity of which
is sufficient to conclude that the property holds. Their system is not rel-
atively complete, since it does not include a well-foundedness argument to

8.2] CONCLUSIONS AND RELATED WORK 157

show that U-formulas fulfill their promises. However, their primary goal is
not completeness, but to obtain a high degree of automation by separating
control from data aspects.

Several proof systems the modal p-calculus have been proposed. Brad-
field and Stirling [BS92, Bra91| describe a tableau system for the proposi-
tional p-calculus that was obtained by generalisation from the finite-state
system in [SW91|. Andersen has extended the Winskel’s rewriting version
of the latter system [Win91] to the infinite-state case [And93]. Rathke and
Hennessy describe a proof system for a first-order version of the modal u-
calculus [RH96, Rat97].

A compositional proof systems for sequential value-passing CCS processes
and the first-order p-calculus is presented by Gurov, Berezin and Kapron
|[GBKO97| and a separate system handling parallel composition is introduced
in [BGI7] (see also Gurov’s thesis [Gur98|, where both systems are described).
Mads Dam [Dam98| also described a compositional proof system for the first-
order p-calculus.

8.2.3 Model Checking Games

Model checking games were introduced by Stirling in a series of papers [Sti95,
Sti%6a, Sti97|. It turns out that a successful tableau constructed according
to the rules in [SWO91, Sti96b| can be seen as a winning strategy for such
a game?. This is in contrast to our system, where a trail (path) of a proof
structure corresponds to a strategy (pre-strategy) for CTL* games.

A efficient local model checking algorithm for the p-calculus based on
games is presented in [SS98|. It constructs a winning strategy for the model
checking game corresponding to the property to be verified. By playing
against the machine (and loosing each play) these games can help the user
understand why a property hold or fails. This algorithm has been incorpo-
rated in to the Edinburgh Concurrency Workbench [MS].

Model checking games for CTL* have been proposed only very recently in
(as yet) unpublished work by Lange and Stirling [LS00]. The difference with
our CTL* games is that while our games are played along runs of the system,
their games are state-based with configurations of the form p,s F [p], D,
where p is the current pathplayer (either 3 or V), s is a state, ¢ is the
formula in focus and ® is a set of formulas. They give a set of rules that
define the legal moves and the player who possibly needs to make a choice (of
a subformula or successor state) in that move. Disregarding the focus, these

2This view of tableau as strategies leads to a spectacular simplification of the original
proof of soundness and completeness in [SWI1].

158 RELATED WORK 8.2

rules are very similar to our rules for LTL and ELL, but they are combined
into one system with the pathplayer in the configuration indicating which
part of the system is currently being used. The pathplayer is reset when
a path-quantified formula appears in the focus. The formulas in focus in a
configuration and its successor are usually related by a generation relation
(in our terminology), but there is a special rule allowing the pathplayer’s
opponent to change the focus. This is necessary, because plays move from
state to state and not along a run as in our case, and gives the opponent
a chance to redo previous moves. Their work is too recent to give a more
in-depth comparison, but the precise relationship of their games with ours
and especially with proof structures will provide a nice topic for further
investigation.

It is interesting to consider our CTL* games and strategies in the light of
the work on abstract games presented by Perdita Stevens [Ste98a, Ste98b|.
An abstract version of our CTL* games could have configurations (R, ¢),
where R is a set of runs and ¢ a CTL* formula. The rules remain essentially
the same except that the games are now played along all the runs in R simul-
taneously. A Next move would thus proceed from a configuration (R, X1))
to (R',v), where R' = {o! | 0 € R}. Unlike concrete plays, finite abstract
plays may end in a draw.

Consider the abstract game Gs(Ry, A ¢) where A ¢ is a LTL formula and
Ry is the set of =-computations following a path 7 in a LTL proof structure
for S and = + A¢. Then the path m can be transformed into an abstract
V-strategy T, for that game by defining

def def

T.={R,*t|cel*(m)} 1. =tTx

where

def

R, (i) = {oy(7) | I ITI—fair trail ¥.my = 7}

Note that R.(0) = Ry. This strategy treats all computation following 7 in
a uniform way, such that no (abstract) plays end in a draw. In summary,
paths in proof structures seem to correspond to strategies in abstract games,
while trails correspond to strategies of concrete games. The details remain
to be checked.

8.3] CONCLUSIONS AND RELATED WORK 159

8.3 Directions for Future Work

Some possible tracks for future work that come to mind are listed below.

Tool support

For the practical application of our method tool support is essential. The
number of verification conditions alone makes proofs by hand error-prone. A
suitable tool would consist of a graphical front-end based on a graph editor
for the construction of proof structures and a theorem prover to discharge
the verification conditions at the back-end. The front-end can be based on a
graph editor with application of proof rules driven by the syntax of formulas.
Clicking on a formula on the right-hand side of a sequent could apply the
rule corresponding to its top-level connective. Clicking on the left-hand side
would invoke the Split rule. The front-end would also manage the verification
conditions generated by the rules and provide an interface to the theorem
prover. High-level tactics and techniques for the automatic generation of
invariants (see e.g., [BBM97]) could assist the user in the construction of
proof structures. For proving success, auxiliary assertions could be assigned
to each sequent in the proof structure and the Hoare or possibility triples
to be discharged could be associated to edges with the proof tool trying to
identify and eliminate the trivial conditions. We plan to implement such
a tool with system specifications based on the high-level concurrent object
language SOL and its twisted system semantics as described in the thesis of
Krzysztof Worytkiewicz [Wor00].

Refinement of Proof Structures and SCS-Based Success Rules

After the partial construction of a proof structure it may happen that we
would like to make it more “fine-grained”, in order to simplify the subsequent
application of a success rule, for example. Therefore, it could be helpful to
be able to refine an already or partially constructed proof structure, instead
of starting the construction from scratch. The design of refinement rules
similar to the ones used in DMC [SUM99| could be considered.

Another point of investigation is in alternative success rules based on
an examination of each unsuccessful strongly connected subgraph (SCS),
similar to the ones used in DMC [SUM99| and GVDs [BMS95, MBSU9S].
These could in some situations provide a more “user-friendly” way of proving
success. A possible problem is that the number of SCS grows exponentially
with the size of a proof structure. However, for many practical applications
the number of SCS might be small enough to make such an approach a

160 DIRECTIONS FOR FUTURE WORK 8.3

suitable alternative.

Real-time systems

Real-time systems (see [AH92| for a survey) are intrinsicly infinite state
due to the unbounded progress of time. In the clocked transition system
(CTS) model of [KMP98|, there are several clock variables one of which is
the (global) master clock T. Time is advanced by a special tick transition,
while system transitions do not modify the clock variables. Progress (of
time) is guaranteed by the so-called non-zenoness condition, which replaces
the fairness constraints found in discrete systems. A CTS run is zeno if time
stops at some point or converges to an upper bound. Only non-zeno runs
(with time diverging) are considered as computations. A CTS is non-zeno if
every computation prefix can be extended to a computation. This condition
can be expressed as the CTL formula

Ve > 0.Vt. AG(T =t — EF(T >t +¢))

where path quantification is to be understood over all runs [Sip99|. This
formula can be verified using our proof system.

However, for the proper verification of properties of real-time systems
path-quantification ranges over computations only (that is, the non-zeno
runs). The local rules for the construction of proof structures can be used
for this purpose as they stand, but the success rules need to be reviewed and
adapted for non-zenoness.

Model Checking Games and Counterexamples

The precise connection between our CTL* games and the version presented
in [LS00] should be investigated. Our own CTL* games are played along runs
and, while appropriate for proving soundness and completeness of our proof
system, seem not very suitable for the extraction of winning strategies that
can help the users understand why a property holds or not. The connection of
the CTL* games of [L.S00]| to proof structures should be carefully examined.
In particular, it should be checked whether winning strategies for their CTL*
games are represented in some form in our proof structures.

Bibliography

[AFKSS)]

[AHO?]

[AL91]

[And93]

[ASS5)

[BBMO7]

[BBP89|

[BCGY5]

K.R. Apt, N. Francez, and S. Katz. Appraising fairness in lan-
guages for distributed programming. Distributed Computing,
2:226-241, 1988.

R. Alur and T. Henzinger. Logics and models for real-time:
a survey. In J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg, editors, Proceedings of the REX Workshop
"Real-Time: Theory in Practice”, volume 600 of Lecture Notes
wn Computer Science, pages 74-106. Springer-Verlag, 1992.

Martin Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253-284, May
1991.

Henrik Reif Andersen. Verification of Temporal Properties of
Concurrent Systems. PhD thesis, Computer Science Depart-
ment, Aarhus University, June 1993.

Bowen Alpern and Fred B. Schneider. Defining liveness. Infor-
mation Processing Letters, 21:181-185, October 1985.

Nikolaj S. Bjorner, Anca Browne, and Zohar Manna. Automatic
generation of invariants and intermediate assertions. Theoretical
Computer Science, 173(1):49-87, 1997.

B. Baniegbal, H. Barringer, and A. Pnueli, editors. Temporal
Logic in Specification, volume 398 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly
model checking for CTL*. In Logic in Computer Science, LICS
95, pages 388-397, 1995.

161

162

[BOM92]

[BCZ99)

[BDGT98]

[BG97]

[BMS95]

[Bra91]

[Bry86]

[BS92]

[BVW]

[BW90]

BIBLIOGRAPHY

J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model
checking: 10%° states and beyond. Information and Computation,
98:142-170, 1992.

Armin Biere, Edmund Clarke, and Yunshan Zhu. Combining
local and global model checking. Electronic Notes in Theoretical
Computer Science, 23(2), 1999.

Jiirgen Bohn, Werner Damm, Orna Grumberg, Hardi Hungar,
and Karen Laster. First-order CTL model checking. In Foun-
dations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS '98, Chennai, India, volume 1530, pages 283—-294.
Springer-Verlag, 1998. Preliminary version appeared in [HGD95].

Sergey Berezin and Dilian Gurov. A compositional proof system
for the modal p-calculus and CCS. Technical Report CMU-CS-
97-105, Carnegie Mellon University, Pittsburgh, PA, 1997.

I. A. Browne, Z. Manna, and H. B. Sipma. Generalized temporal
verification diagrams. In Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 95, Bangalore, India,
volume 1026 of Lecture Notes in Computer Science, pages 484—
498. Springer-Verlag, 1995.

Julian Charles Bradfield. Verifying Temporal Properties of Sys-
tems with Applications to Petri Nets. PhD thesis, University of
Edinburgh, July 1991.

Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(6):677—
691, August 1986.

Julian Bradfield and Colin Stirling. Local model checking for
infinite state spaces. Theoretical Computer Science, 96:157-174,
1992.

Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An
automata-theoretic approach to branching-time model checking.
In CAV ’9/, Lecture Notes in Computer Science, pages 142—155.
Springer-Verlag.

J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18
of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1990.

[CES1]

[CESS6]

[CGHYT]

[CGLY3|

[CGPYY]

[CMPY3]

[CS87]

[Dam94]

[Dam95]

[Dam9s]

BIBLIOGRAPHY 163

E. M. Clarke and E. A. Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In
Proceedings Workshop on Logics of Programs, volume 131 of Lec-
ture Notes in Computer Science, pages 52-71, Springer, Berlin,
1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems, 8:244-263, 1986.

E. M. Clarke, O. Grumberg, and H. Hamaguchi. Another look at
symbolic 1t]l model checking. Formal Methods in System Design,
10(1), 1997.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Ver-
ification tools for finite-state concurrent systems. In J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A
Decade of Concurrency: Reflections and Perspectives, volume
803 of Lecture Notes in Computer Science, pages 124-175.
Springer-Verlag, 1993.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
Checking. The MIT Press, 1999.

E. Chang, Z. Manna, and A. Pnueli. The safety-progress clas-
sification. In Friedrich L. Bauer, Wilfried Brauer, and Helmut
Schwichtenberg, editors, Logic and Algebra of Specification, vol-
ume 94 of NATO ASI Series F: Computer and System Sciences,
pages 143-202. Springer-Verlag, 1993.

Berardo Costa and Colin Stirling. Weak and strong fairness in
CCS. Information and Computation, 73(3):207-244, 1987.

Mads Dam. CTL* and ECTL* as fragments of the modal p-
calculus. Theoretical Computer Science, 126:77-96, 1994.

Mads Dam. Proving properties of dynamic process networks. In
CONCUR 95, volume 962 of Lecture Notes in Computer Science,
pages 12-26. Springer-Verlag, 1995.

Mads Dam. Proving properties of dynamic process networks.
Information and Computation, 140:95-114, 1998. Full version of
[Dam95].

164

[DF95)

[DGGIT]

[AN87]

[EHS6|

[EL85]

[Eme90]

[FG6]

[Fras6]

[GBK97]

[GPVWO5]

[GS97]

BIBLIOGRAPHY

Jiirgen Dingel and Thomas Filkorn. Model checking for infinite
state systems using data abstraction, assumption-commitment
style reasoning and theorem proving. In CAV ’95, volume 939
of Lecture Notes in Computer Science. Springer-Verlag, 1995.

Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract inter-
pretation of reactive systems. ACM Transactions on Program-
ming Languages and Systems, 19(2):253-291, 1997.

Rocco de Nicola. Extensional equivalences for transition systems.
Acta Informatica, 24:211-237, 1987.

E. A. Emerson and J. Y. Halpern. "Sometimes" and "not never"
revisited: on branching vs. linear time temporal logic. Journal
of the ACM, 33(1):151-178, January 1986.

E. A. Emerson and C. L. Lei. Modalities for model checking:
branching time strikes back (extended abstract). In Proceedings
of the 12th Annual ACM Symposium on the Principles of Pro-
gramming Languages, pages 84-96, 1985.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, ed-
itor, Handbook of theoretical computer science, volume B, pages
995-1072. Elsevier, 1990.

Limor Fix and Orna Grumberg. Verification of temporal prop-
erties. Journal of Logic and Computation, 6(3):343-361, 1996.

N. Francez. Fairness. Springer, New York, 1986.

Dilian Gurov, Sergey Berezin, and Bruce Kapron. A modal mu-
calculus and a proof system for value passing processes. Flec-
tronic Notes in Theoretical Computer Science, 5, 1997.

Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper.
Simple on-the-fly automatic verification of linear time temporal
logic. Unpublished manuscript, January 1995.

Susanne Graf and Hassen Saide. Construction of abstract state
graphs with pvs. In Orna Grumberg, editor, Computer-Aided
Verification, CAV 97, volume 1254 of Lecture Notes in Computer
Science, pages 72—-83. Springer-Verlag, 1997.

[Gur9sg]

[HGD95|

[Hoa85]

[Kic6]

[KMP93]

[KMP93]

[Koz83]

[KRP95|

[Kur94|

[Kwis9]

[Lam74|

BIBLIOGRAPHY 165

Dilian Gurov. Specification and Verification of Communicating
Systems with Value Passing. PhD thesis, University of Victoria,
Canada, 1998.

Hardi Hungar, Orna Grumberg, and Werner Damm. What if
model checking must be truly symbolic? In TACAS ’95, volume
987 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall International Series on Computer Science. Prentice-Hall,
1985.

Alexander Kick. Generierung von Gegenbeispielen und Zeugen
bei der Modellprifung. PhD thesis, Fakultét fiir Informatik, Uni-
versitit Karlsruhe, Germany, 1996. (in german).

Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of
simulation and refinement. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, A Decade of Concurrency: Reflec-
tions and Perspectives, volume 803 of Lecture Notes in Computer
Science, pages 273-346. Springer-Verlag, 1993.

Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and
hybrid systems. In G. Rozenberg and F. W. Vaandrager, editors,
Lectures on Embedded Systems, volume 1494 of Lecture Notes in
Computer Science, pages 4-73. Springer-Verlag, 1998.

D. Kozen. Results on the propositional p-calculus. Theoretical
Computer Science, 27:333-354, 1983.

Y. Kesten, L. Raviv, and A. Pnueli. OBDD’s LTL. MC: Model
checking of linear tl, using obdd’s. Technical Report CS95-13,
Weizmann Institute of Science, 1995.

Robert P. Kurshan. Computer-aided verification of coordinating
processes. Princeton University Press, 1994.

Marta Z. Kwiatkowska. Survey of fairness notions. Information
and Software Technology, 31(7):371-386, September 1989.

Leslie Lamport. A new solution of Dijkstra’s concurrent pro-
gramming problem. Communications of the ACM, 17(8):435-
455, 1974.

166

[Lam94]

[LP85]

[LPS81]

[LPZ85]

[LS00]

[LT87]

[MBSU9S|

[Mil89]

[Mil99]

[Mos74]

BIBLIOGRAPHY

Leslie Lamport. Temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872-923, May
1994.

O. Lichtenstein and A. Pnueli. Checking that finite state concur-
rent programs satisfy their linear specification. In Proceedings of
the 12th Annual ACM Symposium on the Principles of Program-
ming Languages, pages 97-107, 1985.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and
fairness: the ethics of concurrent termination. In Proceedings
of the 8th ICALP, volume 115, pages 264-277. Springer-Verlag,
July 1981.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past.
In Proceedings of Conference on Logics of Programs, volume 193

of Lecture Notes in Computer Science, pages 196-218. Springer-
Verlag, 1985.

Martin Lange and Colin Stirling. Model checking games for ctl*.
submitted to ICTL 2000, 2000.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing, pages 137—
151. ACM Press, 1987. Extended version in Technical Report
MIT/LCS/TR-387, Lab for Computer Science, MIT.

Zohar Manna, Anca Browne, Henny B. Sipma, and Tomés E.
Uribe. Visual abstractions for temporal verification. In AMAST
'98, volume 1548 of Lecture Notes in Computer Science, pages
28-41. Springer-Verlag, 1998.

Robin Milner. Commaunication and Concurrency. Prentice Hall
International Series in Computer Science. Prentice Hall, 1989.

Robin Milner. Communicating and Mobile Systems: the m-
Calculus. Cambridge University Press, 1999.

Yiannis N. Moschovakis. Elementary Induction on Abstract
Structures, volume 77 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Company, 1974.

[MP89]

[MP90]

[MPO1]

[MP92]

[MP94]

[MP95]

[MS]

[Par76]

[Pnu92]

[QS82]

BIBLIOGRAPHY 167

Zohar Manna and Amir Pnueli. Specification and verification of
concurrent programs by V-automata. In [BBP89/, pages 124-164.
Springer-Verlag, 1989.

O. Maler and A. Pnueli. Tight bounds on the complexity of
cascaded decomposition of automata. In Proceedings of the
31th IEEE Symposium on the Foundations of Computer Science,
pages 672-682, 1990.

Z. Manna and A. Pnueli. Completing the temporal picture. The-
oretical Computer Science, 83(1):97-139, 1991.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer Verlag, 1992.

Zohar Manna and Amir Pnueli. Temporal verification diagrams.
In Masami Hagiya and John C. Mitchell, editors, Theoretical
Aspects of Computer Software, Proceedings TACS 94, volume 789
of Lecture Notes in Computer Science, pages 726-765. Springer-
Verlag, 1994.

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems — Safety. Springer Verlag, 1995.

Faron Moller and Perdita Stevens. The Edinburgh Concur-
rency Workbench user manual. Laboratory for Foundations
of Computer Science, Edinburgh University. available at
http://www.dcs.ed.ac.uk/home/cwb/doc.

David Park. Finiteness is mu-ineffable. Theoretical Computer
Science, 3(2):173-181, 1976.

Amir Pnueli. System specification and refinement in temporal
logic. In R. Shyamasundar, editor, Proceedings of the 12th Con-
ference on Foundations of Software Technology and Theoretical
Computer Science, New Delhi, India, December 1992, volume
652 of Lecture Notes in Computer Science, pages 1-38, 1992.

J. Queille and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In International Symposium on Pro-
gramming, volume 137 of Lecture Notes in Computer Science,
pages 337-351. Springer-Verlag, 1982.

168

[Rat97]

[Ref96]

[Rei85]

[RH96]

[RSS95]

[SARGSY]

[Sip99|

[SNWO6)

SS08]

[Sta88]

[Ste98al

[Ste98b]

BIBLIOGRAPHY

Julian Rathke. Symbolic Techniques for Value-Passing Calculi.
PhD thesis, University of Sussex, United Kingdom, 1997.

Frank Reffel. Ubersetzung von CTL* Formeln in den u-Kalkiil.
Master’s thesis, Fakultit fiir Informatik, Universitit Karlsruhe,
Germany, 1996. (in german).

W. Reisig. Petri Nets. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, 1985.

Julian Rathke and Matthew Hennessy. Local model checking for
a value-based p-calculus. Technical Report 05/96, University of
Sussex, 1996.

S. Rajan, N. Shankar, and M. K. Srivas. An integration of model
checking with automated proof checking. In CAV 95, volume
939 of Lecture Notes in Computer Science, pages 84-97. Springer-
Verlag, 1995.

F. A. Stomp, W.-P. de Roever, and R. T. Gerth. The p-calculus
as an assertion language for fairness arguments. Information and
Computation, 82:278-322, 1989.

Henny Sipma. Diagram-based verification of discrete, real-time
and hybrid systems. PhD thesis, Stanford University, 1999.

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models
of concurrency: towards a classification. Theoretical Computer
Science, 170(1-2):297-348, 1996.

Perdita Stevens and Colin Stirling. Practical model-checking
using games. In TACAS 98, volume 1384 of Lecture Notes in
Computer Science, pages 85-101. Springer-Verlag, 1998.

E. W. Stark. Proving entailment between conceptual state spec-
ifications. Theoretical Computer Science, 56:135—154, 1988.

Perdita Stevens. Abstract games for infinite state processes. In
CONCUR ’98, volume 1466 of Lecture Notes in Computer Sci-
ence, pages 147-162. Springer-Verlag, 1998.

Perdita Stevens. Abstract interpretation of games. In VMCATI
98, 1998.

[Sti89)

[Sti92]

[Sti95]

[Sti96al

[Sti96b]

[Sti97]

[SUM99]

[SWO1]

[Tho90]

[TL94|

BIBLIOGRAPHY 169

Colin Stirling. Comparing linear and branching time temporal
logics. In Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science. Springer-Verlag, 19809.

Colin Stirling. Modal and temporal logics. In S. Abramsky,
Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science, volume 2: Background: Computa-
tional Structures, pages 477-563. Oxford University Press, 1992.

Colin Stirling. Local model checking games. In CONCUR ’95,
volume 962 of Lecture Notes in Computer Science, pages 1-11.
Springer-Verlag, 1995.

Colin Stirling. Games and modal p-calculus. In TACAS 96,
volume 1055 of Lecture Notes in Computer Science, pages 298—
312. Springer-Verlag, 1996.

Colin Stirling. Modal and temporal logics for processes. vol-
ume 1043 of Lecture Notes in Computer Science, pages 149-237.
Springer-Verlag, 1996.

Colin Stirling. Bisimulation, model checking and other games.
Notes for Mathfit instructional meeting on games and computa-
tion, Edinburgh, June 1997.

Henny Sipma, Tomés E. Uribe, and Zohar Manna. Deductive
model checking. Formal Methods in System Design, 15:49-74,
1999.

Colin Stirling and David Walker. Local model checking in the
modal p-calculus. Theoretical Computer Science, 89:161-177,
1991.

W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B,
pages 133-191. Elsevier Science Publishers , Amsterdam, 1990.

Wolfgang Thomas and Helmut Lescow. Logical specifications of
infinite computations. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, A Decade of Concurrency - Reflec-
tions and Perspectives, volume 803 of Lecture Notes in Computer
Science, pages 583-621. Springer-Verlag, 1994.

170

[Uri98]

[vGI0]

[vG93]

[VWS6|

[Win91]

[Wol83]

[Wor00]

BIBLIOGRAPHY

Tomas E. Uribe. Abstraction-Based Deductive-Algorithmic Ver-
ification of Reactive Systems. PhD thesis, Stanford University,
December 1998.

R. J. van Glabbeek. The linear time - branching time spectrum.
In J. C. M. Baeten and J. W. Klop, editors, CONCUR 90, volume
458, pages 278-297. Springer-Verlag, 1990.

R. J. van Glabbeek. The linear time - branching time spec-
trum IT — the semantics of sequential systems with silent moves.
In E. Best, editor, CONCUR ’93, volume 715, pages 66-81.
Springer-Verlag, 1993.

M. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. In Proceedings of the IEEE Sym-
posium on Logic in Computer Science, pages 322-331, 1986.

Glynn Winskel. A note on model checking the modal p-calculus.
Theoretical Computer Science, 83:157-167, 1991.

P. Wolper. Temporal logic can be more expressive. Information
and Control, 56(1, 2):72-93, 1983.

Krzysztof Worytkiewicz. Components and Synchronous Commu-
nication in Categories of Processes. PhD thesis, Department of
Computer Science, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland, 2000.

Curriculum Vitae

January 25, 1967 Born in St. Gallen, Switzerland
1981-1985 Cantonal School (Gymnasium), Heerbrugg, Matura Type B

1986-1992 studies in Computer Science at the Swiss Federal Institute of
Technology (ETH), Zurich, engineer diploma in Computer Science

specialisation in computer architecture, compiler construction, oper-
ating systems and control theory

diploma thesis on “Network Computing with Non-Blocking Remote
Procedure Calls” (in german) supervised by Prof. Dr. W. Gander

June 1992-March 1994 scientific co-worker at the Institute for Scientific
Computing at ETH Zurich in the group of Prof. Dr. W. Gander and
Dr. P. Arbenz

Sept.-Oct. 1992 visitor in the group of Prof. Dr. Jack Dogarra at the Uni-
versity of Tennessee, Knoxville

May 1994-May 2000 Ph.D. at the Swiss Federal Institute of Technology,
Lausanne, under supervision of Prof. Dr. Claude Petitpierre

current address:
Computer Networking Laboratory
Department of Computer Science
Swiss Federal Institute of Technology
EPFL-DI-LTI
1015 Lausanne
Switzerland

e-mail: christoph.sprenger@epfl.ch

171

172

