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Abstract. We report on the formalisation and correctness proof of a
model checker for the modal u-calculus in Coq’s constructive type the-
ory. Using Coq’s extraction mechanism we obtain an executable Caml
program, which is added as a safe decision procedure to the system. An
example illustrates its application in combination with deduction.

1 Introduction

There is an obvious advantage in combining theorem proving and model checking
techniques for the verification of reactive systems. The expressiveness of the the-
orem prover’s (often higher-order) logic can be used to accommodate a variety of
program modelling and verification paradigms, so infinite state and parametrised
designs can be verified. However, using a theorem prover is not transparent and
may require a fair amount of expertise. On the other hand, model checking is
transparent, but exponential in the number of concurrent components. Its ap-
plication is thus limited to systems with small state spaces. A combination of
the two techniques can therefore alleviate the problems inherent to each of them
when used in isolation.

Such an integration pays off even more, when used in combination with re-
duction technigques which transform infinite state or parametrised systems into
finite state ones, while preserving the properties of interest. These are often
small enough to be amenable to model checking. Examples of such techniques
are abstract interpretation [4,11,7] and inductive reasoning at the process level
[23,10].

Various model checkers have already been integrated in theorem proving
environments [20, 14, 8]. Common to all these cases is that the model checker is an
external program that is invoked as needed and, most importantly, whose results
are trusted. The question of the correctness of the model checker itself is rarely
posed. In this paper, we take the position that this is an important question,
whenever the proof environment we use should be highly reliable. This question
gains even more importance in the context of provers based on intuitionistic
type theory such as Coq [3], Alf [1] and Lego [12], where explicit proof objects
(i.e. A-terms) are constructed during the proof. These proof objects are then
verified by an inference engine implementing the basic proof rules. Since there



are only a few rules and the correctness of any proof depends only on the correct
implementation of these rules, these systems can be regarded as very reliable.

We see two possibilities for the integration of a model checker into such
a framework: (1) we implement it as an external program that generates the
necessary proof object and add it as a tactic to the system or (2) we prove the
model checker itself formally correct and then consider it as a trusted decision
procedure. In both approaches the proof system for the temporal or modal logic
is implemented in the prover and is therefore available for deductive proofs.

The first approach has been followed by Yu and Luo [24], the work which
is closest to ours. They have implemented a model checker for the modal pu-
calculus for Lego in this way. While integrating very smoothly into the prover,
this approach has the problem of being inefficient. The size of the generated
proof objects grows linearly with the number of applications of proof rules. This
generates large proof objects even for quite small examples. The second approach
is more efficient, but integrates somewhat less smoothly into the proof environ-
ment, as the results produced by the model checker have to be introduced as
(safe) axioms into the prover.

Our approach is a compromise between the two. We have formalised the
modal p-calculus, a specification of the model checker in [22] and proved it
correct in Coq. Using Coq’s program extraction mechanism our proof is then
translated into an executable Caml program. Moreover, we also have the possi-
bility to directly run the (proof of the) model checker in Coq itself and generate
a proof object. We see our contribution as two-fold. Firstly, the specification and
correctness proof of the model checker provides a case study in developing prov-
ably correct sequential (functional) programs. To the best of our knowledge, this
is the first formally verified model checker. Secondly, the formalisation of the u-
calculus can be used to prove properties of (possibly infinite) transition systems.
For finite state systems, the model checker provides a useful decision procedure
which relieves the user from tedious details of a proof. Reduction techniques can
be used to reduce infinite state systems to finite state, which can then be proved
automatically with the model checker. We illustrate this use with an example.

The outline of the rest of the paper is as follows. The next section gives
an overview of the Coq system. Section 3 recalls the syntax and semantics of
the modal p-calculus. In section 4 we describe our formalisation of the modal
p-calculus, the proof system underlying the model checker and the correctness
proof of the algorithm. Section 5 reports on an example illustrating the combi-
nation of deductive proof and automatic proof using the model checker.

2 Overview of Coq

Coq [3] is an interactive proof development system implementing the Calculus of
Inductive Constructions (CIC) [18,21]. The underlying pure Calculus of Con-
structions [6] is the most powerful system in Barendregt’s A-cube [2]. It combines
polymorphic, higher order and dependent types. The additional inductive types
provide a powerful and natural mechanism for the definition of data types, spec-



ifications and predicates as well as for proofs by structural induction. Formally,
CIC is a typed lambda calculus. Its natural deduction style proof rules are used
to derive judgements of the form I' F ¢: T meaning that in context I', term ¢
has type T'. Since proving T in context I" involves the explicit construction of a
A-term t inhabiting T, the Curry-Howard correspondence allows us to identify
proofs with programs and types with specifications.

2.1 The pure calculus

In Coq the following notation for the basic term and type constructions is used:
[z: A]M is the abstraction of z: A from M (usually noted Az: A. M), (M N)
denotes application of M to N and (z: A)B the dependent product of A and
B (often noted Vz : A.M or Iz : A.M). The function space A — B is the
special case of the product when z does not occur free in B. Function application
associates to the left and products to the right. In this paper, we write the
dependent product as Vx: A. M in order to improve readability.

Moreover, there are the three constants Prop, Set and Type, called sorts.
The pure calculus can be specified as the pure type system [2] with sorts S =
{Prop, Set, Type}, axioms .A={Prop: Type, Set: Type} and rules R=8 x S.

2.2 Inductive types and recursion

A positive inductive type is specified by an arity, and a set of constructors. An
arity is a type of the form Vax: Ay ...Vx,: A,.s, where s is a sort. We say the
arity is of sort s. Along with each inductive type a structural induction principle
is automatically generated. For our purpose, the definition of inductive types is
best explained with a couple of examples.

Ezample 1. (Natural numbers) The (data) type of natural numbers is specified
by the following inductive definition:

Inductive nat: Set := O:nat | S: nat—nat.

This type has arity Set and two constructors O: nat and S: nat —nat. In this
case, the induction principle is a term nat_ind of the familiar type:

VP:nat—Prop. (P O)— (Vn:nat. (P n)—(P (S n))) »Vn: nat. (P n)

The construct Cases...of ...end defines a function by case analysis; it may be
combined with the Fixpoint construct to define primitive recursive functions. For
instance, addition on natural numbers can be defined by primitive recursion:

Fixpoint add [n: nat]: nat —nat :=
[m: nat]Cases n of O = m | (S p) = (S (add p m)) end.

Note that by emphasising the first argument (named n), the system is able to
verify that it becomes structurally smaller in each recursive call, thus guaran-
teeing its termination.



Ezample 2. (Predicates) The predicate < on natural numbers is defined by:

Inductive 1e [n: nat]: nat — Prop :=
len: (lenn)
| 1e.S: Vm:nat.(le n m)—(le n (S m)).

In fact, this defines the family of inductive predicates “n < .”, indexed by n: nat,
to be greater or equal to n.

Example 3. Logical connectives can be defined as non-recursive inductive types.
The types of the constructors take the role of introduction rules, while the induc-
tion principle provides the elimination rule. As an example, we take existential
quantification:

Inductive ex[A: Set; P: A— Prop]: Prop :=
ex_intro: Vz: A. (P z)— (ex A P).

The associated induction principle reminds of the 3-elimination rule known from
natural deduction:

ex_ind: VA: Set.VP: A— Prop.VQ: Prop.
(Vz: A.(Pz)=>Q)—=(ex A P)—Q

2.3 Program development and extraction

According to Heyting’s constructive interpretation of propositions [9], a proof of
the formula Va: A. (P z)— Jy: B.(Q z y) is a function taking a value ¢ and a
proof of (P i) and constructs value o along with a proof that (Q i o). So, this
formula can be understood as the specification of a program with precondition
P and input-output relation Q.

Any proof of this specification is a valid implementation. However, from
a computational point of view, we are only interested in the input and output
values and not in the proofs of P and @, which are of purely logical content. The
two sorts Set and Prop are used to mark terms of computational and of logical
content, respectively. The extraction mechanism strips off (sub-)terms whose
type are of sort Prop, while keeping those with types of sort Set. The extraction
function also forgets about dependencies of types on terms. Its codomain is
the subsystem of CIC without dependent types, called Fi"?. CIC is used as
specification language for F"¢ programs. These may then be translated into
executable Caml programs®.

In Coq, there is a type sig isomorphic to ex but whose arity is of sort Set. It
replaces ex in specifications. (sig A P) is written as {z: A | (P z)}. Extraction
yields the inductive type sig' of arity Set — Set with its only constructor of type
A—(sig' A). This type can be simplified to the isomorphic type [A: Set]A. So, a
proof of the specification Vaz: A. (P z)—{y: B | (Q z y)} extracts to a function
f: A — B. The correctness of the extractum is justified by the realisability

! provided they are typable in Caml, which is the case for most practical applications



interpretation [16,17], ensuring in this case that f satisfies Vo : A.(I z) —
(@Qz (f 2)).

Decision procedures are specified by a variant of logical disjunction (with
arity of sort Set) given by:

Inductive sumbool [A: Prop; B : Prop]: Set :=
left: A— (sumbool A B) | right: B — (sumbool A B)

The notation for (sumbool A B) is {A} 4+ {B}. Its extraction is isomorphic
to the type of booleans. For example, Vz,y: nat. {z = y} + {—2 = y} specifies a
decision procedure for equality on the natural numbers.

Proof methods. There are two possibilities to prove a program specification.
The first one is to use the usual tactics and tacticals provided by Coq. Primi-
tive recursive functions are constructed by structural induction on one of their
arguments. More sophisticated pattern matching requires stating and proving
specialised induction principles, which are then applied to obtain the desired
control structure [19].

The idea of the second method is roughly to give the desired program to the
system right from the beginning and then apply a special Program tactic which
tries to synthesise the computational parts of the proof and generates the logical
lemmas necessary to complete the proof. This is the inverse to the extraction
process. However, as extraction is not invertible, the raw F"¢ program is not
sufficient and the tactic needs some hints which are given by annotating the
program with specifications [15]. Such annotated programs are called realizers
and the language of realizers is called Real.

3 The propositional modal p-calculus

The modal p-calculus subsumes in expressive power many modal and temporal
logics such as LTL and CTL. It is interpreted over labelled transition systems
(LTS), which are structures of the form T' = (St, Act, =), where St is a set of
states, Act is a set of actions and —C St x Act x St is the transition relation.
We write s = t for (s,a,t) € —. Assume a countable sets Var of variables and
AP of atomic propositions. A model is a pair (T, p) consisting of a LTS T and
an environment p which assigns to each variable and atomic proposition a set of
states. The abstract syntax of the modal p-calculus is now defined by

pu=X[|A[-A[oVo|oNG| (00 ]|[ald| pX{U}.¢ | vX{U}.¢

where X € Var is a variable, A € AP is an atomic proposition and o € Aect is
an action. The fixed point operators p and v are tagged with a finite set U of
states. We write o whenever we mean either of y or v. The semantics is then



inductively defined as follows:

X[l p = p(X)
IAll p = p(A)
I=Allp = St\ ||A[l p
ll¢o V @ullp = lldoll pU |l ¢1l p
llgo A @illp = lldoll pN |1l p
Kadpllp={s € 5|35’ € S.5 3 ' A s’ € gl p}
le]ollp={s €S| Vs €8s =5 =5 €l p}
luX{U}.¢ll p = uS. (#(S)\ U)
lvX{U}.¢llp =vS.(UU¥(S))
where ¥(S) = ||¢|| p[S/X]. The usual 6X.¢ is defined as o X {@}.4. Note that
the false (F') and true (T') propositions are definable as uX.X and vX. X, re-

spectively. This presentation of the calculus, where negation occurs only in front
of atomic proposition is called positive normal form.

4 TImplementation of the model checker

This section describes the formalisation of the p-calculus in Coq and the imple-
mentation and correctness proof of the model checker described in [22].

4.1 Fixed points

Assume an arbitrary type U. Then (Ensemble U) is the type of sets over U
(which are implemented as predicates U — Prop). We abbreviate this type to
EnsU. Suppose further that F': EnsU— EnsU is a monotone function w.r.t. the
inclusion ordering. We define the following two operators mu and nu:

Definition mu: (EnsU— EnsU) —EnsU :=
[F': EnsU—EnsU][s: U] VX : EnsU. (Included (F X) X)— (In X s).

Definition nu: (EnsU— EnsU) —EnsU :=
[F': EnsU—EnsU][s: U] 3X : EnsU. (Included X (F X)) A (In X s).

According to Tarski’s theorem, these two operators define the least and greatest
fixed points of F', respectively, as is easily proved in Coq. The next ingredient is
Winskel’s reduction lemma, which forms the basis for the model checker:

Theorem Reduction lemma :
(Included P (nu F)) <
(Included P (F (nu [S: EnsUJUnion P (F S)))).

It states that a set P is contained in the greatest fixed point of a monotone
function exactly if it is contained in a certain kind of unfolding of that fixed
point, where P is added to F' under the fixed point operator.



4.2 p-calculus syntax and semantics

Our development of the model checker will be parametrised by a labelled tran-
sition system. We assume that the set of states is finite and that we have a
function which, for any state s and action a, computes a list of a-successors of
s. This is expressed in the following lines:

Parameter Act, St : Set.
Parameter Trans: St — Act — St — Prop.
Axiom finite state: (Finite (Full_set St)).
Axiom post_spec:
Vs:St.Va: Act.{l: (1ist St) | V¢: St. (Elem ¢ [) +> (Trans s a t)}.

The inductive type defining the syntax is then defined by:

Inductive MuForm : Set :=
Var: nat— MuForm
| Lit: (St —bool)—MuForm
| And: MuForm— MuForm— MuForm
| Or: MuForm— MuForm — MuForm
| Box: Act— MuForm— MuForm
| Dia: Act— MuForm— MuForm
| Mu:  (list St)—MuForm— MuForm
| Nu:  (list St)—MuForm— MuForm.

Variables are encoded in the standard way using de Bruijn indices. The valuation
of atomic propositions is directly coded into the syntax in the form of computable
predicates of type St — bool. Since this type is closed under negation we can
drop negation altogether from the syntax. The fixed point operators are tagged
with a list of states.

The type Env of environments is defined as nat — EnsSt, which can be seen as
an infinite lists of sets of states. We introduce an operation env_cons : EnsSt —
Env — Env with (env_cons R p) returning R for O and (p j) for j + 1. The
function recursively computing the semantics of a formula ¢ with respect to
environment p is defined by:

Fixpoint Sem [¢: MuForm| : Env —EnsSt :=
[p : Env]Cases ¢ of

(Var i) = (p i)
| (Lit p) = (cf2ens St p)
| (And ¢y ¢2) = (Intersection St (Sem ¢; p) (Sem ¢2 p))
| (Or ¢1 ¢2) = (Union St (Sem ¢ p) (Sem ¢ p))
| (Box a ¢) = (BoxSem a (Sem ¢ p))
| (Dia a ¢) = (DiaSem a (Sem ¢ p))
| Mul ¢) = (MuSem !/ [R: EnsSt|(Sem ¢ (env_cons R p)))
(|i (Nul ¢) = (NuSem !/ [R: EnsSt](Sem ¢ (env_cons R p)))



The function (cf2ens St) transforms a predicate of type St — bool into the
set of states (of type EnsSt) verifying the predicate. BoxSem, DiaSem are the
predicate transformers defining the semantics of the modalities. In the cases
of the fixed point operators, the second argument to MuSem and NuSem is the
de Bruijn version of AS.[|¢|| p[S/X] when X is the variable bound to the fixed
point operator. Here, env_cons has the effect of shifting the interpretation of
free variables by one, accounting for the increased abstraction depth under these
operators. For illustration, we give the definitions of DiaSem and NuSem.

Inductive DiaSem [a: Act; R: EnsSt|: EnsSt :=
dia_intro:Vs,t: St.(Trans s a t)— (In St R t) = (In St (DiaSem a R) s).

Definition NuSem: (1ist St)— (EnsSt — EnsSt) —EnsSt :=
[P: (list St)][®: EnsSt —EnsSt)]
(nu St [R: EnsSt](Union St (list2ens St P) (® R))).

Substitution. We define the type of substitutions Subst to be the functions of
type nat —MuForm assigning each variable a p-calculus formula. Substitution is
thus a function subst : MuForm — Subst — MuForm. The following table intro-
duces some notation which is useful in the context of de Bruijn-coded variables:

notation|definition name

id [i: nat](Var i) “identity”

0 [i: nat](Var (S 1)) “shift”

¢-0 [i: nat]Cases i ofO = ¢ | (S k) = (6 k) end|“cons”

fod [i: nat](subst (6 i) 6') “composition”
1(6) O-(0o1) “lift”

In order to improve readability, we will use the usual notation ¢[f] instead
of (subst ¢ 6). In subst, the cases of the fixed point operators use ’lift’ to
push substitution inside, i.e. we have (o [ ¥)[0] =g (o I (¥[f+ (#)])). The ’cons’
operator is useful in unfolding fixed point formulas: [(Nu [ ) - id] corresponds
to the unfolding of (Nu [ ¢). With these definitions, we can prove:

Lemma 4. ¢- (0o 8')=1(0)o(p-6).

The next lemma establishes a standard semantical correspondence between sub-
stitution and environment. It is proved is by structural induction on ¢.

Lemma Substitution lemma :
V¢: MuForm. Vp: Env. V6 : Subst.

(Sem ¢[f] p) = (Sem ¢ [i: nat](Sem (0 i) p)).

4.3 Correctness assertions

The satisfaction relation sat on states and formulas is defined as:



Inductive sat [s: St; ¢: MuForm]: Prop :=
sat_intro: (Vp: Env. (In St (Sem ¢ p) s)) = (sat s ¢).

We call the proposition (sat s @) a correctness assertion and write it as s = ¢.
In Coq, we can prove the following lemma:

Lemma 5. For ¢, 0,1 and (o 1 1) closed formulas, we have

1. s = (And ¢o ¢1) < sEdoAsE ¢
2. s (0T do d1) < slEdVsEd
3. skE(Diaa ¢) «» Js':St.(Trans sa s') A s'=¢
4. sE=(Boxa ¢) <> Vs':St.(Trans s a s') > s |E o
5. if (Elem s 1) then (a) =(s E (Mul ¢)), and (b) s = (Nul )
6. if ~(Elem s ) then for o € {Mu,Nu}:
SE(0 1Y) © sk oo (cons 5 1) ) - id]

Proof. Ttems (1)-(5) follow directly from the semantic definition. For (6), we need
the Reduction and Substitution Lemmas. In the case of the least fixed point, a
dual version of the Reduction Lemma is used. a

These equivalences, when cast into proof rules, can be used to establish prop-
erties of arbitrary (possibly infinite state) transition systems deductively.

4.4 The algorithm

In this section, we describe the specification and correctness proof of Winskel’s
local model checking algorithm [22] in Coq. It decides the truth or falsity of
correctness assertions by exploring the neighbourhood of the state of interest.
The idea is to exploit the equivalences of the previous Lemma 5 by considering
them as simplification rules (in going from left to right).

Specification. Given a closed formula ¢ of the u-calculus and a state s of the
transition system, the model checker is supposed to decide whether s satisfies ¢
or it not. This leads us to the following Coq specification:

MuChk: V¢: MuForm. (Closed ¢) —»Vs: St.{s = ¢} +{-(s | ¢)}.

We apply Lemma 5 in order to gradually transform the decision problem into
(boolean combinations of) simpler ones. The fixed point operators are dealt with
by unfolding them while adding the current state to the tag, whenever it is not
already there. In cases 1-4 there is a structural reduction in going from left to
right. Case 5 provides the base. In case 6 the reduction is less obvious. This means
that the correctness proof will proceed by well-founded induction. However, the
proof also requires that we extend our specification to arbitrary formulas, be they
open or closed. This leads to the following generalised specification MuChk_plus,
using the auxiliary predicates @ and Q7.



Definition ) : MuForm— Set :=

[¢: MuForm|Vs: St. {s |= ¢} +{—(s E ¢)}.

Definition QT : MuForm— Set :=
[¢: MuForm| V6 : Subst.
(Vi: nat. (Elem i (fv ¢)) — (Closed ( z)))
(Vi: nat. (Elem i (£v ¢)) i) = (

MuChk plus: V¢: MuForm. (QT ¢)

The first condition in the definition of Q* means that the substitute (8 i) for
each free variable i of ¢ is a closed formula. The second condition expresses
the assumption that we know how to decide the satisfaction problem for these
substitutes. Since a closed formula trivially satisfies both of these conditions, Q@+
is equivalent to @ in this case. With these definitions the original specification
MuChk reads V¢: MuForm. (Closed ¢)— (Q ¢).

Correctness proof. We prove the generalised specification MuChk plus by
well-founded induction. The well-founded induction principle (WFI) is a theorem
part of the Coq library. It is stated in the following.

well_founded_induction:
VA:Set.VR: A— A— Prop. (well_founded A R) —
VP: A—Set. (Vz: A. (Vy: A. (Ry z)— (P y)) = (Pz)) »Va: A. (P a)

The computational content of the proof of the well-founded induction principle
obtained by extraction is a general recursor. Its type is VA, P: Set. (A — (4 —
P) — P) - A — P. Note, however, that by the recursive realisability interpre-
tation [19] any program extracted from a proof by well-founded induction is
guaranteed to terminate on arguments satisfying the specified preconditions.

Proof of main theorem MuChk_plus. As we follow basically the proof in [22], we
try here to point out the application of the proof method provided by realizers
and the Program tactic.

Definition 6. Let < be the proper one-step? subformula relation on p-calculus
formulas. Then relation R: MuForm— MuForm— Prop is defined by:
[p, ¢ : MuForm](qi) < ¢ Vv ds:8t.3l: (list St). I : MuForm.
(~(Elems ) A ¢ = (0 (cons s 1) ¢p) A ¢ = (0 l)))

Well-foundedness of R follows from the assumption that the set of states St
is finite. By the well-founded induction principle, MuChk_plus follows from:

V¢ : MuForm. (V¢ : MuForm. (R v ¢)— (Q1 ¥))— (Q* ¢). (1)

The proof proceeds by case analysis on the form of ¢, which generates eight
subgoals, one for each constructor of MuForm. We pick out the case of the greatest
fixed point which we state as the lemma:

2ie. if ¢ < ¢’ then thereis no ¢” s.t. ¢ < ¢ < ¢’



Lemma chk Nu_plus:
Vi: (1ist St).V¢: MuForm.

(Vi) : MuForm. (R ¢ (Nu [ ¢))—(QF ¢)) = (QT (Nul ¢)).

After unfolding the definitions of @ and @, introducing the hypothesis into the
context and pushing substitution inside Nu, we obtain the sequent:

h: Vi:MuForm. (R ¢ (Nul ¢))—
V6': Subst.
(Vj:nat.(Elem j (fv (Nul ¢))) — (Closed (8’ j)))—
(¥j: mat. (E1em j (£v (N 1 6)) (Q (8' )= (Q ¥[8
f: Subst
ho: Vip: nat. (Elem iy (fv (Nul ¢))) — (Closed (6 ip))
hi: Vig: nat. (Elem iy (fv (Nul ¢)) —(Q (0 ip))
s: St

{s = (i (o[ (@O)))}+{~(s = (Wu (e[ (6)])))}

The realizer for this goal depends on two lemmas which are proved in the context
above. The first one is:

Lemma QNu_cons: —(Elem s [)—=(Q (Nu (cons s 1) ¢)[f])
Realizer (h (Nu (cons s 1) 8 hl)).

It is automatically proved by Program all. The second one corresponds to the
right hand side of Lemma 5(6):

Lemma Q_Nu_unfold:

~(ELem 5 1) (Q ([ (O)])[(u (cons s 1) ($14(B)]) - id])

Using Lemma 4, we first rewrite this to (Q #[(Nu (cons s 1) (4[11(9)])) - 6])- Now,
since by Lemma Q_Nu_cons we know how to decide (Nu (cons s I) (¢[f} (0)]))
(which is convertible with (Nu (cons s ) ¢)[f]) and by hypothesis h; we know
how to do so for each (6 7), we can use the induction hypothesis h to construct
the following realizer

Realizer (b ¢ (Nu (cons s l) (¢[ft(8)])) -6
[i: nat]Cases i of O = QNu_cons | (S j) = (hy j) end)

Applying the tactic Program all leaves us with two subgoals which are easily
solved. Now, with Lemma 5(5b) and (6) in mind, we are ready to give the realizer
for the goal of our original sequent:

Realizer if (is_elem spec s [) then true else (Q_Nu_unfold s).

where is_elem spec: Vs: St.Vi: (1ist St).{(Elem s I)} +{—(Elem s [)}. The
subgoals generated by Program all are all easily proved using Lemmas 5(5b)
and 5(6).



A realizer for the control structure The steps taken in the beginning of the proof
(application of the WFI and case analysis) can be replaced by the following
realizer for MuChk_plus:

Realizer <Q*>rec muchk plus :: :: {R}
[¢: MuForm|Cases ¢ of

(Var i) = (chk_Var_plus i)

(Lit p) = (chk_Lit_plus p)

(constr args) = (chk_constr_plus args muchk _plus)

|
|
end.
The notation <P>rec h :: ::{R} [a: A]M, where h is the name of the induction
hypothesis and M : P, is syntactic sugar for (well_founded induction A P [a:
Al[h: A— P]M). The identifiers chk_constr_plus, where constr is the name of

a recursive constructor of MuForm, denote lemmas proving the different cases for
¢ in subgoal (1).

5 Application

All the notions in this section have been formalised in Coq. We use usual math-
ematical notation for brevity.

CCS and the specification preorder. We recall the basic definitions. For
more detail, we refer the reader to [13,5]. Let A be a set of names, their com-
plements A = {I | I € A} and the set of labels £L = AUA. We set [ = [. f Define
the set of actions by Act = L U {7}, where with 7 the invisible/silent action. f
is a relabelling function if f(I) = f(I) and f(r) = 7. Suppose a set K of process
constants. The set P of processes is defined by the abstract syntax:

pu=nil [Lla.p|po+pi| polpt | plf] | P\L|A

where a € Act, f a relabelling function, L C £ and A € K. Let T be the
transition system (P, Act,—), whose transition relation — is inductively defined
by the rules:

apSp
p=p = pragap, g+poy,
a a f(a)
pla=p, alp=p, p{f} = v {f}
p=p, aagl = p\L>p\L
PP, A%p = ALy

The partiality predicate 1 is the complement of | which is defined by: (i) nil |
sapl, (@) pl, gl= pt+al, plal (i)pl= p\LI, plf] | (iv)

def

A=p, pl= Al Intuitively, 1 denotes the underdefined processes.



Definition 7. Let [ € £ and a € Act. Define

1. :l>=T—*> —l> ¥ and :T>=T—*>

2. piff p.p=>p Apt

3.pfaiffpftvIp.(p=>p Ap' 1)
p (p | a) is the complements of p { (p I a). We say that a process p is totally
defined if for all p' reachable from p: p |. Otherwise, it is partially defined.

Definition 8. Define the specification preorder < as the greatest fixed point of
the function F' on relations over P defined by (p,q) € F(R) iff for all a € Act
s.t. p { a we have:

L. qda,
2. ifp % p' then I¢.¢q 2 ¢ A(,q¢') €R,
3. if ¢3¢ then Ip'.p 2 p' A, q') €R.

Let =~ denote weak bisimulation equivalence [13].
Lemma 9. If p <q and p is totally defined, then q is totally defined and p ~ q.

Theorem 10. ([5]) The preorder < is a precongruence w.r.t. parallel composi-
tion, restriction and relabelling, i.e. if p<lq thenp|r <q|r, p{f} <¢{f} and

p\L < ¢\L.

Verification of < using the model checker. We introduce the transition
system T+ = (P x P, Act W Act,— ), where —» is defined by:

i to(a)

PS5y = oY, 0,9, @p) Y, ()

Next, we define some left and right modalities for the p-calculus interpreted over
the transition system TF:

(a)i ¢ = (10(a))d () o =pX.oV(rpX (X EFV(9)
((ODh¢= (" 0u{m™ o (Lel) {(hi¢=(T"h¢

Of all these we define “right” versions, but with (a),¢ = (11(a))¢. We also
introduce left/right versions of the partiality predicates:

t=txP = | T 7 (a) = V{{a))i T

Similarly, “right” versions are defined using 1,.= P x 1. Now, supposing the set
Act is finite, the function F' from definition 8 can be expressed as the p-calculus
formula:

FX) = A (=@ v (@) A lah (@)X A [al(@)iX))

a€Act

We define x, = vX .F(X). Then we have the following result:



Lemma 11. For Act finite: p<lq < (p,q) F Xx4-

A simple protocol. A simple protocol P, is composed of a sender S syn-
chronously transmitting signals over a buffer B" of size n to a receiver R. With
X ||Y = (X[out/z] | Y[in/z])\{z}, the definition is:

B = in.out.B B"= ||, B
S ¥ send.in.ack.S R ¥ out.Fecv.ack.R
E = (S| R)\{ack} P, = (E | B")\{in,out}

We define a specification of the protocol by Spec = send.Fecv.Spec. We want to
show that the behaviour of the protocol is independent of the size of the buffer.

Theorem 12. For alln > 1: Spec =~ P,.

Proof. The proof is decomposed into the following two steps:

1. find a network invariant J such that for all n > 1: J < B™
2. verify that Spec < (E | J)\{in, out}

The result then follows from Theorem 10 and Lemma 9, a fact which is proved
by deduction in Coq. We define J = in.J' and J' = out.J + in. L.

Step (1) is proved by an implicit induction on n: (a) J < B (base case) (b)
J < B || J (inductive step). Both these steps can be proved with the model
checker, by using the characteristic formula x . That (a) and (b) imply (1) is
proved “by hand” in Coq. Step (2) can be delegated to the model checker as

well. a

As any property, expressed in a version of the modal p-calculus with weak
modalities only, is preserved by weak bisimulation equivalence, we can verify it
on the specification Spec and conclude that it also holds for each of the P,.
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