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Abstract. We present a large class of security protocol abstractions
with the aim of improving the scope and efficiency of verification tools.
We propose typed abstractions, which transform a term’s structure based
on its type, and untyped abstractions, which remove atomic messages,
variables, and redundant terms. Our theory improves on previous work
by supporting a useful subclass of shallow subterm-convergent rewrite
theories, user-defined types, and untyped variables to cover type flaw
attacks. We prove soundness results for an expressive property language
that includes secrecy and authentication. Applying our abstractions to
realistic IETF protocol models, we achieve dramatic speedups and extend
the scope of several modern security protocol analyzers.

1 Introduction

Security protocols play a central role in today’s networked applications. Past
experience has amply shown that informal arguments justifying the security
of such protocols are insufficient. This makes security protocols prime candi-
dates for formal verification. In the last two decades, research in formal security
protocol verification has made enormous progress, which is reflected in many
state-of-the-art tools including AVANTSSAR [1], ProVerif [6], Maude-NPA [14],
Scyther [10], and Tamarin [21]. These tools can verify small to medium-sized
protocols in a few seconds or less, sometimes for an unbounded number of ses-
sions. Despite this success, they can still be challenged when verifying real-world
protocols such as those defined in standards and deployed on the internet (e.g.,
TLS, IKE, and ISO/IEC 9798). Such protocols typically have messages with nu-
merous fields, support many alternatives (e.g., cryptographic setups), and may
be composed from more basic protocols (e.g., IKEv2-EAP).

Abstraction [7] is a standard technique to over-approximate complex systems
by simpler ones for verification. Sound abstractions preserve counterexamples (or
attacks in security terms) from concrete to abstracted systems. In the context
of security protocols, abstractions are extensively used. Here, we only mention a
few examples. First, the Dolev-Yao model is a standard (not necessarily sound)
abstraction of cryptography. Second, many tools use abstractions to map the
verification problem into the formalism of an efficient solver or reasoner. We
call these back-end abstractions. For example, ProVerif [6] translates models in
the applied pi calculus to a set of Horn clauses, SATMC [4] reduces protocol
verification to SAT solving, and Paulson [24] models protocols as inductively



defined trace sets. Finally, some abstractions aim at speeding up automated
analysis by simplifying protocols within a given protocol model before feeding
them to verifiers [18,22]. Our work belongs to this class of front-end abstractions.

Extending Hui and Lowe’s work [18], we proposed in [22] a rich class of proto-
col abstractions and proved its soundness for a wide range of security properties.
We used a type system to uniformly transform all terms of a given type (e.g., a
pattern in a protocol role and its instances during execution) whereas [18] only
covers ground terms. Our work [22] exhibits several limitations: (1) the theory
is limited to the free algebra over a fixed signature; (2) all variables have strict
(possibly structured) types, hence we cannot precisely model ticket forwarding
or Diffie-Hellman exchanges. While the type system enables fine-grained control
over abstractions (e.g., by discerning different nonces), it may eliminate realis-
tic attacks such as type flaw attacks; (3) some soundness conditions involving
quantifiers are hard to check in practice; and (4) it presents few experimental
results for a single tool (SATMC) using abstractions that are crafted manually.

In this work, we address all the limitations above. First, we work with a useful
subclass of shallow subterm-convergent rewrite theories modulo a set of axioms
to model cryptographic operations. Second, we support untyped variables, user-
defined types, and subtyping. User-defined types enable the grouping of similar
atomic types (e.g., session keys) and adjusting the granularity of matching in
message abstraction. Third, we have separated the removal of variables, atomic
messages, and redundancies (new untyped abstractions) from the transformation
of the message structure (typed abstractions). This simplifies the specifications
and soundness proof of typed abstractions. Fourth, we provide effectively check-
able syntactic criteria for the conditions of the soundness theorem. Finally, we
extended Scyther [10] with fully automated support for our abstraction method-
ology. We validated our approach on an extensive set of realistic case studies
drawn from the IKEv1, IKEv2, ISO/IEC 9798, and PANA-AKA standard pro-
posals. Our abstractions result in very substantial performance gains. We have
also obtained positive results for several other state-of-the-art verifiers (ProVerif,
CL-Atse, OFMC, and SATMC) with manually produced abstractions.

Example: The IKEv2-mac protocol The Internet Key Exchange (IKE) fam-
ily of protocols is part of the IPsec protocol suite for securing Internet Protocol
(IP) communication. IKE establishes a shared key, which is later used for secur-
ing IP packets, realizes mutual authentication, and offers identity protection as
an option. Its first version (IKEv1) dates back to 1998 [17]. The second version
(IKEv2) [20] significantly simplifies the first one. However, the protocols in this
family are still complex and contain a large number of fields.

Concrete protocol. As our running example, we present a member of the IKEv2
family, called IKEv2-mac (or IKEm for short), which sets up a session key using
a Diffie-Hellman (DH) key exchange, provides mutual authentication based on
MACs, and also offers identity protection. We use Cremers’ models of IKE [11] as
a basis for our presentation and experiments (see Section 4.2). Our starting point



is the following concrete IKEm protocol between an initiator A and a responder B.

IKEm(1). A→ B : SPIa, o, sA1 , gx ,Na
IKEm(2). B → A : SPIa,SPIb, sA1 , gy ,Nb
IKEm(3). A→ B : SPIa,SPIb, {|A,B,AUTHa, sA2 , tSa, tSb|}SK
IKEm(4). B → A : SPIa,SPIb, {|B,AUTHb, sA2 , tSa, tSb|}SK

Here, SPIa and SPIb denote the Security Parameter Indices that determine
cryptographic algorithms, o is a constant number, sA1 and sA2 are Security
Associations, g is the DH group generator, x and y are secret DH exponents, Na
and Nb are nonces, and tSa and tSb denote Traffic Selectors specifying certain
IP parameters. AUTHa and AUTHb denote the authenticators of A and B and
SK the session key derived from the DH key gxy . These are defined as follows.

SK = kdf(Na,Nb, gxy ,SPIa,SPIb)
AUTHa = mac(sh(A,B),SPIa, o, sA1 , gx ,Na,Nb, prf(SK , A))
AUTHb = mac(sh(B,A),SPIa,SPIb, sA1 , gy ,Nb,Na, prf(SK , B))

We model the functions mac, kdf, and prf as hash functions and use sh(A,B) and
sh(B,A) to refer to the (single) long-term symmetric key shared by A and B.

We consider the following security properties: (P1) the secrecy of the DH key
gxy , which implies the secrecy of SK , and (P2) mutual non-injective agreement
on the nonces Na and Nb and the DH half-keys gx and gy .

Abstraction. Our theory supports the construction of abstract models by remov-
ing inessential fields and operations. For example, in IKEm we can remove: (i)
the symmetric encryptions with the session key SK ; then (ii) all atomic top-level
fields except Na and Nb; (iii) all fields of SK except the DH key gxy ; and (iv)
from the authenticators: the fields SPIa, SPIb, and sA1 and the application of
prf including the agent names underneath. The resulting protocol is IKE2

m:

IKE2
m(1). A→ B : gx ,Na IKE2

m(3). A→ B : AUTHa
IKE2

m(2). B → A : gy ,Nb IKE2
m(4). B → A : AUTHb

where SK = kdf(gxy) and AUTHa = mac(sh(A,B), o, gx ,Na,Nb,SK ) for role A
and AUTHb = mac(sh(B,A), gy ,Nb,Na,SK ) for role B.

Scyther verifies the properties (P1) and (P2) in 8.7s on the concrete and in
1.7s on an automatically generated abstract protocol (which is less intuitive than
the one presented here). Our soundness results imply that the original protocol
IKEm also enjoys these properties. We chose the protocol IKEm as running exam-
ple for its relative simplicity compared to the other protocols in our case studies.
In many of our experiments (Section 4.2), our abstractions (i) result in much
more substantial speedups, or (ii) enable the successful unbounded verification
of a protocol where it times out or exhausts memory on the original protocol.

2 Security protocol model

We define a term algebra TΣ(V ) over a signature Σ and a set of variables V in the
standard way. Let Σn denote the symbols of arity n. We call the elements of Σ0



atoms and write Σ≥1 for the set of proper function symbols. For a fixed Σ≥1, we
will vary Σ0 to generate different sets of terms, denoted by T (V,Σ0), including
terms in protocol roles, network messages, and types. We write subs(t) for the set
of subterms of t and define the size of t by |t| = |subs(t)|. We also define vars(t) =
subs(t)∩V . If vars(t) = ∅ then t is called ground. We denote the top-level symbol
of a (non-variable) term t by top(t) and the set of its symbols in Σ≥1 by ct(t). A
position is a sequence of natural numbers. We denote the subterm of t at position
p with t|p and write t[u]p for the term obtained by replacing t|p at position p
by u. We also partition Σ into sets of public and private symbols, denoted by
Σpub and Σpri. We assume Σpub includes pairing 〈·, ·〉 which associates to the
right, e.g., 〈t, u, v〉 = 〈t, 〈u, v〉〉. We usually write, e.g., {|t, u, v|}k rather than
{|〈t, u, v〉|}k. We define the splitting function by split(〈t, u〉) = split(t) ∪ split(u)
on pairs and split(t) = {t} on other terms t. We call the elements of split(t) the
fields of t. For n ∈ N, ñ denotes {1, . . . , n}.

The set of message terms isM = T (V,A∪F ∪C), where V, A, F , and C are
pairwise disjoint infinite sets of variables, agents, fresh values, and constants.

2.1 Type system

We introduce a type system akin to [2] and extend it with subtyping. We define
the set of atomic types by Yat = Y0 ∪ {α,msg} ∪ {βn | n ∈ F} ∪ {γc | c ∈ C},
where α, βn, and γc are the types of agents, the fresh value n, and the constant c,
respectively. Moreover, msg is the type of all messages and Y0 is a disjoint set
of user-defined types. The set of all types is then defined by Y = T (∅,Yat).

We assume that all variables have an atomic type, i.e., V = {Vτ}τ∈Yat is a
family of disjoint infinite sets of variables. Let Γ : V → Yat be such that Γ (X) = τ
if and only if X ∈ Vτ . We extend Γ to atoms by defining Γ (a) = α, Γ (n) = βn,
and Γ (c) = γc for a ∈ A, n ∈ F , and c ∈ C, and then homomorphically to all
terms t ∈M. We call τ = Γ (t) the type of t and sometimes also write t : τ .

The subtyping relation 4 on types is defined by the following inference rules
and by two additional rules (not shown) defining its reflexivity and transitivity.

τ ∈ Y
τ 4 msg

S(msg)
τ1 40 τ2
τ1 4 τ2

S(40)
τ1 4 τ ′1 · · · τn 4 τ ′n

c(τ1, . . . , τn) 4 c(τ ′1, . . . , τ
′
n)

S(c ∈ Σn)

Every type is a subtype of msg by the first rule. The second rule embeds a
user-defined atomic subtyping relation 40 ⊆ (Yat \ {msg}) × Y0, which relates
atomic types (except msg) to user-defined atomic types in Y0. For simplicity, we
require that 40 is a partial function. The third rule ensures that subtyping is
preserved by all symbols. The set of subtypes of τ is τ↓ = {τ ′ ∈ Y | τ ′ 4 τ}.

2.2 Equational theories

An equation over a signature Σ is an unordered pair {s, t}, written s ' t, where
s, t ∈ TΣ(Vmsg). An equation presentation E = (Σ,E) consists of a signature
Σ and a set E of equations over Σ. The equational theory induced by E is the



smallest Σ-congruence, written =E , containing all instances of equations in E.
We often identify E with the induced equational theory.

A rewrite rule is an oriented pair l → r, where vars(r) ⊆ vars(l) ⊆ Vmsg .
A rewrite theory is a triple R = (Σ,Ax,R) where Σ is a signature, Ax a set
of Σ-equations, and R a set of rewrite rules. The rewriting relation →R,Ax on
TΣ(V ) is defined by t→R,Ax t

′ iff there exists a non-variable position p in t, a rule
l→ r ∈ R, and a substitution σ such that t|p =Ax lσ and t′ = t[rσ]p. If t→∗R,Ax t′
and t′ is irreducible, we call t′ R,Ax-normal and also say that t′ is a normal form
of t. Under suitable termination, confluence, and coherence conditions (see [19]
for definitions), one can decompose an equational theory (Σ,E) into a rewrite
theory (Σ,Ax,R) where Ax ⊆ E and, for all terms t, u ∈ TΣ(V ), we have t =E u
iff t↓R,Ax=Ax u↓R,Ax. Here, t↓R,Ax denotes any normal form of t. In this paper,
we work with decomposable equational theories.

A rewriting theory R is subterm-convergent if it is convergent and, for each
l→ r ∈ R, r is either a proper subterm of l or ground and in normal form with
respect to R. For our soundness result, we consider the subclass S of subterm-
convergent rewrite theories where each rule in R has one of the following forms.

– (R1): d(c(x1, . . . , xn, t), u)→ xj , where c, d ∈ Σpub, t, u are terms, j ∈ ñ, and
x1, . . . , xn are pairwise distinct variables with xi /∈ vars(t, u) for all i ∈ ñ.

– (R2): d(c(x1, . . . , xn)) → xj , where c, d ∈ Σpub, j ∈ ñ, and x1, . . . , xn are
pairwise distinct variables.

– (R3): c(x1, . . . , xn)→ xj where c ∈ Σpub, xj is a variable with j ∈ ñ, and xi
is a variable or an atom for all i ∈ ñ.

– (R4): l→ a for a constant a.

Intuitively, the first three forms enable different types of projection of a term’s
arguments. Rules R1 and R2 apply a destructor d to extract one of c’s arguments.
In rule R1 the destructor has two arguments. The terms t and u can be seen a
pair of matching keys required to extract xj . Rule R3 uses no destructor. Finally,
R4 models rewriting a term to a constant. Since the rules (R1-R3) have limited
depth, we call the class S of rewrite theories shallow subterm-convergent.

We also introduce a condition on the equations Ax of the rewrite theory.

Definition 1. A rewrite theory (Σ,Ax,R) is well-formed if for all {s, t} ∈ Ax,
we have (i) neither s nor t is a pair and (ii) top(s) = top(t).

We only consider equational theories that can be decomposed into a shallow
subterm-convergent, well-formed rewrite theory. These are adequate to model
many well-known cryptographic primitives as illustrated by the examples below.

Example 1. We model the protocols of our case studies (see Sections 1 and 4) in
the rewrite theory Rcs = (Σcs, Axcs, Rcs) where

Σcs = {sh, pk, pri, prf, kdf,mac, 〈·, ·〉, π1, π2, {| · |}·, {| · |}−1· , {·}·, {·}−1· , [·]·, ver}∪Σ0
cs

contains function symbols for: shared, public, and private long-term keys (where
Σpri = {sh, pri}); hash functions prf, kdf, and mac; pairs and projections; sym-
metric and asymmetric encryption and decryption; and signing and verification.



The set of atoms Σ0
cs is specified later. The set Rcs consists of rewrite rules for

projections (type R2) and for decryption and signature verification (type R1):

π1(〈X,Y 〉)→ X {|{|X|}K |}−1K → X ver([X]pri(K), pk(K))→ X
π2(〈X,Y 〉)→ Y {{X}pk(K)}−1pri(K) → X

We have two equations in Axcs, namely, exp(exp(g,X), Y ) ' exp(exp(g, Y ), X)
to model Diffie-Hellman key exchange and sh(X,Y ) ' sh(Y,X).

Example 2. The theory of XOR is given by the following rewrite system where
the rules are of types R2, R3 and R4. The rightmost rule ensures coherence [19].

X ⊕ Y ' Y ⊕ X X ⊕ 0→ X X ⊕ X ⊕ Y → Y
(X ⊕ Y ) ⊕ Z ' X ⊕ (Y ⊕ Z) X ⊕ X → 0

For our theoretical development, we consider an arbitrary but fixed shallow
subterm-convergent and well-formed rewrite theory (Σ,Ax,R) that includes the
function symbols and rewrite rules for pairing and projections.

We denote by dom(g) and ran(g) the domain and range of a function g. We
now define well-typed substitutions, which respect subtyping.

Definition 2 (Well-typed substitutions). A substitution θ is well-typed if
Γ ((Xθ)↓R,Ax) 4 Γ (X) for all X ∈ dom(θ).

2.3 Protocols

For a set of terms T , we define the set of events Evt(T ) = {snd(t), rcv(t) | t ∈ T}
and term(ev(t))= t for event ev(t). A role is a sequence of events from Evt(M).

Definition 3 (Protocol). A protocol is a function P : Vα ⇀ Evt(M)∗ map-
ping agent variables to roles. Let MP = term(ran(P )) be the set of protocol
terms appearing in the roles of P , and let VP , AP , FP , and CP denote the sets
of variables, agents, fresh values, and constants in MP .

Example 3 (IKEm protocol). We formalize the IKEm protocol from Section 1 in
the rewrite theory of Example 1 as follows, using upper-case (lower-case) iden-
tifiers for variables (atoms). The atoms Σ0

cs are composed of constants C =
{g, o, sA1 , sA2 , tSa, tSb} and fresh values F = {na,nb, x, y, sPIa, sPIb}. The
variables and their types are A,B : α, Ga,Gb : msg , SPIa,SPIb,Na,Nb : nonce
where nonce is a user-defined type that satisfies βn 40 nonce for all n ∈ F . We
show here the initiator role A. The responder role B is dual.

IKEm(A) = snd(sPIa, o, sA1 , exp(g, x ),na) · rcv(sPIa,SPIb, sA1 ,Gb,Nb)·
snd(sPIa,SPIb, {|A,B,AUTHaa, sA2 , tSa, tSb|}SKa)·
rcv(sPIa,SPIb, {|B,AUTHba, sA2 , tSa, tSb|}SKa)

where the terms SKa = kdf(na,Nb, exp(Gb, x ), sPIa,SPIb) and

AUTHaa = mac(sh(A,B), sPIa, o, sA1 , exp(g, x ),na,Nb, prf(SKa, A))
AUTHba = mac(sh(A,B), sPIa,SPIb, sA1 ,Gb,Nb,na, prf(SKa, B)).

represent the initiator A’s view of the session key and of the authenticators.



u ∈ T
T `E u

Ax
T `E t′ t′ =E t

T `E t
Eq

T `E t1 · · · T `E tn
T `E f(t1, . . . , tn)

Comp (f ∈ Σ≥1
pub)

Fig. 1. Intruder deduction rules (where Σ≥1
pub = Σ≥1 ∩Σpub)

2.4 Operational semantics

Let TID be a countably infinite set of thread identifiers. When we instantiate a
role into a thread for execution, we mark its variables and fresh values with the
thread identifier i. We define the instantiation t#i of a term t for i ∈ TID as
the term where every variable or fresh value u is replaced by ui. Constants and
agents remain unchanged. Instantiation does not affect the type of a term.

We define by T ] = {t#i | t ∈ T ∧ i ∈ TID} the set of instantiations of
terms in a set T and abbreviate T [ = T ∪ T ]. For example, M] is the set of
instantiated message terms, which we will use to instantiate roles into threads.
We define the set of network messages exchanged during protocol execution by
N = T (V],A ∪ F ] ∪ F• ∪ C), where F• = {n•k | n ∈ F ∧ k ∈ N} is the set of
attacker-generated fresh values. Note thatM] ⊆ N . We abbreviate T =M∪N .

We use a Dolev-Yao attacker model parametrized by an equational theory E.
Its judgements are of the form T `E t meaning that the intruder can derive term
t from the set of terms T . The derivable judgements are defined in a standard
way by the three deduction rules in Figure 1.

We define a transition system with states (tr, th, σ), where

– tr is a trace consisting of a sequence of pairs of thread identifiers and events,
– th : TID ⇀ dom(P )× Evt(M]

P )∗ are threads executing role instances, and
– σ : V] ⇀ N is a well-typed ground substitution from instantiated protocol

variables to network messages such that V]P ⊆ dom(σ).

The trace tr as well as the executing role instance are symbolic (with terms
in M]). The separate substitution σ instantiates these messages to (ground)
network messages. The ground trace associated with such a state is trσ.

The set InitP of initial states of protocol P contains all (ε, th, σ) satisfying

∀i ∈ dom(th). ∃R ∈ dom(P ). th(i) = (R,P (R)#i)

where all terms in the respective protocol roles are instantiated. The substitution
σ is chosen non-deterministically in the initial state.

The rules in Figure 2 define the transitions. In both rules, the first premise
states that a send or receive event heads thread i’s role. This event is removed
and added together with the thread identifier i to the trace tr. The substitution σ
remains unchanged. The second premise of RECV requires that the network mes-
sage tσ matching the term t in the receive event is derivable from the intruder’s
(ground) knowledge IK (tr)σ∪IK0. Here, IK (tr) denotes the (symbolic) intruder



th(i) = (R, snd(t) · tl)
(tr, th, σ)→ (tr · (i, snd(t)), th[i 7→ (R, tl)], σ)

SEND

th(i) = (R, rcv(t) · tl) IK (tr)σ ∪ IK0 `E tσ

(tr, th, σ)→ (tr · (i, rcv(t)), th[i 7→ (R, tl)], σ)
RECV

Fig. 2. Operational semantics

knowledge derived from a trace tr as the set of terms in the send events on tr,
i.e., IK (tr) = {t | ∃i. (i, snd(t)) ∈ tr} and IK0 denotes the intruder’s (ground)
initial knowledge. We assume A ∪ C ∪ F• ⊆ IK0 and IK0 is R,Ax-normal. Note
that the SEND rule implicitly updates this intruder knowledge.

2.5 Property language

We use the same specification language as in [22] to express secrecy and authenti-
cation properties. Hence, we only sketch some of its elements and give examples.
There are atomic formulas to express equality (t = u), the secrecy of a term
(secret(t)), the occurrence of an event e by thread i in the trace (steps(i, e)),
that thread i executes role R, and the honesty of other agents in the view of
a thread i. Quantification is allowed over thread identifier variables. To achieve
attack preservation, the predicate secret(t) may occur only positively.

Example 4 (Properties of IKEm). We express the secrecy of the Diffie-Hellman
key exp(Gb, x ) for role A of the protocol IKEm of Example 3 as follows.

φs=∀j. (role(j, A) ∧ honest(j, [A,B]) ∧ steps(j, rcv(t4)))⇒secret(exp(Gbj , x j)).

where t4 = 〈sPIa,SPIb, {|B,AUTHba, sA2 , tSa, tSb|}SKa〉 and honest(j, [A,B])
means that A and B are honest. We formalize non-injective agreement of A with
B on the nonces na and nb and the DH half-keys exp(g, x ) and exp(g, y) by

φa=∀j. (role(j, A) ∧ honest(j, [A,B]) ∧ steps(j, rcv(t4)))
⇒(∃k. role(k,B) ∧ steps(k, snd(〈SPIa, sPIb, sA1 , exp(g, y),nb〉))∧
〈Aj , Bj ,naj ,Nbj , exp(g, x j),Gbj〉=〈Ak, Bk,Nak,nbk,Gak, exp(g, yk)〉).

3 Security protocols abstractions

We introduce our security protocol abstractions and illustrate their usefulness
on our running example. We will present two types of protocol abstractions:

Typed abstractions transform a term’s structure by reordering or removing
fields and by splitting or removing cryptographic operations. The same trans-
formations are applied to all terms of a given type and its subtypes.



Untyped abstractions complement typed ones with additional simplifications:
the removal of unprotected atoms and variables and of redundant subterms.

Our main results are soundness theorems for these abstractions. They ensure
that any attack on a given property of the original protocol translates to an at-
tack on the abstracted protocol. As we will see, these results hold under certain
conditions on the protocol and the property. Here, we focus on typed abstrac-
tions, but we will also briefly introduce the untyped ones (see [23] for details).

3.1 Typed protocol abstractions

Our typed abstractions are specified by a list of recursive equations subject to
some conditions on their shape. We define their semantics in terms of a simple
Haskell-style functional program. We use both pattern matching on terms and
subtyping on types to select the equation to be applied to a given term. This
ensures that terms of related types are transformed in a uniform manner.

Syntax LetW = {Wτ}τ∈Y be a family of pattern variables disjoint from V. We
define the set of patterns by P = T (W, ∅). A pattern p ∈ P is called linear if
each (pattern) variable occurs at most once in p. We extend the typing function
Γ to patterns by setting Γ (X) = τ if and only if X ∈ Wτ and then lifting it
homomorphically to all patterns. Our typed message abstractions are instances
of the following recursive function specifications.

Definition 4. A function specification Ff = (f,Ef ) consists of an unary func-
tion symbol f /∈ Σ1 and a list of equations

Ef = [f(p1) = u1, . . . , f(pn) = un],

where each pi ∈ P is a linear pattern such that ui ∈ TΣ≥1∪{f}(vars(pi)) for all

i ∈ ñ, i.e., ui consists of variables from pi and function symbols from Σ≥1∪{f}.

We use vectors (lists) of terms t = [t1, . . . , tn] for n > 0. We define set(t) =

{t1, . . . , tn} and f̂(t) = 〈f(t1), . . . , f(tn)〉, the elementwise application of a func-
tion f to a vector where the result is converted to a tuple (with the convention
〈t〉 = t). We extend split to vectors by split(t) = split(set(t)). We define three
sets of function symbols occurring in R and Ax as follows.

CR = {c | d(c(x1, . . . , xn, t), u)→ xj ∈ R}
CKey =

⋃
{ct(t) ∪ ct(u) | d(c(x1, . . . , xn, t), u)→ xj ∈ R}

CAx =
⋃
{ct(s) ∪ ct(t) | {s, t} ∈ Ax}

The function pp(c) returns the set of extractable indices of a function symbol c,
i.e., pp(c) = {j | d(c(x1, . . . , xn, t), u)→ xj ∈ R or d(c(x1, . . . , xn))→ xj ∈ R}.
Definition 5 (Typed abstraction). A function specification Ff = (f,Ef ) is
a typed abstraction if each equation in Ef has the form

f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉

where for each i ∈ d̃ we have either



(a) ei = f(q) such that q ∈ split(pj) for some j ∈ ñ, or

(b) ei = c(f̂(q1), . . . , f̂(qn)) such that set(qj) ⊆ split(pj) for all j ∈ ñ, c 6= 〈·, ·〉,
and c ∈ CR implies qn = [pn], i.e., f̂(qn) = f(pn).

Moreover, we require (i) for all j ∈ pp(c) we have split(pj) ⊆ Qj where

Qj =
⋃
{set(qj) | ∃i ∈ d̃. ei = c(f̂(q1), . . . , f̂(qn))} ∪ {q | ∃i ∈ d̃. ei = f(q)}.

and (ii) if c ∈ CAx ∪ CKey then pi = Xi : msg for all i ∈ ñ, d = 1 and e1 =
c(f(X1), . . . , f(Xn)) is an instance of (b); we say Ff is homomorphic for c.

Intuitively, the abstractions can only weaken the cryptographic protection of
terms, but never strengthen it. Each equation in Ef maps a term with top-level
symbol c to a tuple whose components have the form (a) or (b). Form (a) allows
us to pull fields out of the scope of c, hence removing c’s protection. Using form
(b) we can reorder or remove fields in each argument of c. Form (b) is subject to
two conditions. First, we disallow this form for pairs to obtain the simple shape
f(〈p1, p2〉) = f̂(q). Second, we cannot permit the reordering or removal of fields
in key positions, i.e., in the last argument of c ∈ CR. Moreover, by point (i), all
fields of extractable arguments, i.e., elements of split(pj) for j ∈ pp(c), must be
present in some ei and point (ii) requires that the abstraction is homomorphic
for function symbols c occurring in axioms and in keys (c ∈ CAx ∪ CKey).

Example 5. We present a typed abstraction Ff = (f,Ef ) illustrating a repre-
sentative selection of the possible message transformations. Suppose X : γc,
Y : nonce, and Z,U, V : msg and let Ef consists of the following three equations:

f(〈X,Y, Z〉) = 〈f(Y ), f(X), f(Z)〉
f(kdf(X,Y, U, V )) = 〈kdf(f(X), f(Y )), kdf(f(U))〉

f({|X,Y, Z|}U ) = 〈{|f(X), f(Y )|}f(U), f(Y ), {|f(Z)|}f(U)〉

The patterns’ types filter the matching terms:X and Y only match the constant c
and a nonce, respectively. The first equation swaps the first two fields in n-tuples
for n ≥ 3. The second one splits a kdf hash into two, removing the field V . The
last equation splits an encryption: the pair 〈f(X), f(Y )〉 and f(Z) are encrypted
separately with the key f(U) and f(Y ) is pulled out of the encryption. Note that
by condition (i) of Definition 5, we cannot directly remove plaintext fields from
encryptions. To achieve this, we pull such fields out of encryptions to the top-
level. This may require a combination of several abstractions if there are multiple
layers of cryptographic protection. At the top-level, the fields are no longer
protected and can be removed using untyped abstractions. In Section 4.1, we
will discuss our heuristics to determine sequences of abstractions automatically.

Semantics The semantics of a typed abstraction Ff is given by the Haskell-
style functional program f (Program 1).1 To ensure totality, we use the ex-
tended function specification (f,E+

f ) = (f,Ef · E0
f ), where f(g(Z1, . . . , Zn)) =

1 We are overloading the symbol f here, but no confusion should arise.



fun f(t) = case t of
‖
(f(p)=u)∈E+

f
p | Γ (t) 4 Γ (p)⇒ u

Program 1. Functional program f resulting from Ff = (f,Ef ).

g(f(Z1), . . . , f(Zn)) ∈ E0
f for each g ∈ Σn with n ≥ 1 such that Zi : msg for all

i ∈ ñ, and f(Z) = Z with Z : msg is the last clause in E0
f . We assume Ef and

E0
f do not share variables. The case statement has a clause

p | Γ (t) 4 Γ (p)⇒ u

for each equation f(p) = u of E+
f . Such a clause is enabled if (1) the term t

matches the pattern p, i.e., t = pθ for some substitution θ, and (2) its type Γ (t)
is a subtype of Γ (p). The first enabled clause is executed. Hence, the equations
E0
f serve as fall-back clauses, which cover the terms not handled by Ef . In

particular, the last clause f(Z) = Z handles exactly the atoms and variables.
We extend f to events, event sequences, and traces by applying f to the terms

they contain and to substitutions and protocols by applying f to the terms in
their range. Similarly, we extend f to formulas φ of our property language by
applying f to all terms occurring in φ.

Finding abstractions Finding abstractions is fully automated by our tool
using a heuristic that we will describe in Section 4.1. However, the resulting
abstractions can be counterintuitive. Therefore, we present here a simplified
strategy that we apply to our running example below: We start by identifying
the terms that appear in the secret(·) predicates and equations of the desired
properties. Then we determine the cryptographic operations that are essential
to achieve these properties and try to remove all other terms and operations.

Example 6 (from IKEm to IKE1
m). In order to preserve the secrecy of the DH key

exp(exp(g, x), y) and the agreement on na, nb, exp(g, x), and exp(g, y), we have
to keep either the mac or the symmetric encryption with SK (see Examples 3
and 4). We want to remove as many other fields and operations as possible
(e.g., prf). We choose to remove the encryption as this allows us to later remove
additional fields (e.g., sA2 ) using untyped abstractions. We keep o in AUTHa to
prevent unifiability with AUTHb and hence potential false negatives. This leads
us to the typed abstraction F1 = (f1, E1) where E1 is defined by the equations

f1({|X,Y |}Z) = 〈f1(X), f1(Y )〉
f1(mac(X1, . . . , X8)) = mac(f̂1([X1, X3, X5, X6, X7, X8]))

f1(mac(Y1, . . . , Y8)) = mac(f̂1([Y1, Y5, Y6, Y7, Y8]))
f1(kdf(Z1, . . . , Z5)) = kdf(f1(Z3))

f1(prf(U,Z)) = f1(U)

(where we omitted the homomorphic clauses for exp and 〈·, ·〉) and X : α, X3 : γo,
Y3 : nonce, Z3 : exp(msg ,msg), U : kdf(msg) and all remaining pattern variables



are of type msg . Applying f1 to IKEm we obtain IKE1
m. Here is the abstracted

initiator role.

SIKE1
m
(A) = snd(sPIa, o, sA1 , exp(g, x ),na) · rcv(sPIa,SPIb, sA1 ,Gb,Nb)·

snd(sPIa,SPIb, A,B,AUTHaa, sA2 , tSa, tSb)·
rcv(sPIa,SPIb, B,AUTHba, sA2 , tSa, tSb)

with SKa = kdf(exp(Gb, x )), AUTHaa = mac(sh(A,B), o, exp(g, x ),na,Nb,SKa),
and AUTHba = mac(sh(A,B),Gb,Nb,na,SKa). In a second step, we will remove
most fields in the roles of IKE1

m using untyped abstractions.

3.2 Soundness of typed abstractions

To justify the soundness of our abstractions, we show that any attack on a prop-
erty φ of the original protocol P is reflected as an attack on the property f(φ)
of the abstracted protocol f(P ). We decompose this into reachability preserva-
tion (RP) and an attack preservation (AP) as follows. We require that, for all
reachable states (tr, th, σ) of P , there is a ground substitution σ′ such that

(RP) (f(tr), f(th), σ′) is a reachable state of f(P ), and
(AP) (tr, th, σ) 6|= φ implies (f(tr), f(th), σ′) 6|= f(φ).

These properties will require some assumptions about the protocol P , the for-
mula φ, and the abstraction f . Before we formally state the soundness theorem,
we will introduce and motivate these assumptions while sketching its proof. For
the remainder of this subsection we assume arbitrary but fixed P , φ, Ff .

We start with two basic properties of abstractions. The first one, which
we call the substitution property, states that f(tθ) = f(t)f(θ) for well-typed
R,Ax-normal substitutions θ. This does not hold in general. For example, sup-
pose Ef contains the clauses f(h(Y :γc)) = f(X) and f(h(X: msg)) = h(f(X))
in this order. Then the property is violated for t = h(Z : msg) and θ = [c/Z].
Thus, we must ensure that t and all its instance tθ are transformed uniformly,
i.e., match the same clauses of Ef . We therefore require that (i) the patterns
in Ef must not overlap and (ii) all recursive calls of f on composed terms
during the transformation of t are handled by the clauses of Ef , without re-
course to the fall-back clauses in E0

f . This is formalized in the following two
definitions where we denote the set of pattern types of a list of equations L by
Π(L) = {Γ (p) | (f(p) = u) ∈ L}, we define Πf = Π(Ef ), and let Rec(Ff , t) be
the set of terms u such that f(u) is called in the computation of f(t).

Definition 6. A function specification Ff is pattern-disjoint if the types in Πf
are pairwise disjoint, i.e., Γ (pi)↓ ∩ Γ (pj)↓ = ∅ for all i, j ∈ ñ such that i 6= j.

Definition 7 (Uniform domain). We define the uniform domain of Ff by
udom(Ff ) = {t ∈ T | Γ (Rec(Ff , t)) ⊆ Πf↓ ∪ Yat}.

We will require that the protocol terms t ∈ MP belong to this set, which en-
sures that their instances tθ with R,Ax-normal substitutions θ are transformed
uniformly. We henceforth assume that Ff is pattern-disjoint. Note that the ab-
stractions defined in Examples 5 and 6 are pattern-disjoint.



Theorem 1 (Substitution property). Let t ∈ udom(Ff ) and θ be a well-
typed and R,Ax-normal substitution. Then f(tθ) = f(t)f(θ).

The second basic property needed in our soundness proof is that abstractions
preserve equality modulo E. We decompose this into the preservation of Ax-
equality and of rewriting steps. Neither is preserved in general. To ensure this
we need the following two definitions.

Definition 8 (R,Ax-closedness). Ff is R,Ax-closed if the following holds:
t =Ax u implies τt 4 τ if and only if τu 4 τ , for all R,Ax-normal composed
terms t : τt and u : τu and all τ ∈ Π(E+

f ).

We henceforth assume that Ff is R,Ax-closed. In [23], we present a syntactic
criterion for checking this. To achieve the preservation of rewriting steps under
abstraction, we must ensure that, for all positions p in t where a rule l→ r ∈ R
is applicable, the redex t|p in t is transformed into a redex f(t|p) in f(t) that
still Ax-matches l. This is the purpose of the following definition.

Definition 9 (R,Ax-homomorphism). We say that f is R,Ax-homomorphic
for a term t if for all non-variable positions p in t and for all rules l → r ∈ R
such that there exists a well-typed Ax-unifier of t|p and l, it holds that

(i) f is homomorphic for all c ∈ ct(l),
(ii) f is homomorphic for top(t|p′) and top(t|p′) 6= top(l′) for all strict prefixes

p′ of p and rewrite rules l′ → r′ ∈ R such that ct(l′) is not a singleton.

We define rdom(Ff ) to be the set of terms for which f is R,Ax-homomorphic.

Many interesting protocols P satisfyMP ⊆ rdom(Ff ), including those from our
case studies. Since we must also cover redexes arising by instantiating protocol
terms t ∈MP , this definition employs Ax-unification rather than Ax-matching.
The definition ensures that instantiations with R,Ax-normal substitutions and
rewriting steps both preserve the membership of terms in rdom(Ff ).

Theorem 2 (Equality preservation). Let t and u be terms such that t, u ∈
rdom(Ff ). Then t =E u implies f(t) =E f(u).

Reachability preservation (RP) To achieve reachability preservation, we
prove that every step of P can be simulated by a corresponding step of f(P ).
In particular, to simulate receive events, we show that intruder deducibility is
preserved under abstractions f (cf. second premise of rule RECV ), i.e.,

Tθ, IK0 `E uθ ⇒ f(T )f(θ↓R,Ax), f(IK0) `E f(u)f(θ↓R,Ax). (1)

This property is also required to show the preservation of attacks on secrecy as
part of (AP). We first establish deducibility preservation for ground terms:

Theorem 3 (Deducibility preservation). Let T∪{t} ⊆ N be a set of ground
network messages such that C ⊆ T and T is R,Ax-normal. Then T `E t implies
f(T ) `E f(t↓R,Ax).

We can now derive (1) by applying Theorems 3, 2 and 1 in this order, combined
with applications of rule Eq and a cut property of intruder deduction. Summa-
rizing, reachability preservation (RP) holds for MP ⊆ udom(Ff ) ∩ rdom(Ff ).



Attack preservation (AP) We next define and explain the conditions on
formulas needed to establish attack preservation. Let

– Secφ be the set of all terms t that occur in formulas secret(t) in φ,
– Eqφ be the set of pairs (t, u) such that the equation t = u occurs in φ and

EqTermφ = {t, u | (t, u) ∈ Eqφ} is the set of underlying terms, and
– Evtφ be the set of events occurring in φ.

Let Eq+
φ the positively occurring equations in φ and similarly for Evtφ.

Definition 10 (Safe formulas). φ is safe for P and f if

(i) Secφ ∪ EqTermφ ⊆ udom(Ff ) ∩ rdom(Ff ),

(ii) f(tσ) =E f(uσ) implies tσ =E uσ for all (t, u) ∈ Eq+
φ and for all well-typed

R,Ax-normal ground substitutions σ, and
(iii) f(t) = f(u) implies t = u, for all e(t) ∈ Evt+φ and e(u) ∈ Evt(MP ).

Condition (i) requires that Ff is uniform and R,Ax-homomorphic for the terms
in secrecy statements and equalities. Condition (ii) expresses the injectivity of
the abstraction on the terms in positively occurring equalities. This condition is
required to preserve attacks on agreement properties. In other words, it prevents
abstractions from fixing attacks on agreement by identifying two terms that differ
in the original protocol. In the full version [23], we provide a syntactic criterion to
check condition (ii) that avoids the universal quantification over substitutions.
Condition (iii) is required for properties involving event orderings and steps
predicates. It states that the abstraction must not identify an event occurring
positively in the property with a distinct protocol event.

We now state the soundness theorem. Below, IK0 and IK ′0 respectively denote
the intruder’s initial knowledge associated with P and f(P ).

Theorem 4 (Soundness). Suppose P , φ, and Ff satisfy (i) f(IK0) ⊆ IK ′0, (ii)
Ff is pattern-disjoint and R,Ax-closed, (iii) MP ⊆ udom(Ff ) ∩ rdom(Ff ), and
φ is safe for P and f . Then, for all states (tr, th, σ) reachable in P , we have

1. (f(tr), f(th), f(σ↓R,Ax)) is a reachable state of f(P ), and
2. (tr, th, σ) 2 φ implies (f(tr), f(th), f(σ↓R,Ax)) 2 f(φ).

3.3 Untyped abstractions

Typed abstractions offer a wide range of possibilities to transform cryptographic
operations including subterm removal, splitting, and pulling fields outside a cryp-
tographic operation. We complement these abstractions with two kinds of un-
typed abstractions that allow us to remove (1) unprotected atoms and variables
of any type and (2) redundancy in the form of intruder-derivable terms. Un-
typed protocol abstractions are functions g : T → T ∪ {nil} where messages to
be removed are mapped to nil. We remove events with nil arguments from the
roles. Due to lack of space, we only sketch the definitions and give an example
here. Full details and soundness results can be found in [23].



Atom/variable removal The removal abstraction remT : T → T ∪ {nil} for a
set T of atoms or variables is defined by

– remT (u) = nil if u ∈ T [,

– remT (〈t1, t2〉) =

{
remT (ti) if remT (t3−i) = nil for some i ∈ 2̃

〈remT (t1), remT (t2)〉 otherwise

– remT (t) = t for all other terms.

In order to preserve attacks, we have to restrict the removal of atoms and vari-
ables from a protocol term t to fields u ∈ split(t) that appear only unprotected
(clear) in t, i.e., such that u /∈ subs(t) \ split(t).

Example 7 (IKE1
m to IKE2

m). We use atom/variable removal to simplify the pro-
tocol IKE1

m. First, we recall the specification of role A of IKE1
m.

SIKE1
m
(A) = snd(sPIa, o, sA1 , exp(g, x ),na) · rcv(sPIa,SPIb, sA1 ,Gb,Nb)·

snd(sPIa,SPIb, A,B,AUTHaa, sA2 , tSa, tSb)·
rcv(sPIa,SPIb, B,AUTHba, sA2 , tSa, tSb)

We remove the role names A and B, the constants o, sA1 , sA2 , tSa, tSb, the fresh
value sPIa, and the variable SPIb using an atom/variable removal abstraction.
The result is the protocol IKE2

m whose initiator role is defined as follows.

SIKE2
m
(A) = snd(exp(g, x ),na) · rcv(Gb,Nb) · snd(AUTHaa) · rcv(AUTHba)

We also apply the typed abstraction from Example 6 and the untyped abstraction
here to the properties φs and φa of Example 4. These only affect the events in
the steps predicates. The relevant soundness conditions are satisfied.

Redundancy removal A redundancy removal abstraction rd enables the elimi-
nation of redundancies within each role of a protocol. Intuitively, a protocol term
t appearing in a role r can be abstracted to rd(t) if t and rd(t) are derivable from
each other under the intruder knowledge T containing the terms preceding t in r
and the initial knowledge IK0. For example, we can simplify r = snd(t)·rcv(〈t, u〉)
to snd(t) · rcv(u). In contrast to atom/variable removal, redundancy removal can
also remove composed terms. It is therefore a very effective ingredient for auto-
matic abstraction, which we describe next.

4 Implementation and experimental results

We have implemented our abstraction methodology for the Scyther tool and
tested it on a variety of complex protocols, mainly stemming from the IKE and
ISO/IEC 9798 families. Scyther is an efficient verifier for security protocols. It
supports verification for both a bounded and an unbounded number of threads.
Protocols are specified by a set of linear role scripts. It also supports user-defined
types. These features match our setting very well.



4.1 Abstraction heuristics

Our tool computes a series of successively more abstract protocols. Each ab-
straction step consists of a typed abstraction followed by a redundancy and an
atom/variable removal abstraction. A heuristic guides the automatic generation
of the typed abstractions. These abstractions may be partially user-specified.

Central to our heuristic are the (sub)terms of Secφ and EqTermφ for a given
property φ, which we call essential terms. The heuristic assigns security labels,
c for confidentiality and a for authenticity, to cryptographic primitives as their
intended security guarantees. These labels are inherited by subterms. Concretely,
we label symmetric encryptions and MACs with c and a, asymmetric encryptions
and hashes with c, and signatures with a. Based on this labeling, we decide
which fields are pulled outside of or removed from the topmost cryptographic
operations. The main criterion is that these transformations must preserve the
following labeling properties of each essential term t: the presence of an a label
on some occurrence of t and of c labels on all occurrences of t. The successive
abstractions work from the outside to the inside of the original protocol’s terms.
The untyped abstractions simply remove all inessential top-level fields.

Example 8. We can simplify the term {|B,AUTHba, sA2 , tSa, tSb|}SKa where
AUTHba = mac(sh(A,B), sPIa,SPIb, sA1 ,Gb,Nb,na, prf(SKa, B)) of the IKEm

protocol from Example 3 in two successive abstraction steps as follows.

{|B,AUTHba, sA2 , tSa, tSb|}SKa 7→ 〈B,AUTHba, sA2 , tSa, tSb〉
AUTHba 7→ mac(sh(A,B),Gb,Nb,na, prf(SKa, B))

In the first step, we pull the whole plaintext out of the encryption since the
security labels of essential terms (underlined) are preserved by the mac. In the
second step, we transform AUTHba by keeping essential and removing inessential
terms. Note that removing the term u = prf(SKa, B) or pulling it out of the mac
would not preserve authenticity for the essential term x inside SKa. In a further
step, we can simplify u by deleting inessential subterms and dropping prf.

Our abstractions are sound, but not complete. Therefore, we may encounter
false negatives, i.e., spurious attacks. We carefully try to avoid these, for instance,
by checking that abstractions do not introduce new pairs of unifiable terms. We
currently do not check automatically whether an attack is spurious. Whenever
an attack on a protocol P is found, we proceed to analyze (only) the failed
properties on the next more concrete protocol in the series of abstractions.

4.2 Experimental results

We have validated the effectiveness of our abstractions on 22 members of the
IKE and ISO/IEC 9798 protocol families and on the PANA-AKA protocol [3].
We verify these protocols using five tools based on four different techniques:
Scyther [10], CL-Atse [26], OFMC [5], SATMC [4], and ProVerif [6]. Only Scyther
and ProVerif support verification of an unbounded number of threads. Due to



protocol No S A W N 3 4 5 6 7 8 ∞

IKEv1-pk-a22 1 X X
18.48 82.93 249.55 554.09 1006.04 1734.85 TO
0.83 1.26 2.08 3.47 5.96 10.28 TO

IKEv2-eap 5 X X
TO TO TO TO TO TO TO

78.35 798.44 4212.71 20911.20 TO TO TO

IKEv2-mac 5 X X
1.85 4.91 6.72 8.07 8.42 8.49 8.70
0.62 1.77 1.83 1.73 1.73 1.80 1.74

IKEv2-mactosig 4 X X
11.65 141.37 1075.46 7440.81 TO TO TO
2.89 12.38 24.54 38.68 53.36 65.07 77.68

IKEv2-sigtomac 5 X X
6.15 33.19 65.05 115.34 204.93 206.45 237.34
3.59 12.72 28.44 44.44 55.11 66.97 67.15

IKEv1-pk-m 2 × 48.62 269.92 507.40 869.23 16254.80 TO TO
0.04 0.05 0.05 0.05 0.05 0.05 TO

IKEv1-pk-m2 2 X/× 18.26 274.87 4438.72 TO TO TO TO
1.48 7.79 32.75 110.32 339.93 963.08 TO

IKEv1-sig-m 2 × 0.34 0.45 0.45 0.45 0.45 0.46 0.44
0.05 0.05 0.05 0.06 0.05 0.05 0.06

IKEv1-sig-m-perlman 2 × 2.86 13.99 40.78 67.83 72.08 72.15 109.03
0.05 0.05 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-2-5 1 X
0.78 8.96 73.87 564.67 4214.22 TO TO
0.07 0.11 0.12 0.11 0.11 0.11 0.11

ISO/IEC 9798-2-6 1 X
0.57 3.74 18.42 67.01 196.30 488.04 21278.58
0.05 0.04 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-3-6-1 2 X X
43.08 802.95 8903.70 ME ME ME ME
0.13 0.18 0.19 0.19 0.19 0.19 0.19

ISO/IEC 9798-3-6-2 1 X X
2.74 8.67 19.56 33.91 52.51 69.48 90.04
0.12 0.15 0.15 0.15 0.15 0.15 0.15

ISO/IEC 9798-3-7-1 2 X X
40.43 740.47 7483.36 16631.42 ME ME ME
0.13 0.18 0.19 0.19 0.19 0.19 0.19

ISO/IEC 9798-3-7-2 1 X X
2.38 7.71 16.68 26.99 35.06 49.49 TO
0.22 0.32 0.33 0.33 0.33 0.33 0.33

PANA-AKA 5 X X X X
5769.53 TO TO TO TO TO TO

0.10 0.10 0.10 0.10 0.10 0.10 0.10

Table 1. Experimental results. The time is in seconds. No: Number of abstractions.
Properties: Secrecy, Aliveness, Weak agreement, and Non-injective agreement.

lack of space, we present only a selection of 16 experimental results for Scyther
(Table 1) and refer to the full version [23] for a complete account. Our models of
the IKE and ISO/IEC 9798 protocols are based on Cremers’ [8,9]. Since Scyther
uses a fixed signature with standard cryptographic primitives and no equational
theories, the IKE models approximate the DH theory by oracle roles.

We mark verified properties by X and falsified ones by ×. An entry X/×
means the property holds for one role but not for the other. Each row consists of
two lines, corresponding to the analysis time without (line 1) and with (line 2)
abstraction for 3-8 or unboundedly many (∞) threads. The times were measured
on a cluster of 12-core AMD Opteron 6174 processors with 64 GB RAM each.
They include computing the abstractions (4-20 ms) and the verification itself.

Verification For 8 of the 12 original protocols that are verified, an unbounded
verification attempt results in a timeout (TO = 8h cpu time) or memory ex-



haustion (ME). In 6 of these, our abstractions enabled a verification in less than
0.4 seconds and in one case in 78 seconds. However, for the first two protocols,
we still get a timeout. For the large majority of the bounded verification tasks,
we significantly push the bound on the number of threads and achieve massive
speedups. For example, our abstractions enable the verification of the complex
nested protocols IKEv2-eap and PANA-AKA. Scyther verifies an abstraction of
IKEv2-eap for up to 6 threads and, more strikingly, completes the unbounded
verification of the simplified PANA-AKA in under 0.1 seconds whereas it can
handle only 4 threads of the original. We also achieve dramatic speedups for
many other protocols, most notably for IKEv1-pk-a22, ISO/IEC 9798-2-6, and
ISO/IEC 9798-3-6-2. Moreover, the verification time for many abstracted pro-
tocols increases much more slowly than for their originals. We obtain almost
constant verification times for the six ISO/IEC 9798 protocols, whereas the time
significantly increases on some originals, e.g., for ISO/IEC 9798-3-6-1. For a few
protocols, e.g., IKEv2-sigtomac and IKEv2-mac, the speedup is more modest.

Falsification For rows marked by ×, the second line corresponds to falsification
time for the most abstract model, which is much faster than on the original one.
For example, for 8 threads of the IKEv1-pk-m protocol, we reduce falsification
time from a timeout to 0.05 seconds. In the unbounded case, the speedup factors
are 7 for IKEv1-sig-m and 2180 for IKEv1-sig-m-perlman. A manual analysis of
the abstract attacks shows that none of them is spurious, suggesting that our
measures to prevent them are effective. We expect that fast automatic detection
of spurious attacks is feasible and will affect performance only negligibly.

Combination For the IKEv1-pk-m2 protocol, the tool verifies non-injective agree-
ment for one role and falsifies it for the other one. Surprisingly, we obtain a re-
markable speedup even though the analysis of this protocol is done three times
(for two abstract and the original models). Our abstractions push the feasibility
bound from 5 to 8 threads. As the property is verified very quickly for one role
on the most abstract model, it needs to be analyzed only for the other role at
lower abstraction levels. This explains the remarkable speedups we obtain and
therefore illustrates an advantage of our abstraction mechanism in this case.

5 Related work and conclusions

Hui and Lowe [18] define several kinds of abstractions similar to ours with the
aim of improving the performance of the CASPER/FDR verifier. They establish
soundness only for ground messages and encryption with atomic keys. We work in
a more general model, cover additional properties, and treat the non-trivial issue
of abstracting the open terms in protocol specifications. Other works [25,13,12]
also propose a set of syntactic transformations, however without formally es-
tablishing their soundness. Using our results, we can, for instance, justify the
soundness of the refinements in [13, Section 3.3]. Guttman [16,15] studies the
preservation of security properties for a rich class of protocol transformations in



the strand space model. His approach to property preservation is based on the
simulation of protocol analysis steps instead of execution steps. Each such step
explains the origin of a message. He does not have a syntactic soundness check.

In this work, we propose a set of syntactic protocol transformations that
allows us to abstract realistic protocols and capture a large class of attacks.
Unlike previous work [22,18], our theory and soundness results accommodate
equational theories, untyped variables, user-defined types, and subtyping. These
features allow us to accurately model protocols, capture type-flaw attacks, and
adapt to different verification tools, e.g., those supporting equational theories
such as ProVerif and CL-atse. We have extended Scyther with an abstraction
module, which we validated it on various IKE and ISO/IEC 9798 protocols. We
also tested our technique (with manually produced abstractions) on ProVerif,
CL-atse, OFMC, and SATMC. Our experiments clearly show that modern pro-
tocol verifiers can substantially benefit from our abstractions, which often either
enable previously unfeasible verification tasks or lead to dramatic speedups.

Our abstraction tool does not check for spurious attacks. We plan to add this
functionality to complete the automatic abstraction-refinement process. We are
also interested in generalizing the tool and supporting more protocol verifiers.
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