
A veri�ed model checker for the modal�-calculus in CoqChristoph SprengerComputer Networking Laboratory,Swiss Federal Institute of Technology, Lausanne, Switzerlandsprenger@di.epfl.chAbstract. We report on the formalisation and correctness proof of amodel checker for the modal �-calculus in Coq's constructive type the-ory. Using Coq's extraction mechanism we obtain an executable Camlprogram, which is added as a safe decision procedure to the system. Anexample illustrates its application in combination with deduction.1 IntroductionThere is an obvious advantage in combining theorem proving and model checkingtechniques for the veri�cation of reactive systems. The expressiveness of the the-orem prover's (often higher-order) logic can be used to accommodate a variety ofprogrammodelling and veri�cation paradigms, so in�nite state and parametriseddesigns can be veri�ed. However, using a theorem prover is not transparent andmay require a fair amount of expertise. On the other hand, model checking istransparent, but exponential in the number of concurrent components. Its ap-plication is thus limited to systems with small state spaces. A combination ofthe two techniques can therefore alleviate the problems inherent to each of themwhen used in isolation.Such an integration pays o� even more, when used in combination with re-duction techniques which transform in�nite state or parametrised systems into�nite state ones, while preserving the properties of interest. These are oftensmall enough to be amenable to model checking. Examples of such techniquesare abstract interpretation [4, 11, 7] and inductive reasoning at the process level[23, 10].Various model checkers have already been integrated in theorem provingenvironments [20, 14, 8]. Common to all these cases is that the model checker is anexternal program that is invoked as needed and, most importantly, whose resultsare trusted. The question of the correctness of the model checker itself is rarelyposed. In this paper, we take the position that this is an important question,whenever the proof environment we use should be highly reliable. This questiongains even more importance in the context of provers based on intuitionistictype theory such as Coq [3], Alf [1] and Lego [12], where explicit proof objects(i.e. �-terms) are constructed during the proof. These proof objects are thenveri�ed by an inference engine implementing the basic proof rules. Since there



are only a few rules and the correctness of any proof depends only on the correctimplementation of these rules, these systems can be regarded as very reliable.We see two possibilities for the integration of a model checker into sucha framework: (1) we implement it as an external program that generates thenecessary proof object and add it as a tactic to the system or (2) we prove themodel checker itself formally correct and then consider it as a trusted decisionprocedure. In both approaches the proof system for the temporal or modal logicis implemented in the prover and is therefore available for deductive proofs.The �rst approach has been followed by Yu and Luo [24], the work whichis closest to ours. They have implemented a model checker for the modal �-calculus for Lego in this way. While integrating very smoothly into the prover,this approach has the problem of being ine�cient. The size of the generatedproof objects grows linearly with the number of applications of proof rules. Thisgenerates large proof objects even for quite small examples. The second approachis more e�cient, but integrates somewhat less smoothly into the proof environ-ment, as the results produced by the model checker have to be introduced as(safe) axioms into the prover.Our approach is a compromise between the two. We have formalised themodal �-calculus, a speci�cation of the model checker in [22] and proved itcorrect in Coq. Using Coq's program extraction mechanism our proof is thentranslated into an executable Caml program. Moreover, we also have the possi-bility to directly run the (proof of the) model checker in Coq itself and generatea proof object. We see our contribution as two-fold. Firstly, the speci�cation andcorrectness proof of the model checker provides a case study in developing prov-ably correct sequential (functional) programs. To the best of our knowledge, thisis the �rst formally veri�ed model checker. Secondly, the formalisation of the �-calculus can be used to prove properties of (possibly in�nite) transition systems.For �nite state systems, the model checker provides a useful decision procedurewhich relieves the user from tedious details of a proof. Reduction techniques canbe used to reduce in�nite state systems to �nite state, which can then be provedautomatically with the model checker. We illustrate this use with an example.The outline of the rest of the paper is as follows. The next section givesan overview of the Coq system. Section 3 recalls the syntax and semantics ofthe modal �-calculus. In section 4 we describe our formalisation of the modal�-calculus, the proof system underlying the model checker and the correctnessproof of the algorithm. Section 5 reports on an example illustrating the combi-nation of deductive proof and automatic proof using the model checker.2 Overview of CoqCoq [3] is an interactive proof development system implementing the Calculus ofInductive Constructions (CIC) [18, 21]. The underlying pure Calculus of Con-structions [6] is the most powerful system in Barendregt's �-cube [2]. It combinespolymorphic, higher order and dependent types. The additional inductive typesprovide a powerful and natural mechanism for the de�nition of data types, spec-



i�cations and predicates as well as for proofs by structural induction. Formally,CIC is a typed lambda calculus. Its natural deduction style proof rules are usedto derive judgements of the form � ` t : T meaning that in context � , term thas type T . Since proving T in context � involves the explicit construction of a�-term t inhabiting T , the Curry-Howard correspondence allows us to identifyproofs with programs and types with speci�cations.2.1 The pure calculusIn Coq the following notation for the basic term and type constructions is used:[x : A]M is the abstraction of x : A from M (usually noted �x : A:M), (M N)denotes application of M to N and (x : A)B the dependent product of A andB (often noted 8x : A:M or �x : A:M). The function space A ! B is thespecial case of the product when x does not occur free in B. Function applicationassociates to the left and products to the right. In this paper, we write thedependent product as 8x : A:M in order to improve readability.Moreover, there are the three constants Prop, Set and Type, called sorts.The pure calculus can be speci�ed as the pure type system [2] with sorts S =fProp; Set;Typeg, axioms A=fProp : Type; Set : Typeg and rules R=S � S.2.2 Inductive types and recursionA positive inductive type is speci�ed by an arity, and a set of constructors. Anarity is a type of the form 8x1 : A1 : : :8xn : An: s, where s is a sort. We say thearity is of sort s. Along with each inductive type a structural induction principleis automatically generated. For our purpose, the de�nition of inductive types isbest explained with a couple of examples.Example 1. (Natural numbers) The (data) type of natural numbers is speci�edby the following inductive de�nition:Inductive nat : Set := O : nat j S : nat!nat:This type has arity Set and two constructors O : nat and S : nat!nat. In thiscase, the induction principle is a term nat ind of the familiar type:8P : nat!Prop: (P O)!(8n : nat: (P n)!(P (S n)))!8n : nat: (P n)The construct Cases : : : of : : : end de�nes a function by case analysis; it may becombined with the Fixpoint construct to de�ne primitive recursive functions. Forinstance, addition on natural numbers can be de�ned by primitive recursion:Fixpoint add [n : nat] : nat!nat :=[m : nat]Cases n of O ) m j (S p)) (S (add p m)) end:Note that by emphasising the �rst argument (named n), the system is able toverify that it becomes structurally smaller in each recursive call, thus guaran-teeing its termination.



Example 2. (Predicates) The predicate � on natural numbers is de�ned by:Inductive le [n : nat] : nat!Prop :=le n : (le n n)j le S : 8m : nat: (le n m)!(le n (S m)):In fact, this de�nes the family of inductive predicates \n � :", indexed by n : nat,to be greater or equal to n.Example 3. Logical connectives can be de�ned as non-recursive inductive types.The types of the constructors take the role of introduction rules, while the induc-tion principle provides the elimination rule. As an example, we take existentialquanti�cation:Inductive ex[A : Set;P : A!Prop] : Prop :=ex intro : 8x : A: (P x)!(ex A P ):The associated induction principle reminds of the 9-elimination rule known fromnatural deduction:ex ind : 8A : Set:8P : A!Prop:8Q : Prop:(8x : A: (P x)!Q)!(ex A P )!Q2.3 Program development and extractionAccording to Heyting's constructive interpretation of propositions [9], a proof ofthe formula 8x : A: (P x)!9y : B: (Q x y) is a function taking a value i and aproof of (P i) and constructs value o along with a proof that (Q i o). So, thisformula can be understood as the speci�cation of a program with preconditionP and input-output relation Q.Any proof of this speci�cation is a valid implementation. However, froma computational point of view, we are only interested in the input and outputvalues and not in the proofs of P and Q, which are of purely logical content. Thetwo sorts Set and Prop are used to mark terms of computational and of logicalcontent, respectively. The extraction mechanism strips o� (sub-)terms whosetype are of sort Prop, while keeping those with types of sort Set. The extractionfunction also forgets about dependencies of types on terms. Its codomain isthe subsystem of CIC without dependent types, called F ind! . CIC is used asspeci�cation language for F ind! programs. These may then be translated intoexecutable Caml programs1.In Coq, there is a type sig isomorphic to ex but whose arity is of sort Set. Itreplaces ex in speci�cations. (sig A P ) is written as fx : A j (P x)g. Extractionyields the inductive type sig0 of arity Set!Set with its only constructor of typeA!(sig0 A). This type can be simpli�ed to the isomorphic type [A : Set]A. So, aproof of the speci�cation 8x : A: (P x)!fy : B j (Q x y)g extracts to a functionf : A ! B. The correctness of the extractum is justi�ed by the realisability1 provided they are typable in Caml, which is the case for most practical applications



interpretation [16, 17], ensuring in this case that f satis�es 8x : A: (I x) !(Q x (f x)).Decision procedures are speci�ed by a variant of logical disjunction (witharity of sort Set) given by:Inductive sumbool [A : Prop;B : Prop] : Set :=left : A!(sumbool A B) j right : B!(sumbool A B)The notation for (sumbool A B) is fAg+ fBg. Its extraction is isomorphicto the type of booleans. For example, 8x; y : nat: fx = yg+ f:x = yg speci�es adecision procedure for equality on the natural numbers.Proof methods. There are two possibilities to prove a program speci�cation.The �rst one is to use the usual tactics and tacticals provided by Coq. Primi-tive recursive functions are constructed by structural induction on one of theirarguments. More sophisticated pattern matching requires stating and provingspecialised induction principles, which are then applied to obtain the desiredcontrol structure [19].The idea of the second method is roughly to give the desired program to thesystem right from the beginning and then apply a special Program tactic whichtries to synthesise the computational parts of the proof and generates the logicallemmas necessary to complete the proof. This is the inverse to the extractionprocess. However, as extraction is not invertible, the raw F ind! program is notsu�cient and the tactic needs some hints which are given by annotating theprogram with speci�cations [15]. Such annotated programs are called realizersand the language of realizers is called Real.3 The propositional modal �-calculusThe modal �-calculus subsumes in expressive power many modal and temporallogics such as LTL and CTL. It is interpreted over labelled transition systems(LTS), which are structures of the form T = (St;Act;!), where St is a set ofstates, Act is a set of actions and !� St � Act � St is the transition relation.We write s a! t for (s; a; t) 2!. Assume a countable sets V ar of variables andAP of atomic propositions. A model is a pair (T; �) consisting of a LTS T andan environment � which assigns to each variable and atomic proposition a set ofstates. The abstract syntax of the modal �-calculus is now de�ned by� ::= X j A j :A j � _ � j � ^ � j h�i� j [�]� j �XfUg:� j �XfUg:�where X 2 V ar is a variable, A 2 AP is an atomic proposition and � 2 Act isan action. The �xed point operators � and � are tagged with a �nite set U ofstates. We write � whenever we mean either of � or �. The semantics is then



inductively de�ned as follows:kXk� = �(X)kAk � = �(A)k:Ak � = St n kAk �k�0 _ �1k � = k�0k � [ k�1k �k�0 ^ �1k � = k�0k � \ k�1k �kh�i�k � = fs 2 S j 9s0 2 S:s �! s0 ^ s0 2 k�k �gk[�]�k � = fs 2 S j 8s0 2 S:s �! s0 ) s0 2 k�k �gk�XfUg:�k� = �S: (	(S) n U)k�XfUg:�k� = �S: (U [ 	(S))where 	(S) = k�k �[S=X ]. The usual �X: � is de�ned as �Xf?g:�. Note thatthe false (F ) and true (T ) propositions are de�nable as �X:X and �X:X , re-spectively. This presentation of the calculus, where negation occurs only in frontof atomic proposition is called positive normal form.4 Implementation of the model checkerThis section describes the formalisation of the �-calculus in Coq and the imple-mentation and correctness proof of the model checker described in [22].4.1 Fixed pointsAssume an arbitrary type U . Then (Ensemble U) is the type of sets over U(which are implemented as predicates U ! Prop). We abbreviate this type toEnsU. Suppose further that F : EnsU! EnsU is a monotone function w.r.t. theinclusion ordering. We de�ne the following two operators mu and nu:De�nition mu : (EnsU!EnsU)!EnsU :=[F : EnsU!EnsU][s : U ]8X : EnsU: (Included (F X) X)!(In X s):De�nition nu : (EnsU!EnsU)!EnsU :=[F : EnsU!EnsU][s : U ] 9X : EnsU: (Included X (F X)) ^ (In X s):According to Tarski's theorem, these two operators de�ne the least and greatest�xed points of F , respectively, as is easily proved in Coq. The next ingredient isWinskel's reduction lemma, which forms the basis for the model checker:Theorem Reduction lemma :(Included P (nu F ))$(Included P (F (nu [S : EnsU]Union P (F S)))):It states that a set P is contained in the greatest �xed point of a monotonefunction exactly if it is contained in a certain kind of unfolding of that �xedpoint, where P is added to F under the �xed point operator.



4.2 �-calculus syntax and semanticsOur development of the model checker will be parametrised by a labelled tran-sition system. We assume that the set of states is �nite and that we have afunction which, for any state s and action a, computes a list of a-successors ofs. This is expressed in the following lines:Parameter Act; St : Set:Parameter Trans : St!Act!St!Prop.Axiom finite state : (Finite (Full set St)):Axiom post spec :8s : St:8a : Act: fl : (list St) j 8t : St: (Elem t l)$ (Trans s a t)g:The inductive type de�ning the syntax is then de�ned by:Inductive MuForm : Set :=Var: nat!MuFormj Lit: (St!bool)!MuFormj And: MuForm!MuForm!MuFormj Or: MuForm!MuForm!MuFormj Box: Act!MuForm!MuFormj Dia: Act!MuForm!MuFormj Mu: (list St)!MuForm!MuFormj Nu: (list St)!MuForm!MuForm.Variables are encoded in the standard way using de Bruijn indices. The valuationof atomic propositions is directly coded into the syntax in the form of computablepredicates of type St! bool. Since this type is closed under negation we candrop negation altogether from the syntax. The �xed point operators are taggedwith a list of states.The type Env of environments is de�ned as nat!EnsSt, which can be seen asan in�nite lists of sets of states. We introduce an operation env cons : EnsSt!Env! Env with (env cons R �) returning R for O and (� j) for j + 1. Thefunction recursively computing the semantics of a formula � with respect toenvironment � is de�ned by:Fixpoint Sem [� : MuForm] : Env!EnsSt :=[� : Env]Cases � of(Var i) ) (� i)j (Lit p) ) (cf2ens St p)j (And �1 �2)) (Intersection St (Sem �1 �) (Sem �2 �))j (Or �1 �2) ) (Union St (Sem �1 �) (Sem �2 �))j (Box a �) ) (BoxSem a (Sem � �))j (Dia a �) ) (DiaSem a (Sem � �))j (Mu l �) ) (MuSem l [R : EnsSt](Sem � (env cons R �)))j (Nu l �) ) (NuSem l [R : EnsSt](Sem � (env cons R �)))end:



The function (cf2ens St) transforms a predicate of type St! bool into theset of states (of type EnsSt) verifying the predicate. BoxSem, DiaSem are thepredicate transformers de�ning the semantics of the modalities. In the casesof the �xed point operators, the second argument to MuSem and NuSem is thede Bruijn version of �S: k�k �[S=X ] when X is the variable bound to the �xedpoint operator. Here, env cons has the e�ect of shifting the interpretation offree variables by one, accounting for the increased abstraction depth under theseoperators. For illustration, we give the de�nitions of DiaSem and NuSem.Inductive DiaSem [a : Act;R : EnsSt] : EnsSt :=dia intro : 8s; t : St: (Trans s a t)!(In St R t)!(In St (DiaSem a R) s):De�nition NuSem : (list St)!(EnsSt!EnsSt)!EnsSt :=[P : (list St)][� : EnsSt!EnsSt](nu St [R : EnsSt](Union St (list2ens St P ) (� R))):Substitution. We de�ne the type of substitutions Subst to be the functions oftype nat!MuForm assigning each variable a �-calculus formula. Substitution isthus a function subst : MuForm! Subst! MuForm. The following table intro-duces some notation which is useful in the context of de Bruijn-coded variables:notation de�nition nameid [i : nat](Var i) \identity"" [i : nat](Var (S i)) \shift"� � � [i : nat]Cases i ofO ) � j (S k)) (� k) end \cons"� � �0 [i : nat](subst (� i) �0) \composition"*(�) O � (� � ") \lift"In order to improve readability, we will use the usual notation �[�] insteadof (subst � �). In subst, the cases of the �xed point operators use 'lift' topush substitution inside, i.e. we have (� l  )[�] =� (� l ( [* (�)])). The 'cons'operator is useful in unfolding �xed point formulas:  [(Nu l  ) � id] correspondsto the unfolding of (Nu l  ). With these de�nitions, we can prove:Lemma 4. � � (� � �0) = *(�) � (� � �0):The next lemma establishes a standard semantical correspondence between sub-stitution and environment. It is proved is by structural induction on �.Lemma Substitution lemma :8� : MuForm:8� : Env:8� : Subst:(Sem �[�] �) = (Sem � [i : nat](Sem (� i) �)):4.3 Correctness assertionsThe satisfaction relation sat on states and formulas is de�ned as:



Inductive sat [s : St;� : MuForm] : Prop :=sat intro : (8� : Env: (In St (Sem � �) s))!(sat s �):We call the proposition (sat s �) a correctness assertion and write it as s j= �.In Coq, we can prove the following lemma:Lemma 5. For '; '0; '1 and (� l  ) closed formulas, we have1. s j= (And �0 �1) $ s j= �0 ^ s j= �12. s j= (Or �0 �1) $ s j= �0 _ s j= �13. s j= (Dia a �) $ 9s0 : St: (Trans s a s0) ^ s0 j= �4. s j= (Box a �) $ 8s0 : St: (Trans s a s0)! s0 j= �5. if (Elem s l) then (a) :(s j= (Mu l  )), and (b) s j= (Nu l  )6. if :(Elem s l) then for � 2 fMu; Nug:s j= (� l  ) $ s j= �[(� (cons s l)  ) � id]Proof. Items (1)-(5) follow directly from the semantic de�nition. For (6), we needthe Reduction and Substitution Lemmas. In the case of the least �xed point, adual version of the Reduction Lemma is used. utThese equivalences, when cast into proof rules, can be used to establish prop-erties of arbitrary (possibly in�nite state) transition systems deductively.4.4 The algorithmIn this section, we describe the speci�cation and correctness proof of Winskel'slocal model checking algorithm [22] in Coq. It decides the truth or falsity ofcorrectness assertions by exploring the neighbourhood of the state of interest.The idea is to exploit the equivalences of the previous Lemma 5 by consideringthem as simpli�cation rules (in going from left to right).Speci�cation. Given a closed formula � of the �-calculus and a state s of thetransition system, the model checker is supposed to decide whether s satis�es �or it not. This leads us to the following Coq speci�cation:MuChk : 8� : MuForm: (Closed �)!8s : St: fs j= �g+f:(s j= �)g:We apply Lemma 5 in order to gradually transform the decision problem into(boolean combinations of) simpler ones. The �xed point operators are dealt withby unfolding them while adding the current state to the tag, whenever it is notalready there. In cases 1-4 there is a structural reduction in going from left toright. Case 5 provides the base. In case 6 the reduction is less obvious. This meansthat the correctness proof will proceed by well-founded induction. However, theproof also requires that we extend our speci�cation to arbitrary formulas, be theyopen or closed. This leads to the following generalised speci�cation MuChk plus,using the auxiliary predicates Q and Q+.



De�nition Q : MuForm!Set :=[� : MuForm]8s : St: fs j= �g+f:(s j= �)g:De�nition Q+ : MuForm!Set :=[� : MuForm]8� : Subst:�8i : nat: (Elem i (fv �))!(Closed (� i))�!�8i : nat: (Elem i (fv �))!(Q (� i))�!(Q �[�]):MuChk plus : 8� : MuForm: (Q+ �)The �rst condition in the de�nition of Q+ means that the substitute (� i) foreach free variable i of � is a closed formula. The second condition expressesthe assumption that we know how to decide the satisfaction problem for thesesubstitutes. Since a closed formula trivially satis�es both of these conditions, Q+is equivalent to Q in this case. With these de�nitions the original speci�cationMuChk reads 8� : MuForm: (Closed �)!(Q �).Correctness proof. We prove the generalised speci�cation MuChk plus bywell-founded induction. The well-founded induction principle (WFI) is a theorempart of the Coq library. It is stated in the following.well founded induction:8A : Set:8R : A!A!Prop: (well founded A R)!8P : A!Set: (8x : A: �8y : A: (R y x)!(P y))!(Px)�!8a : A: (P a)The computational content of the proof of the well-founded induction principleobtained by extraction is a general recursor. Its type is 8A;P : Set: (A! (A!P )! P )!A! P . Note, however, that by the recursive realisability interpre-tation [19] any program extracted from a proof by well-founded induction isguaranteed to terminate on arguments satisfying the speci�ed preconditions.Proof of main theorem MuChk plus. As we follow basically the proof in [22], wetry here to point out the application of the proof method provided by realizersand the Program tactic.De�nition 6. Let � be the proper one-step2 subformula relation on �-calculusformulas. Then relation R : MuForm!MuForm!Prop is de�ned by:[�; �0 : MuForm]�� � �0 _ 9s : St: 9l : (list St): 9 : MuForm:(:(Elem s l) ^ � � (� (cons s l)  ) ^ �0 � (� l  ))�Well-foundedness of R follows from the assumption that the set of states Stis �nite. By the well-founded induction principle, MuChk plus follows from:8� : MuForm: (8 : MuForm: (R  �)!(Q+  ))!(Q+ �): (1)The proof proceeds by case analysis on the form of �, which generates eightsubgoals, one for each constructor of MuForm. We pick out the case of the greatest�xed point which we state as the lemma:2 i.e. if � � �0 then there is no �00 s.t. � � �00 � �0



Lemma chk Nu plus :8l : (list St):8� : MuForm:(8 : MuForm: (R  (Nu l �))!(Q+  ))!(Q+ (Nu l �)):After unfolding the de�nitions of Q+ and Q, introducing the hypothesis into thecontext and pushing substitution inside Nu, we obtain the sequent:h : 8 : MuForm: (R  (Nu l �))!8�0 : Subst:(8j : nat: (Elem j (fv (Nu l �)))!(Closed (�0 j)))!(8j : nat: (Elem j (fv (Nu l �))!(Q (�0 j)))!(Q  [�0])� : Substh0 : 8i0 : nat: (Elem i0 (fv (Nu l �)))!(Closed (� i0))h1 : 8i0 : nat: (Elem i0 (fv (Nu l �))!(Q (� i0))s : St============================fs j= (Nu l (�[*(�)]))g+f:(s j= (Nu l (�[*(�)])))gThe realizer for this goal depends on two lemmas which are proved in the contextabove. The �rst one is:Lemma Q Nu cons : :(Elem s l)!(Q (Nu (cons s l) �)[�])Realizer (h (Nu (cons s l) � h1)):It is automatically proved by Program all. The second one corresponds to theright hand side of Lemma 5(6):Lemma Q Nu unfold ::(Elem s l)!�Q (�[*(�)])�(Nu (cons s l) (�[*(�)])) � id��Using Lemma 4, we �rst rewrite this to (Q �[(Nu (cons s l) (�[*(�)])) � �]). Now,since by Lemma Q Nu cons we know how to decide (Nu (cons s l) (�[* (�)]))(which is convertible with (Nu (cons s l) �)[�] ) and by hypothesis h1 we knowhow to do so for each (� i), we can use the induction hypothesis h to constructthe following realizerRealizer �h � (Nu (cons s l) (�[*(�)])) � �[i : nat]Cases i of O ) Q Nu cons j (S j)) (h1 j) end�Applying the tactic Program all leaves us with two subgoals which are easilysolved. Now, with Lemma 5(5b) and (6) in mind, we are ready to give the realizerfor the goal of our original sequent:Realizer if (is elem spec s l) then true else (Q Nu unfold s):where is elem spec : 8s : St:8l : (list St): f(Elem s l)g+f:(Elem s l)g. Thesubgoals generated by Program all are all easily proved using Lemmas 5(5b)and 5(6).



A realizer for the control structure The steps taken in the beginning of the proof(application of the WFI and case analysis) can be replaced by the followingrealizer for MuChk plus:Realizer <Q+>rec muchk plus :: :: fRg[� : MuForm]Cases � of(Var i) ) (chk Var plus i)j (Lit p) ) (chk Lit plus p)j (constr args) ) (chk constr plus args muchk plus)j : : : : : :end:The notation <P>rec h :: ::fRg [a : A]M , where h is the name of the inductionhypothesis and M : P , is syntactic sugar for (well founded induction A P [a :A][h : A!P ]M). The identi�ers chk constr plus, where constr is the name ofa recursive constructor of MuForm, denote lemmas proving the di�erent cases for� in subgoal (1).5 ApplicationAll the notions in this section have been formalised in Coq. We use usual math-ematical notation for brevity.CCS and the speci�cation preorder. We recall the basic de�nitions. Formore detail, we refer the reader to [13, 5]. Let A be a set of names, their com-plements A = fl j l 2 Ag and the set of labels L = A[A. We set l = l. f De�nethe set of actions by Act = L [ f�g, where with � the invisible/silent action. fis a relabelling function if f(l) = f(l) and f(�) = � . Suppose a set K of processconstants. The set P of processes is de�ned by the abstract syntax:p ::= nil j?j a:p j p0 + p1 j p0 jp1 j p[f ] j pnL j Awhere a 2 Act, f a relabelling function, L � L and A 2 K. Let T be thetransition system (P ; Act;!), whose transition relation! is inductively de�nedby the rules: a:p a! pp a! p0 ) p+ q a! p0; q + p a! p0;p j q a! p0; q j p a! p0; pffg f(a)! p0ffgp a! p0; a; a 62 L ) pnL a! p0nLp a! p0; A def= p ) A a! p0The partiality predicate " is the complement of # which is de�ned by: (i) nil #; a:p #, (ii) p #; q # ) p + q #; p j q #, (iii) p # ) pnL #; p[f ] #, (iv)A def= p; p # ) A #. Intuitively, " denotes the underde�ned processes.



De�nition 7. Let l 2 L and a 2 Act. De�ne1. l)=��! l! ��! and �)=��!2. p * i� 9p0: p ") p0 ^ p "3. p * a i� p * _ 9p0: (p ") p0 ^ p0 *)p + (p + a) is the complements of p * (p * a). We say that a process p is totallyde�ned if for all p0 reachable from p: p +. Otherwise, it is partially de�ned.De�nition 8. De�ne the speci�cation preorder � as the greatest �xed point ofthe function F on relations over P de�ned by (p; q) 2 F (R) i� for all a 2 Acts.t. p + a we have:1. q + a,2. if p a! p0 then 9q0: q a) q0 ^ (p0; q0) 2 R,3. if q a! q0 then 9p0: p a) p0 ^ (p0; q0) 2 R.Let � denote weak bisimulation equivalence [13].Lemma 9. If p� q and p is totally de�ned, then q is totally de�ned and p � q.Theorem 10. ([5]) The preorder � is a precongruence w.r.t. parallel composi-tion, restriction and relabelling, i.e. if p� q then p j r � q j r; pffg� qffg andpnL� qnL.Veri�cation of � using the model checker. We introduce the transitionsystem T+ = (P � P ; Act ]Act;�!+), where �!+ is de�ned by:p a! p0 ) (p; q) �0(a)�!+ (p0; q); (q; p) �1(a)�!+ (q; p0)Next, we de�ne some left and right modalities for the �-calculus interpreted overthe transition system T+:hail � = h�0(a)i� h��il � = �X: � _ h�ilX (X 62 FV (�))hh`iil � = h��ilh`ilh��il � (` 2 L) hh�iil � = h��il �Of all these we de�ne \right" versions, but with hair� = h�1(a)i�. We alsointroduce left/right versions of the partiality predicates:"l = " � P *l = hh�iil "l *l (a) = *l _hhaiil *lSimilarly, \right" versions are de�ned using "r= P � ". Now, supposing the setAct is �nite, the function F from de�nition 8 can be expressed as the �-calculusformula:~F (X) = ^a2Act�: *l (a) _ �*r (a) ^ [a]lhhaiirX ^ [a]rhhaiilX��We de�ne �� = �X: ~F (X). Then we have the following result:



Lemma 11. For Act �nite: p� q , (p; q) j= �� .A simple protocol. A simple protocol Pn is composed of a sender S syn-chronously transmitting signals over a bu�er Bn of size n to a receiver R. WithX k Y def= (X [out=z] j Y [in=z])nfzg, the de�nition is:B def= in:out:B Bn def= kni=1 BS def= send:in:ack:S R def= out:recv:ack:RE def= (S j R)nfackg Pn def= (E j Bn)nfin; outgWe de�ne a speci�cation of the protocol by Spec def= send:recv:Spec. We want toshow that the behaviour of the protocol is independent of the size of the bu�er.Theorem 12. For all n � 1: Spec � Pn.Proof. The proof is decomposed into the following two steps:1. �nd a network invariant J such that for all n � 1: J �Bn2. verify that Spec� (E j J)nfin; outgThe result then follows from Theorem 10 and Lemma 9, a fact which is provedby deduction in Coq. We de�ne J def= in:J 0 and J 0 def= out:J + in: ?.Step (1) is proved by an implicit induction on n: (a) J � B (base case) (b)J � B k J (inductive step). Both these steps can be proved with the modelchecker, by using the characteristic formula �� . That (a) and (b) imply (1) isproved \by hand" in Coq. Step (2) can be delegated to the model checker aswell. utAs any property, expressed in a version of the modal �-calculus with weakmodalities only, is preserved by weak bisimulation equivalence, we can verify iton the speci�cation Spec and conclude that it also holds for each of the Pn.References1. L. Augustsson, T. Coquand, and B. Nordstr�om. A short description of anotherlogical framework. In G. Huet and P. G., editors, Preliminary Proceedings of LogicalFrameworks, 1990.2. H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay,and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2:Background: Computational Structures, pages 118{309. Oxford University Press,1992.3. B. Barras, S. Boutin, C. Cornes, J. Courant, j.-C. Filiâtre, E. Gim�enez, H. Herbelin,G. Huet, and al . The Coq Proof Assistant Reference Manual, Version 6.1. ProjetCoq, INRIA Rocquencourt, CNRS - ENS Lyon, Dec. 1996.4. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.ACM Transactions on Programming Languages and Systems, 16(5):1512{1542,Sept. 1994.
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